
CHAP T E R

16

Query Optimization

Pra
ti
e Exer
ises

16.1 Download the university database s
hema and the large university dataset from

dbbook.
om. Create the university s
hema on your favorite database, and load

the large university dataset. Use the explain feature des
ribed in Note 16.1 on

page 746 to view the plan 
hosen by the database, in di�erent 
ases as detailed

below.

a. Write a query with an equality 
ondition on student.name (whi
h does

not have an index), and view the plan 
hosen.

b. Create an index on the attribute student.name, and view the plan 
hosen

for the above query.


. Create simple queries joining two relations, or three relations, and view

the plans 
hosen.

d. Create a query that 
omputes an aggregate with grouping, and view the

plan 
hosen.

e. Create an SQL query whose 
hosen plan uses a semijoin operation.

f. Create an SQL query that uses a not in 
lause, with a subquery using

aggregation. Observe what plan is 
hosen.

g. Create a query for whi
h the 
hosen plan uses 
orrelated evaluation (the

way 
orrelated evaluation is represented varies by database, but most

databases would show a �lter or a proje
t operator with a subplan or

subquery).

h. Create an SQL update query that updates a single row in a relation. View

the plan 
hosen for the update query.
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i. Create an SQL update query that updates a large number of rows in a re-

lation, using a subquery to 
ompute the new value. View the plan 
hosen

for the update query.

Answer:

The answer depends on the database.

FILL IN Suggested queries for ea
h exer
ise as veri�ed on some database

16.2 Show that the following equivalen
es hold. Explain how you 
an apply them

to improve the e	
ien
y of 
ertain queries:

a. E

1

Æ

�

(E

2

* E

3

) � (E

1

Æ

�

E

2

* E

1

Æ

�

E

3

).

b. �

�

(

A




F

(E)) �

A




F

(�

�

(E)), where � uses only attributes from A.


. �

�

(E

1

�E

2

) � �

�

(E

1

)�E

2

, where � uses only attributes from E

1

.

Answer:
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Æ
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The above two equations imply the given equivalen
e.

This equivalen
e is helpful be
ause evaluation of the right-hand side

join will produ
e many tuples whi
h will �nally be removed from the

result. The left-hand side expression 
an be evaluated more e	
iently.
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� uses only attributes from A. Therefore if any tuple t in the output of

A




F

(E) is �ltered out by the sele
tion of the left-hand side, all the tuples

in E whose value in A is equal to t[A℄ are �ltered out by the sele
tion of

the right-hand side. Therefore:
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The above two equations imply the given equivalen
e.

This equivalen
e is helpful be
ause evaluation of the right-hand side

avoids performing the aggregation on groups whi
h are going to be re-

moved from the result. Thus the right-hand side expression 
an be eval-

uated more e	
iently than the left-hand side expression.
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The above two equations imply the given equivalen
e.

This equivalen
e is helpful be
ause evaluation of the right-hand side

avoids produ
ing many output tuples whi
h are going to be removed

from the result. Thus the right-hand side expression 
an be evaluated

more e	
iently than the left-hand side expression.

16.3 For ea
h of the following pairs of expressions, give instan
es of relations that

show the expressions are not equivalent.

a. �

A

(r * s) and �

A

(r) * �

A

(s).

b. �

B<4

(

A




max(B) as B

(r)) and

A




max(B) as B

(�

B<4

(r)).


. In the pre
eding expressions, if both o

urren
es of max were repla
ed

by min, would the expressions be equivalent?

d. (r� s)� t and r�(s� t)

In other words, the natural right outer join is not asso
iative.

e. �

�

(E

1

�E

2

) and E

1

� �

�

(E

2

), where � uses only attributes from E

2

.

