
CHAP T E R

15

Query Pro
essing

Pra
ti
e Exer
ises

15.1 Assume (for simpli
ity in this exer
ise) that only one tuple �ts in a blo
k and

memory holds at most three blo
ks. Show the runs 
reated on ea
h pass of

the sort-merge algorithm when applied to sort the following tuples on the �rst

attribute: (kangaroo, 17), (wallaby, 21), (emu, 1), (wombat, 13), (platypus,

3), (lion, 8), (warthog, 4), (zebra, 11), (meerkat, 6), (hyena, 9), (hornbill, 2),

(baboon, 12).

Answer:

We will refer to the tuples (kangaroo, 17) through (baboon, 12) using tuple

numbers t

1

through t

12

. We refer to the j

th

run used by the i

th

pass, as r

ij

. The

initial sorted runs have three blo
ks ea
h. They are:

r

11

= ^t

3

, t

1

, t

2

`

r

12

= ^t

6

, t

5

, t

4

`

r

13

= ^t

9

, t

7

, t

8

`

r

14

= ^t

12

, t

11

, t

10

`

Ea
h pass merges three runs. Therefore the runs after the end of the �rst pass

are:

r

21

= ^t

3

, t

1

, t

6

, t

9

, t

5

, t

2

, t

7

, t

4

, t

8

`

r

22

= ^t

12

, t

11

, t

10

`

At the end of the se
ond pass, the tuples are 
ompletely sorted into one run:

r

31

= ^t

12

, t

3

, t

11

, t

10

, t

1

, t

6

, t

9

, t

5

, t

2

, t

7

, t

4

, t

8

`

15.2 Consider the bank database of Figure 15.14, where the primary keys are un-

derlined, and the following SQL query:

111



112 Chapter 15 Query Pro
essing

sele
t T.bran
h name

from bran
h T, bran
h S

where T.assets > S.assets and S.bran
h 
ity = �Brooklyn�

Write an e	
ient relational-algebra expression that is equivalent to this query.

Justify your 
hoi
e.

Answer:

Query:

�

T.bran
h name

((�

bran
h name, assets

(�

T

(bran
h))) Æ

T.assets > S.assets

(�

assets

(�

(bran
h 
ity= 'Brooklyn')

(�

S

(bran
h)))))

This expression performs the theta join on the smallest amount of data possi-

ble. It does this by restri
ting the right-hand side operand of the join to only

those bran
hes in Brooklyn and also eliminating the unneeded attributes from

both the operands.

15.3 Let relations r

1

(A,B,C) and r

2

(C,D,E) have the following properties: r

1

has

20,000 tuples, r

2

has 45,000 tuples, 25 tuples of r

1

�t on one blo
k, and 30

tuples of r

2

�t on one blo
k. Estimate the number of blo
k transfers and seeks

required using ea
h of the following join strategies for r

1

Æ r

2

:

a. Nested-loop join.

b. Blo
k nested-loop join.


. Merge join.

d. Hash join.

Answer:

r

1

needs 800 blo
ks, and r

2

needs 1500 blo
ks. Let us assume M pages of

memory. If M > 800, the join 
an easily be done in 1500 + 800 disk a

esses,

bran
h(bran
h name, bran
h 
ity, assets)


ustomer (
ustomer name, 
ustomer street, 
ustomer 
ity)

loan (loan number, bran
h name, amount)

borrower (
ustomer name, loan number)

a

ount (a

ount number, bran
h name, balan
e)

depositor (
ustomer name, a

ount number)

Figure 15.14 Bank database.



Pra
ti
e Exer
ises 113

using even plain nested-loop join. So we 
onsider only the 
ase whereM f 800

pages.

a. Nested-loop join:

Using r

1

as the outer relation, we need 20000 < 1500 + 800 =

30, 000, 800 disk a

esses. If r

2

is the outer relation, we need 45000 <

800 + 1500 = 36, 001, 500 disk a

esses.

b. Blo
k nested-loop join:

If r

1

is the outer relation, we need ä

800

M*1

å < 1500+ 800 disk a

esses. If

r

2

is the outer relation, we need ä

1500

M*1

å < 800 + 1500 disk a

esses.


