
CHAP T E R

14

Indexing

Pratie Exerises

14.1 Indies speed query proessing, but it is usually a bad idea to reate indies on

every attribute, and every ombination of attributes, that are potential searh

keys. Explain why.

Answer:

Reasons for not keeping indies on every attribute inlude:

�

Every index requires additional CPU time and disk I/O overhead during

inserts and deletions.

�

Indies on non-primary keys might have to be hanged on updates, al-

though an index on the primary key might not (this is beause updates

typially do not modify the primary-key attributes).

�

Eah extra index requires additional storage spae.

�

For queries whih involve onditions on several searh keys, e	ieny

might not be bad even if only some of the keys have indies on them.

Therefore, database performane is improved less by adding indies when

many indies already exist.

14.2 Is it possible in general to have two lustering indies on the same relation for

di�erent searh keys? Explain your answer.

Answer:

In general, it is not possible to have two primary indies on the same relation

for di�erent keys beause the tuples in a relation would have to be stored in

di�erent order to have the same values stored together. We ould aomplish

this by storing the relation twie and dupliating all values, but for a entralized

system, this is not e	ient.

14.3 Construt a B

+

-tree for the following set of key values:

99



100 Chapter 14 Indexing

(2, 3, 5, 7, 11, 17, 19, 23, 29, 31)

Assume that the tree is initially empty and values are added in asending order.

Construt B

+

-trees for the ases where the number of pointers that will �t in

one node is as follows:

a. Four

b. Six

. Eight

Answer:

The following were generated by inserting values into the B

+

-tree in asending

order. A node (other than the root) was never allowed to have fewer than än_2å

values/pointers.

a.

5 7 11 17 19 23 29 3132

29

19

115

b.

7 19

2 3 5 7 11 17 19 23 29 31

.

11

11 17 19 23 29 312 3 5 7

14.4 For eah B

+

-tree of Exerise 14.3, show the form of the tree after eah of the

following series of operations:

a. Insert 9.



Pratie Exerises 101

b. Insert 10.

. Insert 8.

d. Delete 23.

e. Delete 19.

Answer:

�

With struture Exerise 14.3.a:

Insert 9:

19

5 119 29

2 3 5 7 11 17 19 23 29 31 

Insert 10:

19

5 9 11 29

2 3 5 7 10 11 17 19 23 29 31 

Insert 8:

19

5 9 11 29

2 3 5 7 10 11 17 19 23 29 31 

Delete 23:

11

195 9

2 3 5 7 8 9 10 11 17 19 29 31



102 Chapter 14 Indexing

Delete 19:

11

5 9 29

2 3 5 7 8 9 10 11 17 29 31

�

With struture Exerise 14.3.b:

Insert 9:

2 3 5

7

7 9 11 17 19 23 29 31

19

Insert 10:

2 3 5

7 19

97 10 11 17 19 23 29 31

Insert 8:

7 10 19

2 3 5 7 8 9 10 11 17 9 23 29 31

Delete 23:

7 10 19

2 3 5 7 8 9 10 1711 19 29 31

Delete 19:

10

10 11 17 3129

7

7 8 92 3 5



Pratie Exerises 103

�

With struture Exerise 14.3.:

Insert 9:

11

2 3 5 7 9 11 17 19 23 29 31

Insert 10:

11

2 3 5 7 9 10 11 17 19 23 29 31

Insert 8:

11

2 3 5 7 8 9 10 11 17 19 23 29 31

Delete 23:

11

2 3 5 7 8 9 10 11 17 19 29 31

Delete 19:

11

2 3 5 7 8 9 10 11 17 29 31

14.5 Consider the modi�ed redistribution sheme for B

+

-trees desribed on page

651. What is the expeted height of the tree as a funtion of n?

Answer:

If there are K searh-key values and m * 1 siblings are involved in the redistri-

bution, the expeted height of the tree is: log

â(m*1)n_mã

(K)

14.6 Give pseudoode for a B

+

-tree funtion findRangeIterator(), whih is like the

funtion findRange(), exept that it returns an iterator objet, as desribed

in Setion 14.3.2. Also give pseudoode for the iterator lass, inluding the

variables in the iterator objet, and the next() method.

