
CHAP T E R

13

Data Storage Stru
tures

Pra
ti
e Exer
ises

13.1 Consider the deletion of re
ord 5 from the �le of Figure 13.3. Compare the

relative merits of the following te
hniques for implementing the deletion:

a. Move re
ord 6 to the spa
e o

upied by re
ord 5, and move re
ord 7 to

the spa
e o

upied by re
ord 6.

b. Move re
ord 7 to the spa
e o

upied by re
ord 5.


. Mark re
ord 5 as deleted, and move no re
ords.

Answer:

a. Although moving re
ord 6 to the spa
e for 5 and moving re
ord 7 to the

spa
e for 6 is the most straightforward approa
h, it requires moving the

most re
ords and involves the most a

esses.

b. Moving re
ord 7 to the spa
e for 5 moves fewer re
ords but destroys any

ordering in the �le.


. Marking the spa
e for 5 as deleted preserves ordering and moves no

re
ords, but it requires additional overhead to keep tra
k of all of the

free spa
e in the �le. This method may lead to too many �holes� in the

�le, whi
h if not 
ompa
ted from time to time, will a�e
t performan
e

be
ause of the redu
ed availability of 
ontiguous free re
ords.

13.2 Show the stru
ture of the �le of Figure 13.4 after ea
h of the following steps:

a. Insert (24556, Turnamian, Finan
e, 98000).

b. Delete re
ord 2.


. Insert (34556, Thompson, Musi
, 67000).

Answer:

91



92 Chapter 13 Data Storage Stru
tures

header ~ 4

re
ord 0 10101 Srinivasan Comp. S
i. 65000

re
ord 1 24556 Turnamian Finan
e 98000

re
ord 2 15151 Mozart Musi
 40000

re
ord 3 22222 Einstein Physi
s 95000

re
ord 4 ~ 6

re
ord 5 33456 Gold Physi
s 87000

re
ord 6

re
ord 7 58583 Cali�eri History 62000

re
ord 8 76543 Singh Finan
e 80000

re
ord 9 76766 Cri
k Biology 72000

re
ord 10 83821 Brandt Comp. S
i. 92000

re
ord 11 98345 Kim Ele
. Eng. 80000

Figure 13.101 The file after insert (24556, Turnamian, Finan
e, 98000).

header ~ 2

re
ord 0 10101 Srinivasan Comp. S
i. 65000

re
ord 1 24556 Turnamian Finan
e 98000

re
ord 2 ~ 4

re
ord 3 22222 Einstein Physi
s 95000

re
ord 4 ~ 6

re
ord 5 33456 Gold Physi
s 87000

re
ord 6

re
ord 7 58583 Cali�eri History 62000

re
ord 8 76543 Singh Finan
e 80000

re
ord 9 76766 Cri
k Biology 72000

re
ord 10 83821 Brandt Comp. S
i. 92000

re
ord 11 98345 Kim Ele
. Eng. 80000

Figure 13.102 The file after delete re
ord 2.

We use �~ i� to denote a pointer to re
ord �i�.

a. See ??.

b. See ??. Note that the free re
ord 
hain 
ould have alternatively been

from the header to 4, from 4 to 2, and �nally from 2 to 6.


. See ??.



Pra
ti
e Exer
ises 93

header ~ 4

re
ord 0 10101 Srinivasan Comp. S
i. 65000

re
ord 1 24556 Turnamian Finan
e 98000

re
ord 2 34556 Thompson Musi
 67000

re
ord 3 22222 Einstein Physi
s 95000

re
ord 4 ~ 6

re
ord 5 33456 Gold Physi
s 87000

re
ord 6

re
ord 7 58583 Cali�eri History 62000

re
ord 8 76543 Singh Finan
e 80000

re
ord 9 76766 Cri
k Biology 72000

re
ord 10 83821 Brandt Comp. S
i. 92000

re
ord 11 98345 Kim Ele
. Eng. 80000

Figure 13.103 The file after insert (34556, Thompson, Musi
, 67000).