. Merge join:

Assuming that r

1

and r

2

are not initially sorted on the join key, the total

sorting 
ost in
lusive of the output isB

s

= 1500(2älog

M*1

(1500_M)å+

2) + 800(2älog

M*1

(800_M)å + 2) disk a

esses. Assuming all tuples

with the same value for the join attributes �t in memory, the total 
ost

is B

s

+ 1500 + 800 disk a

esses.

d. Hash join:

We assume no over�ow o

urs. Sin
e r

1

is smaller, we use it as the build

relation and r

2

as the probe relation. If M > 800_M , i.e., no need for

re
ursive partitioning, then the 
ost is 3(1500 + 800) = 6900 disk

a

esses, else the 
ost is 2(1500+ 800)älog

M*1

(800)* 1å+ 1500+ 800

disk a

esses.

15.4 The indexed nested-loop join algorithm des
ribed in Se
tion 15.5.3 
an be

ine	
ient if the index is a se
ondary index and there are multiple tuples with

the same value for the join attributes. Why is it ine	
ient? Des
ribe a way,

using sorting, to redu
e the 
ost of retrieving tuples of the inner relation. Under

what 
onditions would this algorithm bemore e	
ient than hybridmerge join?

Answer:

If there are multiple tuples in the inner relation with the same value for the

join attributes, we may have to a

ess that many blo
ks of the inner relation

for ea
h tuple of the outer relation. That is why it is ine	
ient. To redu
e this


ost we 
an perform a join of the outer relation tuples with just the se
ondary

index leaf entries, postponing the inner relation tuple retrieval. The result �le

obtained is then sorted on the inner relation addresses, allowing an e	
ient

physi
al order s
an to 
omplete the join.

Hybrid merge�join requires the outer relation to be sorted. The above al-

gorithm does not have this requirement, but for ea
h tuple in the outer relation

it needs to perform an index lookup on the inner relation. If the outer relation

is mu
h larger than the inner relation, this index lookup 
ost will be less than

the sorting 
ost, thus this algorithm will be more e	
ient.



114 Chapter 15 Query Pro
essing

15.5 Let r and s be relations with no indi
es, and assume that the relations are not

sorted. Assuming in�nite memory, what is the lowest-
ost way (in terms of I/O

operations) to 
ompute r Æ s? What is the amount of memory required for

this algorithm?

Answer:

We 
an store the entire smaller relation in memory, read the larger relation

blo
k by blo
k, and perform nested-loop join using the larger one as the outer

relation. The number of I/O operations is equal to b

r

+ b

s

, and the memory

requirement is min(b

r

, b

s

) + 2 pages.

15.6 Consider the bank database of Figure 15.14, where the primary keys are un-

derlined. Suppose that a B

+

-tree index on bran
h 
ity is available on relation

bran
h, and that no other index is available. List di�erent ways to handle the

following sele
tions that involve negation:

a. �

�(bran
h 
ity<�Brooklyn�)

(bran
h)

b. �

�(bran
h 
ity=�Brooklyn�)

(bran
h)


. �

�(bran
h 
ity<�Brooklyn� â assets<5000)

(bran
h)

Answer:

a. Use the index to lo
ate the �rst tuple whose bran
h 
ity �eld has value

�Brooklyn�. From this tuple, follow the pointer 
hains till the end, re-

trieving all the tuples.

b. For this query, the index serves no purpose. We 
an s
an the �le sequen-

tially and sele
t all tuples whose bran
h 
ity �eld is anything other than

�Brooklyn�.


. This query is equivalent to the query

�

(bran
h 
ityg

¨

Brooklyn

¨

á assets<5000)

(bran
h)

Using the bran
h-
ity index, we 
an retrieve all tuples with bran
h-
ity

value greater than or equal to �Brooklyn� by following the pointer 
hains

from the �rst �Brooklyn� tuple. We also apply the additional 
riteria of

assets < 5000 on every tuple.

15.7 Write pseudo
ode for an iterator that implements indexed nested-loop join,

where the outer relation is pipelined. Your pseudo
ode must de�ne the stan-

dard iterator fun
tions open(), next(), and 
lose(). Showwhat state information

the iterator must maintain between 
alls.

