
CHAP T E R

15

Query Proessing

Pratie Exerises

15.1 Assume (for simpliity in this exerise) that only one tuple �ts in a blok and

memory holds at most three bloks. Show the runs reated on eah pass of

the sort-merge algorithm when applied to sort the following tuples on the �rst

attribute: (kangaroo, 17), (wallaby, 21), (emu, 1), (wombat, 13), (platypus,

3), (lion, 8), (warthog, 4), (zebra, 11), (meerkat, 6), (hyena, 9), (hornbill, 2),

(baboon, 12).

Answer:

We will refer to the tuples (kangaroo, 17) through (baboon, 12) using tuple

numbers t

1

through t

12

. We refer to the j

th

run used by the i

th

pass, as r

ij

. The

initial sorted runs have three bloks eah. They are:

r

11

= ^t

3

, t

1

, t

2

`

r

12

= ^t

6

, t

5

, t

4

`

r

13

= ^t

9

, t

7

, t

8

`

r

14

= ^t

12

, t

11

, t

10

`

Eah pass merges three runs. Therefore the runs after the end of the �rst pass

are:

r

21

= ^t

3

, t

1

, t

6

, t

9

, t

5

, t

2

, t

7

, t

4

, t

8

`

r

22

= ^t

12

, t

11

, t

10

`

At the end of the seond pass, the tuples are ompletely sorted into one run:

r

31

= ^t

12

, t

3

, t

11

, t

10

, t

1

, t

6

, t

9

, t

5

, t

2

, t

7

, t

4

, t

8

`

15.2 Consider the bank database of Figure 15.14, where the primary keys are un-

derlined, and the following SQL query:

111

112 Chapter 15 Query Proessing

selet T.branh name

from branh T, branh S

where T.assets > S.assets and S.branh ity = �Brooklyn�

Write an e	ient relational-algebra expression that is equivalent to this query.

Justify your hoie.

Answer:

Query:

�

T.branh name

((�

branh name, assets

(�

T

(branh))) Æ

T.assets > S.assets

(�

assets

(�

(branh ity= 'Brooklyn')

(�

S

(branh)))))

This expression performs the theta join on the smallest amount of data possi-

ble. It does this by restriting the right-hand side operand of the join to only

those branhes in Brooklyn and also eliminating the unneeded attributes from

both the operands.

15.3 Let relations r

1

(A,B,C) and r

2

(C,D,E) have the following properties: r

1

has

20,000 tuples, r

2

has 45,000 tuples, 25 tuples of r

1

�t on one blok, and 30

tuples of r

2

�t on one blok. Estimate the number of blok transfers and seeks

required using eah of the following join strategies for r

1

Æ r

2

:

a. Nested-loop join.

b. Blok nested-loop join.

. Merge join.

d. Hash join.

Answer:

r

1

needs 800 bloks, and r

2

needs 1500 bloks. Let us assume M pages of

memory. If M > 800, the join an easily be done in 1500 + 800 disk aesses,

branh(branh name, branh ity, assets)

ustomer (ustomer name, ustomer street, ustomer ity)

loan (loan number, branh name, amount)

borrower (ustomer name, loan number)

aount (aount number, branh name, balane)

depositor (ustomer name, aount number)

Figure 15.14 Bank database.

Pratie Exerises 113

using even plain nested-loop join. So we onsider only the ase whereM f 800

pages.

a. Nested-loop join:

Using r

1

as the outer relation, we need 20000 < 1500 + 800 =

30, 000, 800 disk aesses. If r

2

is the outer relation, we need 45000 <

800 + 1500 = 36, 001, 500 disk aesses.

b. Blok nested-loop join:

If r

1

is the outer relation, we need ä

800

M*1

å < 1500+ 800 disk aesses. If

r

2

is the outer relation, we need ä

1500

M*1

å < 800 + 1500 disk aesses.

. Merge join:

Assuming that r

1

and r

2

are not initially sorted on the join key, the total

sorting ost inlusive of the output isB

s

= 1500(2älog

M*1

(1500_M)å+

2) + 800(2älog

M*1

(800_M)å + 2) disk aesses. Assuming all tuples

with the same value for the join attributes �t in memory, the total ost

is B

s

+ 1500 + 800 disk aesses.

d. Hash join:

We assume no over�ow ours. Sine r

1

is smaller, we use it as the build

relation and r

2

as the probe relation. If M > 800_M , i.e., no need for

reursive partitioning, then the ost is 3(1500 + 800) = 6900 disk

aesses, else the ost is 2(1500+ 800)älog

M*1

(800)* 1å+ 1500+ 800

disk aesses.