Answer:

a. R = ^(1, 2)`, S = ^(1, 3)`

The result of the left-hand side expression is ^(1)`, whereas the result of

the right-hand side expression is empty.

b. R = ^(1, 2), (1, 5)`

The left-hand side expression has an empty result, whereas the right hand

side one has the result ^(1, 2)`.
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. Yes, on repla
ing themax by themin, the expressions will be
ome equiv-

alent. Any tuple that the sele
tion in the rhs eliminates would not pass

the sele
tion on the lhs if it were the minimum value and would be elim-

inated anyway if it were not the minimum value.

d. R = ^(1, 2)`, S = ^(2, 3)`, T = ^(1, 4)`. The left-hand expres-

sion gives ^(1, 2, null, 4)` whereas the the right-hand expression gives

^(1, 2, 3, null)`.

e. Let R be of the s
hema (A,B) and S of (A,C). Let R = ^(1, 2)`, S =

^(2, 3)` and let � be the expression C = 1. The left side expression's

result is empty, whereas the right side expression results in ^(1, 2, null)`.

16.4 SQL allows relations with dupli
ates (Chapter 3), and the multiset version of

the relational algebra is de�ned in Note 3.1 on page 80, Note 3.2 on page 97,

and Note 3.3 on page 108. Che
k whi
h of the equivalen
e rules 1 through 7.b

hold for the multiset version of the relational algebra.

Answer:

All the equivalen
e rules 1 through 7.b of se
tion Se
tion 16.2.1 hold for the

multiset version of the relational algebra de�ned in Chapter 2.

There exist equivalen
e rules that hold for the ordinary relational algebra but

do not hold for the multiset version. For example 
onsider the rule :-

A ã B = A ä B * (A * B) * (B * A)

This is 
learly valid in plain relational algebra. Consider a multiset instan
e

in whi
h a tuple t o

urs 4 times in A and 3 times in B. t will o

ur 3 times

in the output of the left-hand side expression, but 6 times in the output of the

right-hand side expression. The reason for this rule to not hold in the multiset

version is the asymmetry in the semanti
s of multiset union and interse
tion.

16.5 Consider the relations r

1

(A,B,C), r

2

(C,D,E), and r

3

(E, F), with primary keys

A, C, and E, respe
tively. Assume that r

1

has 1000 tuples, r

2

has 1500 tuples,

and r

3

has 750 tuples. Estimate the size of r

1

Æ r

2

Æ r

3

, and give an e	
ient

strategy for 
omputing the join.

Answer:

�

The relation resulting from the join of r

1

, r

2

, and r

3

will be the same no

matter whi
h way we join them, due to the asso
iative and 
ommutative

properties of joins. So we will 
onsider the size based on the strategy of

((r

1

Æ r

2

) Æ r

3

). Joining r

1

with r

2

will yield a relation of at most 1000

tuples, sin
e C is a key for r

2

. Likewise, joining that result with r

3

will yield

a relation of at most 1000 tuples be
ause E is a key for r

3

. Therefore, the

�nal relation will have at most 1000 tuples.
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�

An e	
ient strategy for 
omputing this join would be to 
reate an index

on attribute C for relation r

2

and on E for r

3

. Then for ea
h tuple in r

1

, we

do the following:

a. Use the index for r

2

to look up at most one tuple whi
h mat
hes the

C value of r

1

.

b. Use the 
reated index on E to look up in r

3

at most one tuple whi
h

mat
hes the unique value for E in r

2

.

16.6 Consider the relations r

1

(A,B,C), r

2

(C,D,E), and r

3

(E, F) of Pra
ti
e Exer-


ise 16.5. Assume that there are no primary keys, ex
ept the entire s
hema.

Let V (C, r

1

) be 900, V (C, r

2

) be 1100, V (E, r

2

) be 50, and V (E, r

3

) be 100.

Assume that r

1

has 1000 tuples, r

2

has 1500 tuples, and r

3

has 750 tuples. Es-

timate the size of r

1

Æ r

2

Æ r

3

and give an e	
ient strategy for 
omputing

the join.

Answer:

The estimated size of the relation 
an be determined by 
al
ulating the average

number of tuples whi
h would be joined with ea
h tuple of the se
ond relation.