Answer:



104 Chapter 14 Indexing

FILL IN

14.7 What would the oupany of eah leaf node of a B

+

-tree be if index entries

were inserted in sorted order? Explain why.

Answer:

If the index entries are inserted in asending order, the new entries get direted

to the last leaf node. When this leaf node gets �lled, it is split into two. Of

the two nodes generated by the split, the left node is left untouhed and the

insertions take plae on the right node. This makes the oupany of the leaf

nodes about 50 perent exept for the last leaf.

If keys that are inserted are sorted in desending order, the above situation

would still our, but symmetrially, with the right node of a split never getting

touhed again, and oupany would again be 50 perent for all nodes other

than the �rst leaf.

14.8 Suppose you have a relation r with n

r

tuples on whih a seondary B

+

-tree is

to be onstruted.

a. Give a formula for the ost of building the B

+

-tree index by inserting one

reord at a time. Assume eah blok will hold an average of f entries and

that all levels of the tree above the leaf are in memory.

b. Assuming a random disk aess takes 10 milliseonds, what is the ost

of index onstrution on a relation with 10 million reords?

. Write pseudoode for bottom-up onstrution of a B

+

-tree, whih was

outlined in Setion 14.4.4. You an assume that a funtion to e	iently

sort a large �le is available.

Answer:

a. The ost to loate the page number of the required leaf page for an in-

sertion is negligible sine the non-leaf nodes are in memory. On the leaf

level it takes one random disk aess to read and one random disk a-

ess to update it along with the ost to write one page. Insertions whih

lead to splitting of leaf nodes require an additional page write. Hene to

build a B

+

-tree with n

r

entries it takes a maximum of 2 < n

r

random disk

aesses and n

r

+ 2 < (n

r

_f ) page writes. The seond part of the ost

omes from the fat that in the worst ase eah leaf is half �lled, so the

number of splits that our is twie n

r

_f .

The above formula ignores the ost of writing non-leaf nodes, sine

we assume they are in memory, but in reality they would also be written

eventually. This ost is losely approximated by 2 < (n

r

_f )_f , whih

is the number of internal nodes just above the leaf; we an add further

terms to aount for higher levels of nodes, but these are muh smaller

than the number of leaves and an be ignored.



Pratie Exerises 105

b. Substituting the values in the above formula and negleting the ost for

page writes, it takes about 10, 000, 000 < 20 milliseonds, or 56 hours,

sine eah insertion osts 20 milliseonds.

.

funtion insert in leaf(value K , pointer P)

if(tree is empty) reate an empty leaf node L, whih is also the root

else Find the last leaf node in the leaf nodes hain L

if (L has less than n * 1 key values)

then insert (K ,P) at the �rst available loation in L

else begin

Create leaf node L1

Set L:P

n

= L1;

Set K1 = last value from page L

insert in parent(1, L, K1, L1)

insert (K ,P) at the �rst loation in L1

end

funtion insert in parent(level l, pointer P, value K , pointer P1)

if (level l is empty) then begin

Create an empty non-leaf node N , whih is also the root

insert(P, K , P1) at the starting of the node N

return

else begin

Find the right most node N at level l

if (N has less than n pointers)

then insert(K , P1) at the �rst available loation in N

else begin

Create a new non-leaf page N1

insert (P1) at the starting of the node N

insert in parent(l + 1, pointer N , value K , pointer N1)

end

end

The insert in leaf funtion is alled for eah of the value, pointer pairs in

asending order. Similar funtion an also be built for desending order.

The searh for the last leaf or non-leaf node at any level an be avoided

by storing the urrent last page details in an array.

The last node in eah level might be less than half �lled. To make this

index struture meet the requirements of a B

+

-tree, we an redistribute

the keys of the last two pages at eah level. Sine the last but one node is

always full, redistribution makes sure that both of them are at least half

�lled.