15.4 The indexed nested-loop join algorithm desribed in Setion 15.5.3 an be

ine	ient if the index is a seondary index and there are multiple tuples with

the same value for the join attributes. Why is it ine	ient? Desribe a way,

using sorting, to redue the ost of retrieving tuples of the inner relation. Under

what onditions would this algorithm bemore e	ient than hybridmerge join?

Answer:

If there are multiple tuples in the inner relation with the same value for the

join attributes, we may have to aess that many bloks of the inner relation

for eah tuple of the outer relation. That is why it is ine	ient. To redue this

ost we an perform a join of the outer relation tuples with just the seondary

index leaf entries, postponing the inner relation tuple retrieval. The result �le

obtained is then sorted on the inner relation addresses, allowing an e	ient

physial order san to omplete the join.

Hybrid merge�join requires the outer relation to be sorted. The above al-

gorithm does not have this requirement, but for eah tuple in the outer relation

it needs to perform an index lookup on the inner relation. If the outer relation

is muh larger than the inner relation, this index lookup ost will be less than

the sorting ost, thus this algorithm will be more e	ient.

114 Chapter 15 Query Proessing

15.5 Let r and s be relations with no indies, and assume that the relations are not

sorted. Assuming in�nite memory, what is the lowest-ost way (in terms of I/O

operations) to ompute r Æ s? What is the amount of memory required for

this algorithm?

Answer:

We an store the entire smaller relation in memory, read the larger relation

blok by blok, and perform nested-loop join using the larger one as the outer

relation. The number of I/O operations is equal to b

r

+ b

s

, and the memory

requirement is min(b

r

, b

s

) + 2 pages.

15.6 Consider the bank database of Figure 15.14, where the primary keys are un-

derlined. Suppose that a B

+

-tree index on branh ity is available on relation

branh, and that no other index is available. List di�erent ways to handle the

following seletions that involve negation:

a. �

�(branh ity<�Brooklyn�)

(branh)

b. �

�(branh ity=�Brooklyn�)

(branh)

. �

�(branh ity<�Brooklyn� â assets<5000)

(branh)

Answer:

a. Use the index to loate the �rst tuple whose branh ity �eld has value

�Brooklyn�. From this tuple, follow the pointer hains till the end, re-

trieving all the tuples.

b. For this query, the index serves no purpose. We an san the �le sequen-

tially and selet all tuples whose branh ity �eld is anything other than

�Brooklyn�.

. This query is equivalent to the query

�

(branh ityg

¨

Brooklyn

¨

á assets<5000)

(branh)

Using the branh-ity index, we an retrieve all tuples with branh-ity

value greater than or equal to �Brooklyn� by following the pointer hains

from the �rst �Brooklyn� tuple. We also apply the additional riteria of

assets < 5000 on every tuple.

15.7 Write pseudoode for an iterator that implements indexed nested-loop join,

where the outer relation is pipelined. Your pseudoode must de�ne the stan-

dard iterator funtions open(), next(), and lose(). Showwhat state information

the iterator must maintain between alls.

Answer:

Let outer be the iterator whih returns suessive tuples from the pipelined

outer relation. Let inner be the iterator whih returns suessive tuples of

Pratie Exerises 115

the inner relation having a given value at the join attributes. The inner iter-

ator returns these tuples by performing an index lookup. The funtions In-

dexedNLJoin::open, IndexedNLJoin::lose and IndexedNLJoin::next to imple-

ment the indexed nested-loop join iterator are given below. The two iterators

outer and inner, the value of the last read outer relation tuple t

r

and a �ag done

r

indiating whether the end of the outer relation san has been reahed are the

state information whih need to be remembered by IndexedNLJoin between

alls. Please see ??

15.8 Design sort-based and hash-based algorithms for omputing the relational di-

vision operation (see Pratie Exerise 2.9 for a de�nition of the division op-

eration).

Answer:

Suppose r(T ä S) and s(S) are two relations and r � s has to be omputed.

For a sorting-based algorithm, sort relation s on S. Sort relation r on (T , S).

Now, start sanning r and look at the T attribute values of the �rst tuple. San r

till tuples have same value of T . Also san s simultaneously and hek whether

every tuple of s also ours as the S attribute of r, in a fashion similar to merge

join. If this is the ase, output that value of T and proeed with the next value of

T . Relation smay have to be sanned multiple times, but r will only be sanned

one. Total disk aesses, after sorting both the relations, will be ðrð+N < ðsð,

where N is the number of distint values of T in r.

