CHAPTER 15

Query

Processing

Practice Exercises

15.1

15.2

Assume (for simplicity in this exercise) that only one tuple fits in a block and
memory holds at most three blocks. Show the runs created on each pass of
the sort-merge algorithm when applied to sort the following tuples on the first
attribute: (kangaroo, 17), (wallaby, 21), (emu, 1), (wombat, 13), (platypus,
3), (lion, 8), (warthog, 4), (zebra, 11), (meerkat, 6), (hyena, 9), (hornbill, 2),
(baboon, 12).

Answer:

We will refer to the tuples (kangaroo, 17) through (baboon, 12) using tuple
numbers 7, through 7,,. We refer to the /” run used by the i pass, as r;. The
initial sorted runs have three blocks each. They are:

ry = {.1,4})
ro = g5, 14}
ry = {tg. 17,53}

Iy {2, 115110}

Each pass merges three runs. Therefore the runs after the end of the first pass
are:

ry = Attty Is, 1, 17,1y, 15)
ry = Attt}

At the end of the second pass, the tuples are completely sorted into one run:

ry = Attty byt Loy Bs, 1 17, 1y, 1}

Consider the bank database of Figure 15.14, where the primary keys are un-
derlined, and the following SQL query:

111

112

Chapter 15 Query Processing

15.3

select 7.branch_name
from branch T, branch S
where T.assets > S.assets and S.branch_city = “Brooklyn”

Write an efficient relational-algebra expression that is equivalent to this query.
Justify your choice.

Answer:

Query:

I T branch_name ((Hbranch_name, assets (p T (br anch))) Do T.assets > S.assets
(Hassets (G(branch_cfty =Brooklyn’) (pS(branch)))))

This expression performs the theta join on the smallest amount of data possi-
ble. It does this by restricting the right-hand side operand of the join to only
those branches in Brooklyn and also eliminating the unneeded attributes from
both the operands.

Let relations r,(4, B, C) and r,(C, D, E) have the following properties: r; has
20,000 tuples, r, has 45,000 tuples, 25 tuples of r, fit on one block, and 30
tuples of r, fit on one block. Estimate the number of block transfers and seeks
required using each of the following join strategies for r; X 7,:

a. Nested-loop join.
b. Block nested-loop join.
c. Merge join.
d. Hash join.
Answer:

r, needs 800 blocks, and r, needs 1500 blocks. Let us assume M pages of
memory. If M > 800, the join can easily be done in 1500 + 800 disk accesses,

branch(branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)
loan (loan_number, branch_name, amount)

borrower (customer_name, loan_number)

account (account_number, branch_name, balance)
depositor (customer_name, account_number)

Figure 15.14 Bank database.

Practice Exercises 113

using even plain nested-loop join. So we consider only the case where M < 800
pages.

a. Nested-loop join:
Using r, as the outer relation, we need 20000 = 1500 + 800 =
30,000, 800 disk accesses. If r, is the outer relation, we need 45000 =
800 + 1500 = 36,001, 500 disk accesses.

b. Block nested-loop join:
800

If r, is the outer relation, we need [ﬁ] % 1500 + 800 disk accesses. If

r, is the outer relation, we need [%] x 800 + 1500 disk accesses.

c. Merge join:
Assuming that 7, and r, are not initially sorted on the join key, the total
sorting cost inclusive of the outputis B, = 1500(2[log,,_,(1500/M)]+
2) + 800(2[logy,_,(800/M)] + 2) disk accesses. Assuming all tuples
with the same value for the join attributes fit in memory, the total cost
is B, + 1500 + 800 disk accesses.

d. Hash join:
We assume no overflow occurs. Since 7, is smaller, we use it as the build
relation and r, as the probe relation. If M > 800/M, i.e., no need for
recursive partitioning, then the cost is 3(1500 + 800) = 6900 disk
accesses, else the cost is 2(1500 + 800)[log,,_,(800) — 1] + 1500 + 800
disk accesses.

15.4 The indexed nested-loop join algorithm described in Section 15.5.3 can be
inefficient if the index is a secondary index and there are multiple tuples with
the same value for the join attributes. Why is it inefficient? Describe a way,
using sorting, to reduce the cost of retrieving tuples of the inner relation. Under
what conditions would this algorithm be more efficient than hybrid merge join?

