
CHAP T E R

14

Indexing

Pra
ti
e Exer
ises

14.1 Indi
es speed query pro
essing, but it is usually a bad idea to 
reate indi
es on

every attribute, and every 
ombination of attributes, that are potential sear
h

keys. Explain why.

Answer:

Reasons for not keeping indi
es on every attribute in
lude:

�

Every index requires additional CPU time and disk I/O overhead during

inserts and deletions.

�

Indi
es on non-primary keys might have to be 
hanged on updates, al-

though an index on the primary key might not (this is be
ause updates

typi
ally do not modify the primary-key attributes).

�

Ea
h extra index requires additional storage spa
e.

�

For queries whi
h involve 
onditions on several sear
h keys, e	
ien
y

might not be bad even if only some of the keys have indi
es on them.

Therefore, database performan
e is improved less by adding indi
es when

many indi
es already exist.

14.2 Is it possible in general to have two 
lustering indi
es on the same relation for

di�erent sear
h keys? Explain your answer.

Answer:

In general, it is not possible to have two primary indi
es on the same relation

for di�erent keys be
ause the tuples in a relation would have to be stored in

di�erent order to have the same values stored together. We 
ould a

omplish

this by storing the relation twi
e and dupli
ating all values, but for a 
entralized

system, this is not e	
ient.

14.3 Constru
t a B

+

-tree for the following set of key values:

99



100 Chapter 14 Indexing

(2, 3, 5, 7, 11, 17, 19, 23, 29, 31)

Assume that the tree is initially empty and values are added in as
ending order.

Constru
t B

+

-trees for the 
ases where the number of pointers that will �t in

one node is as follows:

a. Four

b. Six


. Eight

Answer:

The following were generated by inserting values into the B

+

-tree in as
ending

order. A node (other than the root) was never allowed to have fewer than än_2å

values/pointers.

a.

5 7 11 17 19 23 29 3132

29

19

115

b.

7 19

2 3 5 7 11 17 19 23 29 31


.

11

11 17 19 23 29 312 3 5 7

14.4 For ea
h B

+

-tree of Exer
ise 14.3, show the form of the tree after ea
h of the

following series of operations:

a. Insert 9.



Pra
ti
e Exer
ises 101

b. Insert 10.


. Insert 8.

d. Delete 23.

e. Delete 19.

Answer:

�

With stru
ture Exer
ise 14.3.a:

Insert 9:

19

5 119 29

2 3 5 7 11 17 19 23 29 31 

Insert 10:

19

5 9 11 29

2 3 5 7 10 11 17 19 23 29 31 

Insert 8:

19

5 9 11 29

2 3 5 7 10 11 17 19 23 29 31 

Delete 23:

11

195 9

2 3 5 7 8 9 10 11 17 19 29 31



102 Chapter 14 Indexing

Delete 19:

11

5 9 29

2 3 5 7 8 9 10 11 17 29 31

�

With stru
ture Exer
ise 14.3.b:

Insert 9:

2 3 5

7

7 9 11 17 19 23 29 31

19

Insert 10:

2 3 5

7 19

97 10 11 17 19 23 29 31

Insert 8:

7 10 19

2 3 5 7 8 9 10 11 17 9 23 29 31

Delete 23:

7 10 19

2 3 5 7 8 9 10 1711 19 29 31

Delete 19:

10

10 11 17 3129

7

7 8 92 3 5



Pra
ti
e Exer
ises 103

�

With stru
ture Exer
ise 14.3.
:

Insert 9:

11

2 3 5 7 9 11 17 19 23 29 31

Insert 10:

11

2 3 5 7 9 10 11 17 19 23 29 31

Insert 8:

11

2 3 5 7 8 9 10 11 17 19 23 29 31

Delete 23:

11

2 3 5 7 8 9 10 11 17 19 29 31

Delete 19:

11

2 3 5 7 8 9 10 11 17 29 31

14.5 Consider the modi�ed redistribution s
heme for B

+

-trees des
ribed on page

651. What is the expe
ted height of the tree as a fun
tion of n?

Answer:

If there are K sear
h-key values and m * 1 siblings are involved in the redistri-

bution, the expe
ted height of the tree is: log

â(m*1)n_mã

(K)

14.6 Give pseudo
ode for a B

+

-tree fun
tion findRangeIterator(), whi
h is like the

fun
tion findRange(), ex
ept that it returns an iterator obje
t, as des
ribed

in Se
tion 14.3.2. Also give pseudo
ode for the iterator 
lass, in
luding the

variables in the iterator obje
t, and the next() method.

