CHAPTER

Indexing

Practice Exercises

14.1

14.2

14.3

Indices speed query processing, but it is usually a bad idea to create indices on
every attribute, and every combination of attributes, that are potential search
keys. Explain why.

Answer:
Reasons for not keeping indices on every attribute include:

* Every index requires additional CPU time and disk I/O overhead during
inserts and deletions.

* Indices on non-primary keys might have to be changed on updates, al-
though an index on the primary key might not (this is because updates
typically do not modify the primary-key attributes).

* [Each extra index requires additional storage space.

* For queries which involve conditions on several search keys, efficiency
might not be bad even if only some of the keys have indices on them.
Therefore, database performance is improved less by adding indices when
many indices already exist.

Is it possible in general to have two clustering indices on the same relation for
different search keys? Explain your answer.

Answer:

In general, it is not possible to have two primary indices on the same relation
for different keys because the tuples in a relation would have to be stored in
different order to have the same values stored together. We could accomplish
this by storing the relation twice and duplicating all values, but for a centralized
system, this is not efficient.

Construct a B*-tree for the following set of key values:

99



100 Chapter 14 Indexing

(2,3,5,7,11, 17, 19, 23, 29, 31)

Assume that the tree is initially empty and values are added in ascending order.
Construct B*-trees for the cases where the number of pointers that will fit in
one node is as follows:

a. Four

b. Six

c. Fight
Answer:

The following were generated by inserting values into the B*-tree in ascending
order. A node (other than the root) was never allowed to have fewer than [r/2]
values/pointers.

a.

Lo l] 1 1]
s [Jol] ] o] 1 1]

W [ls [[ [Fls [l [I T—tlulla [l [F~helbs [ [F1lollall |

WL fhe [ 1T 1 1]

LallsllsIl 1T Iz Tullwll [T TH{lo[T2sllaellatl] |

I
/ \,

L2l T2 T T—{Tu [T [[so]f23 [T2o [[3t [[ 1}

14.4 For each B™-tree of Exercise 14.3, show the form of the tree after each of the
following series of operations:

a. Insert9.



Practice Exercises 101
Insert 10.

Delete 23.

b.
c. Insert 8.
d.
e. Delete 19.

Answer:

* With structure Exercise 14.3.a:

Insert 9:

Insert 10:

L2 AT (1 s [Tz 0 T Tho T T{Tu [l [T TF~To ll2s [T [Ftl2o [[1[] 1]

Insert &:

Lol 1T 1]

L2 AT (1 [ [Tz 0T T Tho [T T{u [l [T Tl [les [T [F—{l2o I3t [] 1]

Delete 23:

IERIER I e I ERIFRIFNI —{Lo [[20[[a1




102 Chapter 14 Indexing

Delete 19:
Jull I

s 4o l] 1] Lo [ [ 1
Ua [ls [I TFls 17 s [l [0 ][ [Flulla [l [F—tloo[[all 1]

* With structure Exercise 14.3.b:

Insert 9:

Uz dfol] [T [ I
L2l slfs[[ ([ TF=tlz [T ullw [l [Ftlo [faslloo[[at]] 1]

Insert 10:

Lol l] [T I 1]
W2 Is ][ [ [z 1o lfo[lu [ [~ [2sfo[lst [[ ]

Insert 8:

Delete 23:

[L71lo o[ 1T T

C2lsIls T 1T Tl Tsllel T TF—hollullw T [T T-~Twl2of[sil 1T 1]

Delete 19:

L lLoll T 1T T
W fls sl [I [z s lloll 1T I—{lwol[ullw2o]]s1]]




Practice Exercises 103

* With structure Exercise 14.3.c:

Insert 9:

Insert 10:
Wl T 0T 1T 1T 1
T
L2l sl[7 [[olfw]l [F—{lulfr [[1o [[23]as[[ar]] 1]
Insert 8:

Delete 23:

o fl 1T TE 1T

. \
213 1ls T2 [TslloTuolF—{Tu a7 [Tro]lag [as [T I ]

Delete 19:

o fl I I 1T

L T
M2l s M7 M T olTwolF—Tu i [o [fs ]l T I T]

14.5 Consider the modified redistribution scheme for B*-trees described on page
651. What is the expected height of the tree as a function of n?