Answer:

If there are multiple tuples in the inner relation with the same value for the
join attributes, we may have to access that many blocks of the inner relation
for each tuple of the outer relation. That is why it is inefficient. To reduce this
cost we can perform a join of the outer relation tuples with just the secondary
index leaf entries, postponing the inner relation tuple retrieval. The result file
obtained is then sorted on the inner relation addresses, allowing an efficient
physical order scan to complete the join.

Hybrid merge -join requires the outer relation to be sorted. The above al-
gorithm does not have this requirement, but for each tuple in the outer relation
it needs to perform an index lookup on the inner relation. If the outer relation
is much larger than the inner relation, this index lookup cost will be less than
the sorting cost, thus this algorithm will be more efficient.

114

Chapter 15 Query Processing

15.5

15.6

15.7

Let r and s be relations with no indices, and assume that the relations are not
sorted. Assuming infinite memory, what is the lowest-cost way (in terms of I/O
operations) to compute 7 X s? What is the amount of memory required for
this algorithm?

Answer:

We can store the entire smaller relation in memory, read the larger relation
block by block, and perform nested-loop join using the larger one as the outer
relation. The number of I/O operations is equal to b, + b, and the memory
requirement is min(b,, b,) + 2 pages.

Consider the bank database of Figure 15.14, where the primary keys are un-
derlined. Suppose that a B*-tree index on branch_city is available on relation
branch, and that no other index is available. List different ways to handle the
following selections that involve negation:

A O _(branch_city<*Brooklyn”) (branCh)
b. o —(branchcity="Brooklyn”) (branch)
€. O ~(branch_city<*Brooklyn” v assets<5000)(br anch)

Answer:

a. Use the index to locate the first tuple whose branch_city field has value
“Brooklyn”. From this tuple, follow the pointer chains till the end, re-
trieving all the tuples.

b. For this query, the index serves no purpose. We can scan the file sequen-
tially and select all tuples whose branch_city field is anything other than
“Brooklyn”.

c. This query is equivalent to the query

G(branch_cityz’ Brooklyn’ A assets<5000)(b ranch)

Using the branch-city index, we can retrieve all tuples with branch-city
value greater than or equal to “Brooklyn” by following the pointer chains
from the first “Brooklyn” tuple. We also apply the additional criteria of
assets < 5000 on every tuple.

Write pseudocode for an iterator that implements indexed nested-loop join,
where the outer relation is pipelined. Your pseudocode must define the stan-
dard iterator functions open(), next(), and close(). Show what state information
the iterator must maintain between calls.

Answer:
Let outer be the iterator which returns successive tuples from the pipelined
outer relation. Let inner be the iterator which returns successive tuples of

15.8

15.9

Practice Exercises 115

the inner relation having a given value at the join attributes. The inner iter-
ator returns these tuples by performing an index lookup. The functions In-
dexedNLJoin::open, IndexedNLJoin::close and IndexedNLJoin::next to imple-
ment the indexed nested-loop join iterator are given below. The two iterators
outer and inner, the value of the last read outer relation tuple 7, and a flag done,
indicating whether the end of the outer relation scan has been reached are the
state information which need to be remembered by IndexedNLJoin between
calls. Please see ??

Design sort-based and hash-based algorithms for computing the relational di-
vision operation (see Practice Exercise 2.9 for a definition of the division op-
eration).

Answer:
Suppose (T U S) and s(S) are two relations and 7 + s has to be computed.

For a sorting-based algorithm, sort relation s on S. Sort relation r on (7, S).
Now, start scanning r and look at the 7" attribute values of the first tuple. Scan r
till tuples have same value of 7'. Also scan s simultaneously and check whether
every tuple of s also occurs as the S attribute of r, in a fashion similar to merge
join. If this is the case, output that value of 7" and proceed with the next value of
T. Relation s may have to be scanned multiple times, but » will only be scanned
once. Total disk accesses, after sorting both the relations, will be || + N = |s|,
where N is the number of distinct values of 7" in r.

We assume that for any value of 7, all tuples in » with that 7 value fit in
memory, and we consider the general case at the end. Partition the relation
r on attributes in 7 such that each partition fits in memory (always possible
because of our assumption). Consider partitions one at a time. Build a hash
table on the tuples, at the same time collecting all distinct 7" values in a separate
hash table. For each value of 7', Now, for each value V- of T, each value s of
S, probe the hash table on (V7,s). If any of the values is absent, discard the
value V., else output the value V.