Answer:

Let outer be the iterator whi
h returns su

essive tuples from the pipelined

outer relation. Let inner be the iterator whi
h returns su

essive tuples of



Pra
ti
e Exer
ises 115

the inner relation having a given value at the join attributes. The inner iter-

ator returns these tuples by performing an index lookup. The fun
tions In-

dexedNLJoin::open, IndexedNLJoin::
lose and IndexedNLJoin::next to imple-

ment the indexed nested-loop join iterator are given below. The two iterators

outer and inner, the value of the last read outer relation tuple t

r

and a �ag done

r

indi
ating whether the end of the outer relation s
an has been rea
hed are the

state information whi
h need to be remembered by IndexedNLJoin between


alls. Please see ??

15.8 Design sort-based and hash-based algorithms for 
omputing the relational di-

vision operation (see Pra
ti
e Exer
ise 2.9 for a de�nition of the division op-

eration).

Answer:

Suppose r(T ä S) and s(S) are two relations and r � s has to be 
omputed.

For a sorting-based algorithm, sort relation s on S. Sort relation r on (T , S).

Now, start s
anning r and look at the T attribute values of the �rst tuple. S
an r

till tuples have same value of T . Also s
an s simultaneously and 
he
k whether

every tuple of s also o

urs as the S attribute of r, in a fashion similar to merge

join. If this is the 
ase, output that value of T and pro
eed with the next value of

T . Relation smay have to be s
anned multiple times, but r will only be s
anned

on
e. Total disk a

esses, after sorting both the relations, will be ðrð+N < ðsð,

where N is the number of distin
t values of T in r.

We assume that for any value of T , all tuples in r with that T value �t in

memory, and we 
onsider the general 
ase at the end. Partition the relation

r on attributes in T su
h that ea
h partition �ts in memory (always possible

be
ause of our assumption). Consider partitions one at a time. Build a hash

table on the tuples, at the same time 
olle
ting all distin
tT values in a separate

hash table. For ea
h value of T , Now, for ea
h value V

T

of T , ea
h value s of

S, probe the hash table on (V

T

, s). If any of the values is absent, dis
ard the

value V

T

, else output the value V

T

.

In the 
ase that not all r tuples with one value for T �t in memory, parti-

tion r and s on the S attributes su
h that the 
ondition is satis�ed, and run

the algorithm on ea
h 
orresponding pair of partitions r

i

and s

i

. Output the

interse
tion of the T values generated in ea
h partition.

15.9 What is the e�e
t on the 
ost of merging runs if the number of bu�er blo
ks

per run is in
reased while overall memory available for bu�ering runs remains

�xed?

Answer:

Seek overhead is redu
ed, but the the number of runs that 
an be merged in a

pass de
reases, potentially leading tomore passes. A value of b

b

that minimizes

overall 
ost should be 
hosen.



116 Chapter 15 Query Pro
essing

IndexedNLJoin::open()

begin

outer.open();

inner.open();

done

r

:= false;

if(outer.next() � false)

move tuple from outer's output bu�er to t

r

;

else

done

r

:= true;

end

IndexedNLJoin::
lose()

begin

outer.
lose();

inner.
lose();

end

boolean IndexedNLJoin::next()

begin

while(�done

r

)

begin

if(inner.next(t

r

[JoinAttrs℄) � false)

begin

move tuple from inner's output bu�er to t

s

;


ompute t

r

Æ t

s

and pla
e it in output bu�er;

return true;

end

else

if(outer.next() � false)

begin

move tuple from outer's output bu�er to t

r

;

rewind inner to �rst tuple of s;

end

else

done

r

:= true;

end

return false;

end

Figure 15.101 Answer for Exer
ise 15.7.