Answer:
If there are K search-key values and m — 1 siblings are involved in the redistri-
bution, the expected height of the tree is: l0g,,— 1,/ (K)

14.6  Give pseudocode for a B*-tree function findRangelterator(), which is like the
function findRange(), except that it returns an iterator object, as described
in Section 14.3.2. Also give pseudocode for the iterator class, including the
variables in the iterator object, and the next() method.

Answer:



104

Chapter 14 Indexing

14.7

14.8

FILL IN

What would the occupancy of each leaf node of a B*-tree be if index entries
were inserted in sorted order? Explain why.

Answer:

If the index entries are inserted in ascending order, the new entries get directed
to the last leaf node. When this leaf node gets filled, it is split into two. Of
the two nodes generated by the split, the left node is left untouched and the
insertions take place on the right node. This makes the occupancy of the leaf
nodes about 50 percent except for the last leaf.

If keys that are inserted are sorted in descending order, the above situation
would still occur, but symmetrically, with the right node of a split never getting
touched again, and occupancy would again be 50 percent for all nodes other
than the first leaf.

Suppose you have a relation r with n, tuples on which a secondary B*-tree is
to be constructed.

a. Give a formula for the cost of building the B*-tree index by inserting one
record at a time. Assume each block will hold an average of / entries and
that all levels of the tree above the leaf are in memory.

b. Assuming a random disk access takes 10 milliseconds, what is the cost
of index construction on a relation with 10 million records?

c. Write pseudocode for bottom-up construction of a B*-tree, which was
outlined in Section 14.4.4. You can assume that a function to efficiently
sort a large file is available.

Answer:

a. The cost to locate the page number of the required leaf page for an in-
sertion is negligible since the non-leaf nodes are in memory. On the leaf
level it takes one random disk access to read and one random disk ac-
cess to update it along with the cost to write one page. Insertions which
lead to splitting of leaf nodes require an additional page write. Hence to
build a B*-tree with n, entries it takes a maximum of 2 % n, random disk
accesses and n, + 2 = (n,/f) page writes. The second part of the cost
comes from the fact that in the worst case each leaf is half filled, so the
number of splits that occur is twice n, /f.

The above formula ignores the cost of writing non-leaf nodes, since
we assume they are in memory, but in reality they would also be written
eventually. This cost is closely approximated by 2 = (n,/f)/f, which
is the number of internal nodes just above the leaf; we can add further
terms to account for higher levels of nodes, but these are much smaller
than the number of leaves and can be ignored.



b.

Practice Exercises 105

Substituting the values in the above formula and neglecting the cost for
page writes, it takes about 10,000, 000 = 20 milliseconds, or 56 hours,
since each insertion costs 20 milliseconds.

c.
function insert_in_leaf(value K, pointer P)

if(tree is empty) create an empty leaf node L, which is also the root
else Find the last leaf node in the leaf nodes chain L
if (L has less than n — 1 key values)

then insert (K,P) at the first available location in L

else begin
Create leaf node L1
Set L.P,=L1;

Set K'1 = last value from page L

insert_in_parent(1, L, K1, L1)

insert (K,P) at the first location in L1
end

function insert_in_parent(level /, pointer P, value K, pointer P1)
if (level / is empty) then begin
Create an empty non-leaf node N, which is also the root
insert(P, K, P1) at the starting of the node N
return
else begin
Find the right most node N at level /
if (V has less than » pointers)
then insert(K, P1) at the first available location in N
else begin
Create a new non-leaf page V1
insert (P1) at the starting of the node N
insert_in_parent(/ + 1, pointer &, value K, pointer N1)
end
end

The insert_in_leaf function is called for each of the value, pointer pairs in
ascending order. Similar function can also be built for descending order.
The search for the last leaf or non-leaf node at any level can be avoided
by storing the current last page details in an array.