In the case that not all » tuples with one value for 7 fit in memory, parti-
tion r and s on the § attributes such that the condition is satisfied, and run
the algorithm on each corresponding pair of partitions 7, and s;. Output the
intersection of the 7 values generated in each partition.

What is the effect on the cost of merging runs if the number of buffer blocks
per run is increased while overall memory available for buffering runs remains
fixed?

Answer:

Seek overhead is reduced, but the the number of runs that can be merged in a
pass decreases, potentially leading to more passes. A value of b, that minimizes
overall cost should be chosen.

116 Chapter 15 Query Processing

IndexedNLJoin::open()
begin
outer.open();
inner.open();
done, := false;
if(outer.next() # false)
move tuple from outer’s output buffer to 7,;
else
done, = true;
end

IndexedNLJoin::close()
begin
outer.close();
inner.close();
end

boolean IndexedNLJoin::next()

begin
while(—~done,)
begin
if(inner.next(z,[JoinAttrs]) # false)
begin
move tuple from inner’s output buffer to 7;
compute ¢, X ¢, and place it in output buffer;
return frue;
end
else
if(outer next() # false)
begin
move tuple from outer’s output buffer to ,;
rewind inner to first tuple of s;
end
else
done, := true;
end
return false;
end

Figure 15.101 Answer for Exercise 15.7.

Practice Exercises 117

15.10 Consider the following extended relational-algebra operators. Describe how to
implement each operation using sorting and using hashing.

a. Semijoin (Xy): The multiset semijoin operator rXys is defined as follows:
if a tuple r; appears n times in r, it appears » times in the result of 71X
if there is at least one tuple 8; such that r; and 8; satisfy predicate 0;
otherwise r; does not appear in the result.

b. Anti-semijoin ()X,): The multiset anti-semijoin operator rXs is defined
as follows: if a tuple r; appears » times in r, it appears » times in the result
of riX, if there does not exist any tuple s;in s such that r; and s; satisfy
predicate O; otherwise r; does not appear in the result.

Answer:

FILL IN: CHeck for duplicate preservation

As in the case of join algorithms, semijoin and anti-semijoin can be done effi-
ciently if the join conditions are equijoin conditions. We describe below how
to efficiently handle the case of equijoin conditions using sorting and hashing.
With arbitrary join conditions, sorting and hashing cannot be used; (block)
nested loops join needs to be used instead.

a. Semijoin:

Semijoin using sorting: Sort both » and s on the join attributes in
0. Perform a scan of both r and s similar to the merge algorithm
and add tuples of r to the result whenever the join attributes of the
current tuples of and s match.

Semijoin using hashing: Create a hash index in s on the join at-
tributes in 0. Iterate over r, and for each distinct value of the join
attributes, perform a hash lookup in s. If the hash lookup returns a
value, add the current tuple of r to the result.

Note that if 7 and s are large, they can be partitioned on the join
attributes first and the above procedure applied on each partition.
If r is small but s is large, a hash index can be built on » and probed
using s; and if an s tuple matches an r tuple, the tuple can be output
and deleted from the hash index.

b. Anti-semijoin:

Anti-semijoin using sorting: Sort both r and s on the join attributes
in 6. Perform a scan of both r and s similar to the merge algorithm
and add tuples of r to the result if no tuple of s satisfies the join
predicate for the corresponding tuple of .

Anti-semijoin using hashing: Create a hash index in s on the join
attributes in 0. Iterate over r, and for each distinct value of the join
attributes, perform a hash lookup in s. If the hash lookup returns a
null value, add the current tuple of r to the result.

118

Chapter 15

15.11

15.12

15.13

Query Processing

As for semijoin, partitioning can be used if and s are large. An
index on r can be used instead of an index on s, but then when an s
tuple matches an r tuple, the r tuple is deleted from the index. After
processing all s tuples, all remaining r tuples in the index are output
as the result of the anti-semijoin operation.

Suppose a query retrieves only the first K results of an operation and termi-
nates after that. Which choice of demand-driven or producer-driven pipelining
(with buffering) would be a good choice for such a query? Explain your an-
Swer.