106 Chapter 14 Indexing

14.9 The leaf nodes of a B

+

-tree �le organization may lose sequentiality after a se-

quene of inserts.

a. Explain why sequentiality may be lost.

b. To minimize the number of seeks in a sequential san, many databases

alloate leaf pages in extents of n bloks, for some reasonably large n.

When the �rst leaf of a B

+

-tree is alloated, only one blok of an n-blok

unit is used, and the remaining pages are free. If a page splits, and its

n-blok unit has a free page, that spae is used for the new page. If the

n-blok unit is full, another n-blok unit is alloated, and the �rst n_2 leaf

pages are plaed in one n-blok unit and the remaining one in the seond

n-blok unit. For simpliity, assume that there are no delete operations.

i. What is the worst-ase oupany of alloated spae, assuming no

delete operations, after the �rst n-blok unit is full?

ii. Is it possible that leaf nodes alloated to an n-node blok unit are not

onseutive, that is, is it possible that two leaf nodes are alloated

to one n-node blok, but another leaf node in between the two is

alloated to a di�erent n-node blok?

iii. Under the reasonable assumption that bu�er spae is su	ient to

store an n-page blok, how many seeks would be required for a leaf-

level san of the B

+

-tree, in the worst ase? Compare this number

with the worst ase if leaf pages are alloated a blok at a time.

iv. The tehnique of redistributing values to siblings to improve spae

utilization is likely to be more e	ient when used with the preeding

alloation sheme for leaf bloks. Explain why.

Answer:

a. In a B

+

-tree index or �le organization, leaf nodes that are adjaent to

eah other in the tree may be loated at di�erent plaes on disk. When

a �le organization is newly reated on a set of reords, it is possible to

alloate bloks that are mostly ontiguous on disk to leafs nodes that

are ontiguous in the tree. As insertions and deletions our on the tree,

sequentiality is inreasingly lost, and sequential aess has to wait for

disk seeks inreasingly often.

b. i. In the worst ase, eah n-blok unit and eah node of the B

+

-tree is

half �lled. This gives the worst-ase oupany as 25 perent.

ii. No.While splitting the n-blok unit, the �rst n_2 leaf pages are plaed

in one n-blok unit and the remaining pages in the seond n-blok

unit. That is, every n-blok split maintains the order. Hene, the

nodes in the n-blok units are onseutive.



Pratie Exerises 107

iii. In the regular B

+

-tree onstrution, the leaf pages might not be se-

quential and hene in the worst-ase, it takes one seek per leaf page.

Using the blok at a time method, for eah n-node blok, we will have

at least n_2 leaf nodes in it. Eah n-node blok an be read using one

seek. Hene the worst-ase seeks ome down by a fator of n_2.

iv. Allowing redistribution among the nodes of the same blok does not

require additional seeks, whereas in regular B

+

-trees we require as

many seeks as the number of leaf pages involved in the redistribution.

This makes redistribution for leaf bloks e	ient with this sheme.

Also, the worst-ase oupany omes bak to nearly 50 perent.

(Splitting of leaf nodes is preferred when the partiipating leaf nodes

are nearly full. Hene nearly 50 perent instead of exat 50 perent)

14.10 Suppose you are given a database shema and some queries that are exeuted

frequently. How would you use the above information to deide what indies

to reate?

Answer:

Indies on any attributes on whih there are seletion onditions; if there are

only a few distint values for that attribute, a bitmap index may be reated,

otherwise a normal B

+

-tree index.

B

+

-tree indies on primary-key and foreign-key attributes.

Also indies on attributes that are involved in join onditions in the queries.

14.11 In write-optimized trees suh as the LSM tree or the stepped-merge index, en-

tries in one level are merged into the next level only when the level is full.

Suggest how this poliy an be hanged to improve read performane during

periods when there are many reads but no updates.

Answer:

If there have been no updates in a while, but there are a lot of index look ups

on an index, then entries at one level, say i, an be merged into the next level,

even if the level is not full. The bene�t is that reads would then not have to

look up indies at level i, reduing the ost of reads.