In this 
ase, for ea
h tuple in r

1

, 1500/V (C, r

2

) = 15/11 tuples (on the average)

of r

2

would join with it. The intermediate relation would have 15000/11 tuples.

This relation is joined with r

3

to yield a result of approximately 10,227 tuples

(15000/11 � 750/100 = 10227). A good strategy should join r

1

and r

2

�rst,

sin
e the intermediate relation is about the same size as r

1

or r

2

. Then r

3

is

joined to this result.

16.7 Suppose that a B

+

-tree index on building is available on relation department

and that no other index is available. What would be the best way to handle the

following sele
tions that involve negation?

a. �

� (building < �Watson�)

(department)

b. �

� (building = �Watson�)

(department)


. �

� (building < �Watson� â budget < 50000)

(department)

Answer:

a. Use the index to lo
ate the �rst tuple whose building �eld has value �Wat-

son�. From this tuple, follow the pointer 
hains till the end, retrieving all

the tuples.

b. For this query, the index serves no purpose. We 
an s
an the �le sequen-

tially and sele
t all tuples whose building �eld is anything other than

�Watson�.


. This query is equivalent to the query:

�

building g'Watson' á budget <5000)

(department).
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Using the building index, we 
an retrieve all tuples with building value

greater than or equal to �Watson� by following the pointer 
hains from

the �rst �Watson� tuple.We also apply the additional 
riteria of budget <

5000 on every tuple.

16.8 Consider the query:

sele
t *

from r, s

where upper(r:A) = upper(s:A);

where �upper� is a fun
tion that returns its input argument with all lower
ase

letters repla
ed by the 
orresponding upper
ase letters.

a. Find out what plan is generated for this query on the database system

you use.

b. Some database systems would use a (blo
k) nested-loop join for this

query, whi
h 
an be very ine	
ient. Brie�y explain how hash-join or

merge-join 
an be used for this query.

Answer:

a. First 
reate relations r and s, and add some tuples to the two relations,

before �nding the plan 
hosen; or use existing relations in pla
e of r and

s. Compare the 
hosen plan with the plan 
hosen for a query dire
tly

equating r:A = s:B. Che
k the estimated statisti
s, too. Some databases

may give the same plan, but with vastly di�erent statisti
s.

(On PostgreSQL, we found that the optimizer used the merge join

plan des
ribed in the answer to the next part of this question.)

b. To use hash join, hashing should be done after applying the upper()

fun
tion to r:A and s:A. Similarly, for merge join, the relations should

be sorted on the result of applying the upper() fun
tion on r:A and s:A.

The hash or merge join algorithms 
an then be used un
hanged.

16.9 Give 
onditions under whi
h the following expressions are equivalent:

A,B




agg(C)

(E

1

Æ E

2

) and (

A




agg(C)

(E

1

)) Æ E

2

where agg denotes any aggregation operation. How 
an the above 
onditions

be relaxed if agg is one of min or max?

Answer:

The above expressions are equivalent provided E

2


ontains only attributes A

and B, with A as the primary key (so there are no dupli
ates). It is OK if E

2

does not 
ontain some A values that exist in the result of E

1

, sin
e su
h values

will get �ltered out in either expression. However, if there are dupli
ate values

in E

2

:A, the aggregate results in the two 
ases would be di�erent.
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If the aggregate fun
tion is min or max, dupli
ate A values do not have any

e�e
t. However, there should be no dupli
ates on (A,B); the �rst expression

removes su
h dupli
ates, while the se
ond does not.

16.10 Consider the issue of interesting orders in optimization. Suppose you are given

a query that 
omputes the natural join of a set of relations S. Given a subset

S1 of S, what are the interesting orders of S1?

Answer:

The interesting orders are all orders on subsets of attributes that 
an potentially

parti
ipate in join 
onditions in further joins. Thus, let T be the set of all

attributes of S1 that also o

ur in any relation in S * S1. Then every ordering

of every subset of T is an interesting order.