Answer:
Demand driven is better, since it will only generate the top K results. Producer
driven may generate a lot more answers, many of which would not get used.

Current generation CPUs include an instruction cache, which caches recently
used instructions. A function call then has a significant overhead because the
set of instructions being executed changes, resulting in cache misses on the
instruction cache.

a. Explain why producer-driven pipelining with buffering is likely to result
in a better instruction cache hit rate, as compared to demand-driven
pipelining.

b. Explain why modifying demand-driven pipelining by generating multiple
results on one call to next(), and returning them together, can improve
the instruction cache hit rate.

Answer:

Producer-driven pipelining executes the same set of instructions to generate
multiple tuples by consuming already generated tuples from the inputs. Thus
instruction cache hits will be more. In comparison, demand-driven pipelining
switches from the instructions of one function to another for each tuple, re-
sulting in more misses.

By generating multiple results at one go, a next(() function would receive
multiple tuples in its inputs and have a loop that generates multiple tuples for
its output without switching execution to another function. Thus, the instruc-
tion cache hit rate can be expected to improve.

Suppose you want to find documents that contain at least k of a given set of n
keywords. Suppose also you have a keyword index that gives you a (sorted) list
of identifiers of documents that contain a specified keyword. Give an efficient
algorithm to find the desired set of documents.

Answer:
Let S be a set of n keywords. An algorithm to find all documents that contain
at least k£ of these keywords is given in ??

15.14

Practice Exercises 119

initialize the list L to the empty list;
for (each keyword c in S) do
begin
D := the list of documents identifiers corresponding to c;
for (each document identifier 4 in D) do
if (a record R with document identifier as d is on list L) then
R.reference_count = R.reference_count + 1;
else begin
make a new record R;
R.document_id = d,
R.reference_count := 1;
add Rto L;
end;
end;
for (each record Rin L) do
if (R.reference_count >= k) then
output R;

Figure 15.102 Answer for Exercise 15.13.

This algorithm calculates a reference count for each document identifier.
A reference count of i for a document identifier 4 means that at least i of the
keywords in S occur in the document identified by d. The algorithm maintains
a list of records, each having two fields - a document identifier, and the refer-
ence count for this identifier. This list is maintained sorted on the document
identifier field.
Note that execution of the second for statement causes the list D to “merge”
with the list L. Since the lists L and D are sorted, the time taken for this merge
is proportional to the sum of the lengths of the two lists. Thus the algorithm
runs in time (at most) proportional to » times the sum total of the number of
document identifiers corresponding to each keyword in S.

Suggest how a document containing a word (such as “leopard”) can be in-
dexed such that it is efficiently retrieved by queries using a more general con-
cept (such as “carnivore” or “mammal”). You can assume that the concept
hierarchy is not very deep, so each concept has only a few generalizations (a
concept can, however, have a large number of specializations). You can also
assume that you are provided with a function that returns the concept for each
word in a document. Also suggest how a query using a specialized concept can
retrieve documents using a more general concept.

Answer:
Add doc to index lists for more general concepts also.

120

Chapter 15 Query Processing

15.15

15.16

Explain why the nested-loops join algorithm (see Section 15.5.1) would work
poorly on a database stored in a column-oriented manner. Describe an alterna-
tive algorithm that would work better, and explain why your solution is better.

Answer:

If the nested-loops join algorithm is used as is, it would require tuples for each
of the relations to be assembled before they are joined. Assembling tuples can
be expensive in a column store, since each attribute may come from a separate
area of the disk; the overhead of assembly would be particularly wasteful if
many tuples do not satisfy the join condition and would be discarded. In such
a situation it would be better to first find which tuples match by accessing only
the join columns of the relations. Sort-merge join, hash join, or indexed nested
loops join can be used for this task. After the join is performed, only tuples that
get output by the join need to be assembled; assembly can be done by sorting
the join result on the record identifier of one of the relations and accessing
the corresponding attributes, then resorting on record identifiers of the other
relation to access its attributes.

Consider the following queries. For each query, indicate if column-oriented
storage is likely to be beneficial or not, and explain why.

a. Fetch ID, name and dept_name of the student with ID 12345.

b. Group the takes relation by year and course_id, and find the total number
of students for each (year, course_id) combination.

Answer:
FILL IN AND recheck question

	Indexing
	Exercises