We assume that for any value of T , all tuples in r with that T value �t in

memory, and we onsider the general ase at the end. Partition the relation

r on attributes in T suh that eah partition �ts in memory (always possible

beause of our assumption). Consider partitions one at a time. Build a hash

table on the tuples, at the same time olleting all distintT values in a separate

hash table. For eah value of T , Now, for eah value V

T

of T , eah value s of

S, probe the hash table on (V

T

, s). If any of the values is absent, disard the

value V

T

, else output the value V

T

.

In the ase that not all r tuples with one value for T �t in memory, parti-

tion r and s on the S attributes suh that the ondition is satis�ed, and run

the algorithm on eah orresponding pair of partitions r

i

and s

i

. Output the

intersetion of the T values generated in eah partition.

15.9 What is the e�et on the ost of merging runs if the number of bu�er bloks

per run is inreased while overall memory available for bu�ering runs remains

�xed?

Answer:

Seek overhead is redued, but the the number of runs that an be merged in a

pass dereases, potentially leading tomore passes. A value of b

b

that minimizes

overall ost should be hosen.

116 Chapter 15 Query Proessing

IndexedNLJoin::open()

begin

outer.open();

inner.open();

done

r

:= false;

if(outer.next() � false)

move tuple from outer's output bu�er to t

r

;

else

done

r

:= true;

end

IndexedNLJoin::lose()

begin

outer.lose();

inner.lose();

end

boolean IndexedNLJoin::next()

begin

while(�done

r

)

begin

if(inner.next(t

r

[JoinAttrs℄) � false)

begin

move tuple from inner's output bu�er to t

s

;

ompute t

r

Æ t

s

and plae it in output bu�er;

return true;

end

else

if(outer.next() � false)

begin

move tuple from outer's output bu�er to t

r

;

rewind inner to �rst tuple of s;

end

else

done

r

:= true;

end

return false;

end

Figure 15.101 Answer for Exerise 15.7.

Pratie Exerises 117

15.10 Consider the following extended relational-algebra operators. Desribe how to

implement eah operation using sorting and using hashing.

a. Semijoin (�

�

): Themultiset semijoin operator r�

�

s is de�ned as follows:

if a tuple r

i

appears n times in r, it appears n times in the result of r�

�

if there is at least one tuple s

j

suh that r

i

and s

j

satisfy prediate �;

otherwise r

i

does not appear in the result.

b. Anti-semijoin (�

�

): The multiset anti-semijoin operator r�

�

s is de�ned

as follows: if a tuple r

i

appears n times in r, it appears n times in the result

of r�

�

if there does not exist any tuple s

j

in s suh that r

i

and s

j

satisfy

prediate �; otherwise r

i

does not appear in the result.

Answer:

FILL IN: CHek for dupliate preservation

As in the ase of join algorithms, semijoin and anti-semijoin an be done e	-

iently if the join onditions are equijoin onditions. We desribe below how

to e	iently handle the ase of equijoin onditions using sorting and hashing.

With arbitrary join onditions, sorting and hashing annot be used; (blok)

nested loops join needs to be used instead.

a. Semijoin:

�

Semijoin using sorting: Sort both r and s on the join attributes in

�. Perform a san of both r and s similar to the merge algorithm

and add tuples of r to the result whenever the join attributes of the

urrent tuples of r and s math.

�

Semijoin using hashing: Create a hash index in s on the join at-

tributes in �. Iterate over r, and for eah distint value of the join

attributes, perform a hash lookup in s. If the hash lookup returns a

value, add the urrent tuple of r to the result.

Note that if r and s are large, they an be partitioned on the join

attributes �rst and the above proedure applied on eah partition.

If r is small but s is large, a hash index an be built on r and probed

using s; and if an s tuple mathes an r tuple, the r tuple an be output

and deleted from the hash index.

b. Anti-semijoin:

�

Anti-semijoin using sorting: Sort both r and s on the join attributes

in �. Perform a san of both r and s similar to the merge algorithm

and add tuples of r to the result if no tuple of s satis�es the join

prediate for the orresponding tuple of r.

�

Anti-semijoin using hashing: Create a hash index in s on the join

attributes in �. Iterate over r, and for eah distint value of the join

attributes, perform a hash lookup in s. If the hash lookup returns a

null value, add the urrent tuple of r to the result.

118 Chapter 15 Query Proessing

As for semijoin, partitioning an be used if r and s are large. An

index on r an be used instead of an index on s, but then when an s

tuple mathes an r tuple, the r tuple is deleted from the index. After

proessing all s tuples, all remaining r tuples in the index are output

as the result of the anti-semijoin operation.

15.11 Suppose a query retrieves only the �rst K results of an operation and termi-

nates after that. Whih hoie of demand-driven or produer-driven pipelining

(with bu�ering) would be a good hoie for suh a query? Explain your an-

swer.