Answer:



104 Chapter 14 Indexing

FILL IN

14.7 What would the o

upan
y of ea
h leaf node of a B

+

-tree be if index entries

were inserted in sorted order? Explain why.

Answer:

If the index entries are inserted in as
ending order, the new entries get dire
ted

to the last leaf node. When this leaf node gets �lled, it is split into two. Of

the two nodes generated by the split, the left node is left untou
hed and the

insertions take pla
e on the right node. This makes the o

upan
y of the leaf

nodes about 50 per
ent ex
ept for the last leaf.

If keys that are inserted are sorted in des
ending order, the above situation

would still o

ur, but symmetri
ally, with the right node of a split never getting

tou
hed again, and o

upan
y would again be 50 per
ent for all nodes other

than the �rst leaf.

14.8 Suppose you have a relation r with n

r

tuples on whi
h a se
ondary B

+

-tree is

to be 
onstru
ted.

a. Give a formula for the 
ost of building the B

+

-tree index by inserting one

re
ord at a time. Assume ea
h blo
k will hold an average of f entries and

that all levels of the tree above the leaf are in memory.

b. Assuming a random disk a

ess takes 10 millise
onds, what is the 
ost

of index 
onstru
tion on a relation with 10 million re
ords?


. Write pseudo
ode for bottom-up 
onstru
tion of a B

+

-tree, whi
h was

outlined in Se
tion 14.4.4. You 
an assume that a fun
tion to e	
iently

sort a large �le is available.

Answer:

a. The 
ost to lo
ate the page number of the required leaf page for an in-

sertion is negligible sin
e the non-leaf nodes are in memory. On the leaf

level it takes one random disk a

ess to read and one random disk a
-


ess to update it along with the 
ost to write one page. Insertions whi
h

lead to splitting of leaf nodes require an additional page write. Hen
e to

build a B

+

-tree with n

r

entries it takes a maximum of 2 < n

r

random disk

a

esses and n

r

+ 2 < (n

r

_f ) page writes. The se
ond part of the 
ost


omes from the fa
t that in the worst 
ase ea
h leaf is half �lled, so the

number of splits that o

ur is twi
e n

r

_f .

The above formula ignores the 
ost of writing non-leaf nodes, sin
e

we assume they are in memory, but in reality they would also be written

eventually. This 
ost is 
losely approximated by 2 < (n

r

_f )_f , whi
h

is the number of internal nodes just above the leaf; we 
an add further

terms to a

ount for higher levels of nodes, but these are mu
h smaller

than the number of leaves and 
an be ignored.



Pra
ti
e Exer
ises 105

b. Substituting the values in the above formula and negle
ting the 
ost for

page writes, it takes about 10, 000, 000 < 20 millise
onds, or 56 hours,

sin
e ea
h insertion 
osts 20 millise
onds.


.

fun
tion insert in leaf(value K , pointer P)

if(tree is empty) 
reate an empty leaf node L, whi
h is also the root

else Find the last leaf node in the leaf nodes 
hain L

if (L has less than n * 1 key values)

then insert (K ,P) at the �rst available lo
ation in L

else begin

Create leaf node L1

Set L:P

n

= L1;

Set K1 = last value from page L

insert in parent(1, L, K1, L1)

insert (K ,P) at the �rst lo
ation in L1

end

fun
tion insert in parent(level l, pointer P, value K , pointer P1)

if (level l is empty) then begin

Create an empty non-leaf node N , whi
h is also the root

insert(P, K , P1) at the starting of the node N

return

else begin

Find the right most node N at level l

if (N has less than n pointers)

then insert(K , P1) at the �rst available lo
ation in N

else begin

Create a new non-leaf page N1

insert (P1) at the starting of the node N

insert in parent(l + 1, pointer N , value K , pointer N1)

end

end

The insert in leaf fun
tion is 
alled for ea
h of the value, pointer pairs in

as
ending order. Similar fun
tion 
an also be built for des
ending order.

The sear
h for the last leaf or non-leaf node at any level 
an be avoided

by storing the 
urrent last page details in an array.

The last node in ea
h level might be less than half �lled. To make this

index stru
ture meet the requirements of a B

+

-tree, we 
an redistribute

the keys of the last two pages at ea
h level. Sin
e the last but one node is

always full, redistribution makes sure that both of them are at least half

�lled.