Pra
ti
e Exer
ises 117

15.10 Consider the following extended relational-algebra operators. Des
ribe how to

implement ea
h operation using sorting and using hashing.

a. Semijoin (�

�

): Themultiset semijoin operator r�

�

s is de�ned as follows:

if a tuple r

i

appears n times in r, it appears n times in the result of r�

�

if there is at least one tuple s

j

su
h that r

i

and s

j

satisfy predi
ate �;

otherwise r

i

does not appear in the result.

b. Anti-semijoin (�

�

): The multiset anti-semijoin operator r�

�

s is de�ned

as follows: if a tuple r

i

appears n times in r, it appears n times in the result

of r�

�

if there does not exist any tuple s

j

in s su
h that r

i

and s

j

satisfy

predi
ate �; otherwise r

i

does not appear in the result.

Answer:

FILL IN: CHe
k for dupli
ate preservation

As in the 
ase of join algorithms, semijoin and anti-semijoin 
an be done e	-


iently if the join 
onditions are equijoin 
onditions. We des
ribe below how

to e	
iently handle the 
ase of equijoin 
onditions using sorting and hashing.

With arbitrary join 
onditions, sorting and hashing 
annot be used; (blo
k)

nested loops join needs to be used instead.

a. Semijoin:

�

Semijoin using sorting: Sort both r and s on the join attributes in

�. Perform a s
an of both r and s similar to the merge algorithm

and add tuples of r to the result whenever the join attributes of the


urrent tuples of r and s mat
h.

�

Semijoin using hashing: Create a hash index in s on the join at-

tributes in �. Iterate over r, and for ea
h distin
t value of the join

attributes, perform a hash lookup in s. If the hash lookup returns a

value, add the 
urrent tuple of r to the result.

Note that if r and s are large, they 
an be partitioned on the join

attributes �rst and the above pro
edure applied on ea
h partition.

If r is small but s is large, a hash index 
an be built on r and probed

using s; and if an s tuple mat
hes an r tuple, the r tuple 
an be output

and deleted from the hash index.

b. Anti-semijoin:

�

Anti-semijoin using sorting: Sort both r and s on the join attributes

in �. Perform a s
an of both r and s similar to the merge algorithm

and add tuples of r to the result if no tuple of s satis�es the join

predi
ate for the 
orresponding tuple of r.

�

Anti-semijoin using hashing: Create a hash index in s on the join

attributes in �. Iterate over r, and for ea
h distin
t value of the join

attributes, perform a hash lookup in s. If the hash lookup returns a

null value, add the 
urrent tuple of r to the result.



118 Chapter 15 Query Pro
essing

As for semijoin, partitioning 
an be used if r and s are large. An

index on r 
an be used instead of an index on s, but then when an s

tuple mat
hes an r tuple, the r tuple is deleted from the index. After

pro
essing all s tuples, all remaining r tuples in the index are output

as the result of the anti-semijoin operation.

15.11 Suppose a query retrieves only the �rst K results of an operation and termi-

nates after that. Whi
h 
hoi
e of demand-driven or produ
er-driven pipelining

(with bu�ering) would be a good 
hoi
e for su
h a query? Explain your an-

swer.

Answer:

Demand driven is better, sin
e it will only generate the top K results. Produ
er

driven may generate a lot more answers, many of whi
h would not get used.

15.12 Current generation CPUs in
lude an instru
tion 
a
he, whi
h 
a
hes re
ently

used instru
tions. A fun
tion 
all then has a signi�
ant overhead be
ause the

set of instru
tions being exe
uted 
hanges, resulting in 
a
he misses on the

instru
tion 
a
he.

a. Explain why produ
er-driven pipelining with bu�ering is likely to result

in a better instru
tion 
a
he hit rate, as 
ompared to demand-driven

pipelining.

b. Explain why modifying demand-driven pipelining by generating multiple

results on one 
all to next(), and returning them together, 
an improve

the instru
tion 
a
he hit rate.

Answer:

Produ
er-driven pipelining exe
utes the same set of instru
tions to generate

multiple tuples by 
onsuming already generated tuples from the inputs. Thus

instru
tion 
a
he hits will be more. In 
omparison, demand-driven pipelining

swit
hes from the instru
tions of one fun
tion to another for ea
h tuple, re-

sulting in more misses.

By generating multiple results at one go, a next(() fun
tion would re
eive

multiple tuples in its inputs and have a loop that generates multiple tuples for

its output without swit
hing exe
ution to another fun
tion. Thus, the instru
-

tion 
a
he hit rate 
an be expe
ted to improve.