14.12 What trade o�s do bu�er trees pose as ompared to LSM trees?

Answer:

The idea of bu�er trees an be used with any tree-strutured index to redue the

ost of inserts and updates, inluding spatial indies. In ontrast, LSM trees an

only be used with linearly ordered data that are amenable to merging. On the

other hand, bu�er trees require more random I/O to perform insert operations

as ompared to (all variants of) LSM trees.

Write-optimized indies an signi�antly redue the ost of inserts, and to

a lesser extent, of updates, as ompared to B

+

-trees. On the other hand, the



108 Chapter 14 Indexing

index lookup ost an be signi�antly higher for write-optimized indies as

ompared to B

+

-trees.

14.13 Consider the instrutor relation shown in Figure 14.1.

a. Construt a bitmap index on the attribute salary, dividing salary values

into four ranges: below 50,000, 50,000 to below 60,000, 60,000 to below

70,000, and 70,000 and above.

b. Consider a query that requests all instrutors in the Finane department

with salary of 80,000 or more. Outline the steps in answering the query,

and show the �nal and intermediate bitmaps onstruted to answer the

query.

Answer:

We reprodue the instrutor relation below.

ID name dept name salary

10101 Srinivasan Comp. Si. 65000

12121 Wu Finane 90000

15151 Mozart Musi 40000

22222 Einstein Physis 95000

32343 El Said History 60000

33456 Gold Physis 87000

45565 Katz Comp. Si. 75000

58583 Cali�eri History 62000

76543 Singh Finane 80000

76766 Crik Biology 72000

83821 Brandt Comp. Si. 92000

98345 Kim Ele. Eng. 80000

a. Bitmap for salary, with S

1

, S

2

, S

3

and S

4

representing the given intervals

in the same order

S

1

0 0 1 0 0 0 0 0 0 0 0 0

S

2

0 0 0 0 0 0 0 0 0 0 0 0

S

3

1 0 0 0 1 0 0 1 0 0 0 0

S

4

0 1 0 1 0 1 1 0 1 1 1 1

b. The question is a bit trivial if there is no bitmap on the dept name at-

tribute. The bitmap for the dept name attribute is:



Pratie Exerises 109

Comp. Si 1 0 0 0 0 0 1 0 0 0 1 0

Finane 0 1 0 0 0 0 0 0 1 0 0 0

Musi 0 0 1 0 0 0 0 0 0 0 0 0

Physis 0 0 0 1 0 1 0 0 0 0 0 0

History 0 0 0 0 1 0 0 1 0 0 0 0

Biology 0 0 0 0 0 0 0 0 0 1 0 0

Ele. Eng. 0 0 0 0 0 0 0 0 0 0 0 1

To �nd all instrutors in the Finane department with salary of 80000

or more, we �rst �nd the intersetion of the Finane department bitmap

and S

4

bitmap of salary and then san on these reords for salary of

80000 or more.

Intersetion of Finane department bitmap and S

4

bitmap of salary.

S

4

0 1 0 1 0 1 1 0 1 1 1 1

Finane 0 1 0 0 0 0 0 0 1 0 0 0

S

4

ã Finane 0 1 0 0 0 0 0 0 1 0 0 0

San on these reords with salary 80000 or more gives Wu and Singh as

the instrutors who satisfy the given query.

14.14 Suppose you have a relation ontaining the x, y oordinates and names of

restaurants. Suppose also that the only queries that will be asked are of the

following form: The query spei�es a point and asks if there is a restaurant ex-

atly at that point. Whih type of index would be preferable, R-tree or B-tree?

Why?

Answer:

FILL IN

14.15 Suppose you have a spatial database that supports region queries with irular

regions, but not nearest-neighbor queries. Desribe an algorithm to �nd the

nearest neighbor by making use of multiple region queries.

Answer:

Start with regions with very small radius, and retry with a larger radius if a

partiular region does not ontain any result. For example, eah time the radius

ould be inreased by a fator of (say) 1.5. The bene�t is that sine we do not

use a very large radius ompared to the minimum radius required, there will

(hopefully!) not be too many points in the irular range query result.




	Data Storage Structures
	Exercises