106 Chapter 14 Indexing

14.9 The leaf nodes of a B

+

-tree �le organization may lose sequentiality after a se-

quen
e of inserts.

a. Explain why sequentiality may be lost.

b. To minimize the number of seeks in a sequential s
an, many databases

allo
ate leaf pages in extents of n blo
ks, for some reasonably large n.

When the �rst leaf of a B

+

-tree is allo
ated, only one blo
k of an n-blo
k

unit is used, and the remaining pages are free. If a page splits, and its

n-blo
k unit has a free page, that spa
e is used for the new page. If the

n-blo
k unit is full, another n-blo
k unit is allo
ated, and the �rst n_2 leaf

pages are pla
ed in one n-blo
k unit and the remaining one in the se
ond

n-blo
k unit. For simpli
ity, assume that there are no delete operations.

i. What is the worst-
ase o

upan
y of allo
ated spa
e, assuming no

delete operations, after the �rst n-blo
k unit is full?

ii. Is it possible that leaf nodes allo
ated to an n-node blo
k unit are not


onse
utive, that is, is it possible that two leaf nodes are allo
ated

to one n-node blo
k, but another leaf node in between the two is

allo
ated to a di�erent n-node blo
k?

iii. Under the reasonable assumption that bu�er spa
e is su	
ient to

store an n-page blo
k, how many seeks would be required for a leaf-

level s
an of the B

+

-tree, in the worst 
ase? Compare this number

with the worst 
ase if leaf pages are allo
ated a blo
k at a time.

iv. The te
hnique of redistributing values to siblings to improve spa
e

utilization is likely to be more e	
ient when used with the pre
eding

allo
ation s
heme for leaf blo
ks. Explain why.

Answer:

a. In a B

+

-tree index or �le organization, leaf nodes that are adja
ent to

ea
h other in the tree may be lo
ated at di�erent pla
es on disk. When

a �le organization is newly 
reated on a set of re
ords, it is possible to

allo
ate blo
ks that are mostly 
ontiguous on disk to leafs nodes that

are 
ontiguous in the tree. As insertions and deletions o

ur on the tree,

sequentiality is in
reasingly lost, and sequential a

ess has to wait for

disk seeks in
reasingly often.

b. i. In the worst 
ase, ea
h n-blo
k unit and ea
h node of the B

+

-tree is

half �lled. This gives the worst-
ase o

upan
y as 25 per
ent.

ii. No.While splitting the n-blo
k unit, the �rst n_2 leaf pages are pla
ed

in one n-blo
k unit and the remaining pages in the se
ond n-blo
k

unit. That is, every n-blo
k split maintains the order. Hen
e, the

nodes in the n-blo
k units are 
onse
utive.



Pra
ti
e Exer
ises 107

iii. In the regular B

+

-tree 
onstru
tion, the leaf pages might not be se-

quential and hen
e in the worst-
ase, it takes one seek per leaf page.

Using the blo
k at a time method, for ea
h n-node blo
k, we will have

at least n_2 leaf nodes in it. Ea
h n-node blo
k 
an be read using one

seek. Hen
e the worst-
ase seeks 
ome down by a fa
tor of n_2.

iv. Allowing redistribution among the nodes of the same blo
k does not

require additional seeks, whereas in regular B

+

-trees we require as

many seeks as the number of leaf pages involved in the redistribution.

This makes redistribution for leaf blo
ks e	
ient with this s
heme.

Also, the worst-
ase o

upan
y 
omes ba
k to nearly 50 per
ent.

(Splitting of leaf nodes is preferred when the parti
ipating leaf nodes

are nearly full. Hen
e nearly 50 per
ent instead of exa
t 50 per
ent)

14.10 Suppose you are given a database s
hema and some queries that are exe
uted

frequently. How would you use the above information to de
ide what indi
es

to 
reate?

Answer:

Indi
es on any attributes on whi
h there are sele
tion 
onditions; if there are

only a few distin
t values for that attribute, a bitmap index may be 
reated,

otherwise a normal B

+

-tree index.

B

+

-tree indi
es on primary-key and foreign-key attributes.

Also indi
es on attributes that are involved in join 
onditions in the queries.

14.11 In write-optimized trees su
h as the LSM tree or the stepped-merge index, en-

tries in one level are merged into the next level only when the level is full.

Suggest how this poli
y 
an be 
hanged to improve read performan
e during

periods when there are many reads but no updates.

Answer:

If there have been no updates in a while, but there are a lot of index look ups

on an index, then entries at one level, say i, 
an be merged into the next level,

even if the level is not full. The bene�t is that reads would then not have to

look up indi
es at level i, redu
ing the 
ost of reads.