15.13 Suppose you want to �nd do
uments that 
ontain at least k of a given set of n

keywords. Suppose also you have a keyword index that gives you a (sorted) list

of identi�ers of do
uments that 
ontain a spe
i�ed keyword. Give an e	
ient

algorithm to �nd the desired set of do
uments.

Answer:

Let S be a set of n keywords. An algorithm to �nd all do
uments that 
ontain

at least k of these keywords is given in ??



Pra
ti
e Exer
ises 119

initialize the list L to the empty list;

for (ea
h keyword 
 in S) do

begin

D := the list of do
uments identi�ers 
orresponding to 
;

for (ea
h do
ument identi�er d in D) do

if (a re
ord R with do
ument identi�er as d is on list L) then

R:referen
e 
ount := R:referen
e 
ount + 1;

else begin

make a new re
ord R;

R:do
ument id := d;

R:referen
e 
ount := 1;

add R to L;

end;

end;

for (ea
h re
ord R in L) do

if (R:referen
e 
ount >= k) then

output R;

Figure 15.102 Answer for Exer
ise 15.13.

This algorithm 
al
ulates a referen
e 
ount for ea
h do
ument identi�er.

A referen
e 
ount of i for a do
ument identi�er d means that at least i of the

keywords in S o

ur in the do
ument identi�ed by d. The algorithm maintains

a list of re
ords, ea
h having two �elds � a do
ument identi�er, and the refer-

en
e 
ount for this identi�er. This list is maintained sorted on the do
ument

identi�er �eld.

Note that exe
ution of the se
ond for statement 
auses the list D to �merge�

with the list L. Sin
e the lists L and D are sorted, the time taken for this merge

is proportional to the sum of the lengths of the two lists. Thus the algorithm

runs in time (at most) proportional to n times the sum total of the number of

do
ument identi�ers 
orresponding to ea
h keyword in S.

15.14 Suggest how a do
ument 
ontaining a word (su
h as �leopard�) 
an be in-

dexed su
h that it is e	
iently retrieved by queries using a more general 
on-


ept (su
h as �
arnivore� or �mammal�). You 
an assume that the 
on
ept

hierar
hy is not very deep, so ea
h 
on
ept has only a few generalizations (a


on
ept 
an, however, have a large number of spe
ializations). You 
an also

assume that you are provided with a fun
tion that returns the 
on
ept for ea
h

word in a do
ument. Also suggest how a query using a spe
ialized 
on
ept 
an

retrieve do
uments using a more general 
on
ept.

Answer:

Add do
 to index lists for more general 
on
epts also.



120 Chapter 15 Query Pro
essing

15.15 Explain why the nested-loops join algorithm (see Se
tion 15.5.1) would work

poorly on a database stored in a 
olumn-oriented manner. Des
ribe an alterna-

tive algorithm that would work better, and explain why your solution is better.

Answer:

If the nested-loops join algorithm is used as is, it would require tuples for ea
h

of the relations to be assembled before they are joined. Assembling tuples 
an

be expensive in a 
olumn store, sin
e ea
h attribute may 
ome from a separate

area of the disk; the overhead of assembly would be parti
ularly wasteful if

many tuples do not satisfy the join 
ondition and would be dis
arded. In su
h

a situation it would be better to �rst �nd whi
h tuples mat
h by a

essing only

the join 
olumns of the relations. Sort-merge join, hash join, or indexed nested

loops join 
an be used for this task. After the join is performed, only tuples that

get output by the join need to be assembled; assembly 
an be done by sorting

the join result on the re
ord identi�er of one of the relations and a

essing

the 
orresponding attributes, then resorting on re
ord identi�ers of the other

relation to a

ess its attributes.

15.16 Consider the following queries. For ea
h query, indi
ate if 
olumn-oriented

storage is likely to be bene�
ial or not, and explain why.

a. Fet
h ID, name and dept name of the student with ID 12345.

b. Group the takes relation by year and 
ourse id, and �nd the total number

of students for ea
h (year, 
ourse id) 
ombination.

Answer:

FILL IN AND re
he
k question


	Indexing
	Exercises