The last node in each level might be less than half filled. To make this
index structure meet the requirements of a B*-tree, we can redistribute
the keys of the last two pages at each level. Since the last but one node is
always full, redistribution makes sure that both of them are at least half
filled.



106 Chapter 14 Indexing

14.9 The leaf nodes of a B*-tree file organization may lose sequentiality after a se-
quence of inserts.

Explain why sequentiality may be lost.

To minimize the number of seeks in a sequential scan, many databases
allocate leaf pages in extents of n blocks, for some reasonably large 7.
When the first leaf of a B*-tree is allocated, only one block of an n-block
unit is used, and the remaining pages are free. If a page splits, and its
n-block unit has a free page, that space is used for the new page. If the
n-block unit is full, another n-block unit is allocated, and the first n/2 leaf
pages are placed in one n-block unit and the remaining one in the second
n-block unit. For simplicity, assume that there are no delete operations.

i. What is the worst-case occupancy of allocated space, assuming no
delete operations, after the first #-block unit is full?

ii. Isit possible that leaf nodes allocated to an n-node block unit are not
consecutive, that is, is it possible that two leaf nodes are allocated
to one n-node block, but another leaf node in between the two is
allocated to a different n-node block?

iii. Under the reasonable assumption that buffer space is sufficient to
store an n-page block, how many seeks would be required for a leaf-
level scan of the B*-tree, in the worst case? Compare this number
with the worst case if leaf pages are allocated a block at a time.

iv. The technique of redistributing values to siblings to improve space
utilization is likely to be more efficient when used with the preceding
allocation scheme for leaf blocks. Explain why.

Answer:

a.

In a B*-tree index or file organization, leaf nodes that are adjacent to
each other in the tree may be located at different places on disk. When
a file organization is newly created on a set of records, it is possible to
allocate blocks that are mostly contiguous on disk to leafs nodes that
are contiguous in the tree. As insertions and deletions occur on the tree,
sequentiality is increasingly lost, and sequential access has to wait for
disk seeks increasingly often.

i. In the worst case, each n-block unit and each node of the B*-tree is
half filled. This gives the worst-case occupancy as 25 percent.

ii. No. While splitting the n-block unit, the first /2 leaf pages are placed
in one n-block unit and the remaining pages in the second n-block
unit. That is, every n-block split maintains the order. Hence, the
nodes in the n-block units are consecutive.



14.10

14.11

14.12

Practice Exercises 107

iii. In the regular B*-tree construction, the leaf pages might not be se-
quential and hence in the worst-case, it takes one seek per leaf page.
Using the block at a time method, for each n-node block, we will have
at least n/2 leaf nodes in it. Each n-node block can be read using one
seek. Hence the worst-case seeks come down by a factor of n/2.

iv. Allowing redistribution among the nodes of the same block does not
require additional seeks, whereas in regular B*-trees we require as
many seeks as the number of leaf pages involved in the redistribution.
This makes redistribution for leaf blocks efficient with this scheme.
Also, the worst-case occupancy comes back to nearly 50 percent.
(Splitting of leaf nodes is preferred when the participating leaf nodes
are nearly full. Hence nearly 50 percent instead of exact 50 percent)

Suppose you are given a database schema and some queries that are executed
frequently. How would you use the above information to decide what indices
to create?

Answer:
Indices on any attributes on which there are selection conditions; if there are
only a few distinct values for that attribute, a bitmap index may be created,
otherwise a normal B*-tree index.

B*-tree indices on primary-key and foreign-key attributes.

Also indices on attributes that are involved in join conditions in the queries.

In write-optimized trees such as the LSM tree or the stepped-merge index, en-
tries in one level are merged into the next level only when the level is full.
Suggest how this policy can be changed to improve read performance during
periods when there are many reads but no updates.