13.3 Consider the relations se
tion and takes. Give an example instan
e of these

two relations, with three se
tions, ea
h of whi
h has �ve students. Give a �le

stru
ture of these relations that uses multitable 
lustering.

Answer:

The relation se
tion with three tuples is as follows:


ourse id se
 id semester year building room number time slot id

BIO-301 1 Summer 2010 Painter 514 A

CS-101 1 Fall 2009 Pa
kard 101 H

CS-347 1 Fall 2009 Taylor 3128 C

The relation takes with �ve students for ea
h se
tion is as follows:

See ??.

See ??.

The multitable 
lustering for the above two instan
es 
an be taken as:

13.4 Consider the bitmap representation of the free-spa
e map, where for ea
h

blo
k in the �le, two bits are maintained in the bitmap. If the blo
k is between

0 and 30 per
ent full the bits are 00, between 30 and 60 per
ent the bits are

01, between 60 and 90 per
ent the bits are 10, and above 90 per
ent the bits

are 11. Su
h bitmaps 
an be kept in memory even for quite large �les.

a. Outline two bene�ts and one drawba
k to using two bits for a blo
k,

instead of one byte as des
ribed earlier in this 
hapter.



94 Chapter 13 Data Storage Stru
tures

ID 
ourse id se
 id semester year grade

00128 CS-101 1 Fall 2009 A

00128 CS-347 1 Fall 2009 A-

12345 CS-347 1 Fall 2009 A

12345 CS-101 1 Fall 2009 C

17968 BIO-301 1 Summer 2010 null

23856 CS-347 1 Fall 2009 A

45678 CS-101 1 Fall 2009 F

54321 CS-101 1 Fall 2009 A-

54321 CS-347 1 Fall 2009 A

59762 BIO-301 1 Summer 2010 null

76543 CS-101 1 Fall 2009 A

76543 CS-347 1 Fall 2009 A

78546 BIO-301 1 Summer 2010 null

89729 BIO-301 1 Summer 2010 null

98988 BIO-301 1 Summer 2010 null

Figure 13.104 The relation takes with five students for ea
h se
tion.

b. Des
ribe how to keep the bitmap up to date on re
ord insertions and

deletions.


. Outline the bene�t of the bitmap te
hnique over free lists in sear
hing

for free spa
e and in updating free spa
e information.

Answer:

a. The spa
e used is less with 2 bits, and the number of times the free-

spa
e map needs to be updated de
reases signi�
antly, sin
e many in-

serts/deletes do not result in any 
hange in the free-spa
e map. However,

we have only an approximate idea of the free spa
e available, whi
h 
ould

lead both to wasted spa
e and/or to in
reased sear
h 
ost for �nding free

spa
e for a re
ord.

b. Every time a re
ord is inserted/deleted, 
he
k if the usage of the blo
k

has 
hanged levels. In that 
ase, update the 
orresponding bits. Note

that we don't need to a

ess the bitmaps at all unless the usage 
rosses

a boundary, so in most of the 
ases there is no overhead.


. When free spa
e for a large re
ord or a set of re
ords is sought, then

multiple free list entries may have to be s
anned before a proper-sized

one is found, so overheads are mu
h higher. With bitmaps, one page of

bitmap 
an store free info for many pages, so I/O spent for �nding free

spa
e is minimal. Similarly, when a whole blo
k or a large part of it is



Pra
ti
e Exer
ises 95

BIO-301 1 Summer 2010 Painter 514 A

17968 BIO-301 1 Summer 2010 null

59762 BIO-301 1 Summer 2010 null

78546 BIO-301 1 Summer 2010 null

89729 BIO-301 1 Summer 2010 null

98988 BIO-301 1 Summer 2010 null

CS-101 1 Fall 2009 Pa
kard 101 H

00128 CS-101 1 Fall 2009 A

12345 CS-101 1 Fall 2009 C

45678 CS-101 1 Fall 2009 F

54321 CS-101 1 Fall 2009 A-

76543 CS-101 1 Fall 2009 A

CS-347 1 Fall 2009 Taylor 3128 C

00128 CS-347 1 Fall 2009 A-

12345 CS-347 1 Fall 2009 A

23856 CS-347 1 Fall 2009 A

54321 CS-347 1 Fall 2009 A

76543 CS-347 1 Fall 2009 A

Figure 13.105 The multitable 
lustering for the above two instan
es 
an be taken as:

deleted, bitmap te
hnique is more 
onvenient for updating free spa
e

information.