Answer:

Demand driven is better, sine it will only generate the top K results. Produer

driven may generate a lot more answers, many of whih would not get used.

15.12 Current generation CPUs inlude an instrution ahe, whih ahes reently

used instrutions. A funtion all then has a signi�ant overhead beause the

set of instrutions being exeuted hanges, resulting in ahe misses on the

instrution ahe.

a. Explain why produer-driven pipelining with bu�ering is likely to result

in a better instrution ahe hit rate, as ompared to demand-driven

pipelining.

b. Explain why modifying demand-driven pipelining by generating multiple

results on one all to next(), and returning them together, an improve

the instrution ahe hit rate.

Answer:

Produer-driven pipelining exeutes the same set of instrutions to generate

multiple tuples by onsuming already generated tuples from the inputs. Thus

instrution ahe hits will be more. In omparison, demand-driven pipelining

swithes from the instrutions of one funtion to another for eah tuple, re-

sulting in more misses.

By generating multiple results at one go, a next(() funtion would reeive

multiple tuples in its inputs and have a loop that generates multiple tuples for

its output without swithing exeution to another funtion. Thus, the instru-

tion ahe hit rate an be expeted to improve.

15.13 Suppose you want to �nd douments that ontain at least k of a given set of n

keywords. Suppose also you have a keyword index that gives you a (sorted) list

of identi�ers of douments that ontain a spei�ed keyword. Give an e	ient

algorithm to �nd the desired set of douments.

Answer:

Let S be a set of n keywords. An algorithm to �nd all douments that ontain

at least k of these keywords is given in ??

Pratie Exerises 119

initialize the list L to the empty list;

for (eah keyword in S) do

begin

D := the list of douments identi�ers orresponding to ;

for (eah doument identi�er d in D) do

if (a reord R with doument identi�er as d is on list L) then

R:referene ount := R:referene ount + 1;

else begin

make a new reord R;

R:doument id := d;

R:referene ount := 1;

add R to L;

end;

end;

for (eah reord R in L) do

if (R:referene ount >= k) then

output R;

Figure 15.102 Answer for Exerise 15.13.

This algorithm alulates a referene ount for eah doument identi�er.

A referene ount of i for a doument identi�er d means that at least i of the

keywords in S our in the doument identi�ed by d. The algorithm maintains

a list of reords, eah having two �elds � a doument identi�er, and the refer-

ene ount for this identi�er. This list is maintained sorted on the doument

identi�er �eld.

Note that exeution of the seond for statement auses the list D to �merge�

with the list L. Sine the lists L and D are sorted, the time taken for this merge

is proportional to the sum of the lengths of the two lists. Thus the algorithm

runs in time (at most) proportional to n times the sum total of the number of

doument identi�ers orresponding to eah keyword in S.

15.14 Suggest how a doument ontaining a word (suh as �leopard�) an be in-

dexed suh that it is e	iently retrieved by queries using a more general on-

ept (suh as �arnivore� or �mammal�). You an assume that the onept

hierarhy is not very deep, so eah onept has only a few generalizations (a

onept an, however, have a large number of speializations). You an also

assume that you are provided with a funtion that returns the onept for eah

word in a doument. Also suggest how a query using a speialized onept an

retrieve douments using a more general onept.

Answer:

Add do to index lists for more general onepts also.

120 Chapter 15 Query Proessing

15.15 Explain why the nested-loops join algorithm (see Setion 15.5.1) would work

poorly on a database stored in a olumn-oriented manner. Desribe an alterna-

tive algorithm that would work better, and explain why your solution is better.

Answer:

If the nested-loops join algorithm is used as is, it would require tuples for eah

of the relations to be assembled before they are joined. Assembling tuples an

be expensive in a olumn store, sine eah attribute may ome from a separate

area of the disk; the overhead of assembly would be partiularly wasteful if

many tuples do not satisfy the join ondition and would be disarded. In suh

a situation it would be better to �rst �nd whih tuples math by aessing only

the join olumns of the relations. Sort-merge join, hash join, or indexed nested

loops join an be used for this task. After the join is performed, only tuples that

get output by the join need to be assembled; assembly an be done by sorting

the join result on the reord identi�er of one of the relations and aessing

the orresponding attributes, then resorting on reord identi�ers of the other

relation to aess its attributes.

15.16 Consider the following queries. For eah query, indiate if olumn-oriented

storage is likely to be bene�ial or not, and explain why.

a. Feth ID, name and dept name of the student with ID 12345.

b. Group the takes relation by year and ourse id, and �nd the total number

of students for eah (year, ourse id) ombination.

Answer:

FILL IN AND rehek question

	Indexing
	Exercises