Answer:

If there have been no updates in a while, but there are a lot of index look ups
on an index, then entries at one level, say /, can be merged into the next level,
even if the level is not full. The benefit is that reads would then not have to
look up indices at level 7, reducing the cost of reads.

What trade offs do buffer trees pose as compared to LSM trees?

Answer:
The idea of buffer trees can be used with any tree-structured index to reduce the
cost of inserts and updates, including spatial indices. In contrast, LSM trees can
only be used with linearly ordered data that are amenable to merging. On the
other hand, buffer trees require more random 1/O to perform insert operations
as compared to (all variants of) LSM trees.

Write-optimized indices can significantly reduce the cost of inserts, and to
a lesser extent, of updates, as compared to B*-trees. On the other hand, the



108 Chapter 14

14.13

Indexing

index lookup cost can be significantly higher for write-optimized indices as
compared to B*-trees.

Consider the instructor relation shown in Figure 14.1.

a.

Construct a bitmap index on the attribute salary, dividing salary values
into four ranges: below 50,000, 50,000 to below 60,000, 60,000 to below
70,000, and 70,000 and above.

Consider a query that requests all instructors in the Finance department
with salary of 80,000 or more. Outline the steps in answering the query,
and show the final and intermediate bitmaps constructed to answer the
query.

Answer:
We reproduce the instructor relation below.

‘ ID ‘ name dept_name ‘ salary ‘
10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000

Bitmap for salary, with S}, S,, S5 and S, representing the given intervals
in the same order

[5,J0 0 T 0 0 0 0 0 0 0 0 0]
[5,]0 0 0 0 0 0 0 0 0 0 0 O]
[5,]1 0 0 0 1 0 0 1 0 0 0 0]
[5,J0 1 0 1 0 I 1 0 I 1 1 1|

The question is a bit trivial if there is no bitmap on the dept_name at-
tribute. The bitmap for the dept_name attribute is:



14.14

14.15

Practice Exercises 109

Comp. Sci

Finance

Music

History

Biology
Elec. Eng.

O Of| | @ @ @ —
O Of| Q| @ @ —|| ©
O Of| @ @ || @|| ©
O Of| @ || @|| @|| ©
O Of| —|| || @|| @|| ©
O O Q| —|| 2| @|| ©
QO Of| @ @|| @|| @] —
QO Of| —|| @|| @|| @|| ©
O Of| Q| @ @ —|| ©
O —|]| @ O || @|| ©
O Of| | @ @ @ —
— || O @ @|| @|| @|| ©

| |
| |
| |
| Physics |
| |
| |
| |

To find all instructors in the Finance department with salary of 80000
or more, we first find the intersection of the Finance department bitmap
and S, bitmap of salary and then scan on these records for salary of

80000 or more.

Intersection of Finance department bitmap and S, bitmap of salary.

| Sy \ o 1 o 1 o 1 1 O 1 1 1 1 |
| Finance \ o 1 0 0 0o O O o 1 o0 o0 oO |
| S,N Finance \ o 1 o 0 O O O O 1 o o0 o |

Scan on these records with salary 80000 or more gives Wu and Singh as
the instructors who satisfy the given query.

Suppose you have a relation containing the x,y coordinates and names of
restaurants. Suppose also that the only queries that will be asked are of the
following form: The query specifies a point and asks if there is a restaurant ex-
actly at that point. Which type of index would be preferable, R-tree or B-tree?
Why?

Answer:

FILL IN

Suppose you have a spatial database that supports region queries with circular
regions, but not nearest-neighbor queries. Describe an algorithm to find the
nearest neighbor by making use of multiple region queries.

Answer:

Start with regions with very small radius, and retry with a larger radius if a
particular region does not contain any result. For example, each time the radius
could be increased by a factor of (say) 1.5. The benefit is that since we do not
use a very large radius compared to the minimum radius required, there will
(hopefully!) not be too many points in the circular range query result.






	Data Storage Structures
	Exercises