13.5 It is important to be able to qui
kly �nd out if a blo
k is present in the bu�er,

and if so where in the bu�er it resides. Given that database bu�er sizes are

very large, what (in-memory) data stru
ture would you use for this task?

Answer:

Hash table is the 
ommon option for large database bu�ers. The hash fun
tion

helps in lo
ating the appropriate bu
ket on whi
h linear sear
h is performed.

13.6 Suppose your university has a very large number of takes re
ords, a

umulated

over many years. Explain how table partitioning 
an be done on the takes rela-

tion, and what bene�ts it 
ould o�er. Explain also one potential drawba
k of

the te
hnique.

Answer:

The table 
an be partitioned on (year, semester). Old takes re
ords that are

no longer a

essed frequently 
an be stored on magneti
 disk, while newer

re
ords 
an be stored on SSD. Queries that spe
ify a year 
an be answered

without reading re
ords for other years.



96 Chapter 13 Data Storage Stru
tures

A drawba
k is that queries that fet
h re
ords 
orresponding to multiple years

will have a higher overhead, sin
e the re
ords may be partitioned a
ross di�er-

ent relations and disk blo
ks.

13.7 Give an example of a relational-algebra expression and a query-pro
essing strat-

egy in ea
h of the following situations:

a. MRU is preferable to LRU.

b. LRU is preferable to MRU.

Answer:

a. MRU is preferable to LRUwhereR

1

Æ R

2

is 
omputed by using a nested-

loop pro
essing strategy where ea
h tuple in R

2

must be 
ompared to

ea
h blo
k in R

1

. After the �rst tuple of R

2

is pro
essed, the next needed

blo
k is the �rst one in R

1

. However, sin
e it is the least re
ently used,

the LRU bu�er management strategy would repla
e that blo
k if a new

blo
k was needed by the system.

b. LRU is preferable to MRU where R

1

Æ R

2

is 
omputed by sorting the

relations by join values and then 
omparing the values by pro
eeding

through the relations. Due to dupli
ate join values, it may be ne
essary

to �ba
k up� in one of the relations. This �ba
king up� 
ould 
ross a

blo
k boundary into the most re
ently used blo
k, whi
h would have

been repla
ed by a system usingMRU bu�er management, if a new blo
k

was needed.

Under MRU, some unused blo
ks may remain in memory forever. In

pra
ti
e, MRU 
an be used only in spe
ial situations like that of the

nested-loop strategy dis
ussed in Exer
ise Se
tion 13.8a.

13.8 PostgreSQL normally uses a small bu�er, leaving it to the operating system

bu�er manager to manage the rest of main memory available for �le system

bu�ering. Explain (a) what is the bene�t of this approa
h, and (b) one key

limitation of this approa
h.

Answer:

The database system does not know what are the memory demands from other

pro
esses. By using a small bu�er, PostgreSQL ensures that it does not grab

too mu
h of main memory. But at the same time, even if a blo
k is evi
ted

from bu�er, if the �le system bu�er manager has enough memory allo
ated to

it, the evi
ted page is likely to still be 
a
hed in the �le system bu�er. Thus, a

database bu�er miss is often not very expensive sin
e the blo
k is still in the

�le system bu�er.



Pra
ti
e Exer
ises 97

The drawba
k of this approa
h is that the database system may not be able to


ontrol the �le system bu�er repla
ement poli
y. Thus, the operating system

may make suboptimal de
isions on what to evi
t from the �le system bu�er.




	Physical Storage Systems
	Exercises