14.12 What trade o�s do bu�er trees pose as 
ompared to LSM trees?

Answer:

The idea of bu�er trees 
an be used with any tree-stru
tured index to redu
e the


ost of inserts and updates, in
luding spatial indi
es. In 
ontrast, LSM trees 
an

only be used with linearly ordered data that are amenable to merging. On the

other hand, bu�er trees require more random I/O to perform insert operations

as 
ompared to (all variants of) LSM trees.

Write-optimized indi
es 
an signi�
antly redu
e the 
ost of inserts, and to

a lesser extent, of updates, as 
ompared to B

+

-trees. On the other hand, the



108 Chapter 14 Indexing

index lookup 
ost 
an be signi�
antly higher for write-optimized indi
es as


ompared to B

+

-trees.

14.13 Consider the instru
tor relation shown in Figure 14.1.

a. Constru
t a bitmap index on the attribute salary, dividing salary values

into four ranges: below 50,000, 50,000 to below 60,000, 60,000 to below

70,000, and 70,000 and above.

b. Consider a query that requests all instru
tors in the Finan
e department

with salary of 80,000 or more. Outline the steps in answering the query,

and show the �nal and intermediate bitmaps 
onstru
ted to answer the

query.

Answer:

We reprodu
e the instru
tor relation below.

ID name dept name salary

10101 Srinivasan Comp. S
i. 65000

12121 Wu Finan
e 90000

15151 Mozart Musi
 40000

22222 Einstein Physi
s 95000

32343 El Said History 60000

33456 Gold Physi
s 87000

45565 Katz Comp. S
i. 75000

58583 Cali�eri History 62000

76543 Singh Finan
e 80000

76766 Cri
k Biology 72000

83821 Brandt Comp. S
i. 92000

98345 Kim Ele
. Eng. 80000

a. Bitmap for salary, with S

1

, S

2

, S

3

and S

4

representing the given intervals

in the same order

S

1

0 0 1 0 0 0 0 0 0 0 0 0

S

2

0 0 0 0 0 0 0 0 0 0 0 0

S

3

1 0 0 0 1 0 0 1 0 0 0 0

S

4

0 1 0 1 0 1 1 0 1 1 1 1

b. The question is a bit trivial if there is no bitmap on the dept name at-

tribute. The bitmap for the dept name attribute is:



Pra
ti
e Exer
ises 109

Comp. S
i 1 0 0 0 0 0 1 0 0 0 1 0

Finan
e 0 1 0 0 0 0 0 0 1 0 0 0

Musi
 0 0 1 0 0 0 0 0 0 0 0 0

Physi
s 0 0 0 1 0 1 0 0 0 0 0 0

History 0 0 0 0 1 0 0 1 0 0 0 0

Biology 0 0 0 0 0 0 0 0 0 1 0 0

Ele
. Eng. 0 0 0 0 0 0 0 0 0 0 0 1

To �nd all instru
tors in the Finan
e department with salary of 80000

or more, we �rst �nd the interse
tion of the Finan
e department bitmap

and S

4

bitmap of salary and then s
an on these re
ords for salary of

80000 or more.

Interse
tion of Finan
e department bitmap and S

4

bitmap of salary.

S

4

0 1 0 1 0 1 1 0 1 1 1 1

Finan
e 0 1 0 0 0 0 0 0 1 0 0 0

S

4

ã Finan
e 0 1 0 0 0 0 0 0 1 0 0 0

S
an on these re
ords with salary 80000 or more gives Wu and Singh as

the instru
tors who satisfy the given query.

14.14 Suppose you have a relation 
ontaining the x, y 
oordinates and names of

restaurants. Suppose also that the only queries that will be asked are of the

following form: The query spe
i�es a point and asks if there is a restaurant ex-

a
tly at that point. Whi
h type of index would be preferable, R-tree or B-tree?

Why?

Answer:

FILL IN

14.15 Suppose you have a spatial database that supports region queries with 
ir
ular

regions, but not nearest-neighbor queries. Des
ribe an algorithm to �nd the

nearest neighbor by making use of multiple region queries.

Answer:

Start with regions with very small radius, and retry with a larger radius if a

parti
ular region does not 
ontain any result. For example, ea
h time the radius


ould be in
reased by a fa
tor of (say) 1.5. The bene�t is that sin
e we do not

use a very large radius 
ompared to the minimum radius required, there will

(hopefully!) not be too many points in the 
ir
ular range query result.




	Data Storage Structures
	Exercises