16.11 Modify the FindBestPlan(S) fun
tion to 
reate a fun
tion FindBestPlan(S,O),

where O is a desired sort order for S, and whi
h 
onsiders interesting sort

orders. A null order indi
ates that the order is not relevant.Hints: An algorithm

A may give the desired order O; if not a sort operation may need to be added

to get the desired order. If A is a merge-join, FindBestPlan must be invoked on

the two inputs with the desired orders for the inputs.

Answer:

FILL IN

16.12 Show that, with n relations, there are (2(n*1))�_(n*1)� di�erent join orders.

Hint: A 
omplete binary tree is one where every internal node has exa
tly two


hildren. Use the fa
t that the number of di�erent 
omplete binary trees with

n leaf nodes is:

1

n

0

2(n * 1)

(n * 1)

1

If you wish, you 
an derive the formula for the number of 
omplete binary trees

with n nodes from the formula for the number of binary trees with n nodes.

The number of binary trees with n nodes is:

1

n + 1

0

2n

n

1

This number is known as the Catalan number, and its derivation 
an be found

in any standard textbook on data stru
tures or algorithms.

Answer:

Ea
h join order is a 
omplete binary tree (every non-leaf node has exa
tly two


hildren) with the relations as the leaves. The number of di�erent 
omplete

binary trees with n leaf nodes is

1

n

�

2(n*1)

(n*1)

�

. This is be
ause there is a bije
tion

between the number of 
omplete binary trees with n leaves and number of

binary trees with n*1 nodes. Any 
omplete binary tree with n leaves has n*1

internal nodes. Removing all the leaf nodes, we get a binary tree with n * 1
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nodes. Conversely, given any binary tree with n* 1 nodes, it 
an be 
onverted

to a 
omplete binary tree by adding n leaves in a unique way. The number

of binary trees with n * 1 nodes is given by

1

n

�

2(n*1)

(n*1)

�

, known as the Catalan

number. Multiplying this by n� for the number of permutations of the n leaves,

we get the desired result.

16.13 Show that the lowest-
ost join order 
an be 
omputed in time O(3

n

). Assume

that you 
an store and look up information about a set of relations (su
h as

the optimal join order for the set, and the 
ost of that join order) in 
onstant

time. (If you �nd this exer
ise di	
ult, at least show the looser time bound of

O(2

2n

).)

Answer:

Consider the dynami
 programming algorithm given in Se
tion 16.4. For ea
h

subset having k + 1 relations, the optimal join order 
an be 
omputed in time

2

k+1

. That is be
ause for one parti
ular pair of subsets A and B, we need 
on-

stant time, and there are at most 2

k+1

* 2 di�erent subsets that A 
an denote.

Thus, over all the

�

n

k+1

�

subsets of size k + 1, this 
ost is

�

n

k+1

�

2

k+1

. Summing

over all k from 1 to n* 1 gives the binomial expansion of ((1+ x)

n

* x) with

x = 2. Thus the total 
ost is less than 3

n

.

16.14 Show that, if only left-deep join trees are 
onsidered, as in the System R opti-

mizer, the time taken to �nd themost e	
ient join order is around n2

n

. Assume

that there is only one interesting sort order.

Answer:

The derivation of time taken is similar to the general 
ase, ex
ept that instead

of 
onsidering 2

k+1

* 2 subsets of size less than or equal to k for A, we only

need to 
onsider k + 1 subsets of size exa
tly equal to k. That is be
ause the

right-hand operand of the topmost join has to be a single relation. Therefore

the total 
ost for �nding the best join order for all subsets of size k + 1 is

�

n

k+1

�

(k + 1), whi
h is equal to n

�

n*1

k

�

. Summing over all k from 1 to n * 1

using the binomial expansion of (1+ x)

n*1

with x = 1 gives a total 
ost of less

than n2

n*1

.

16.15 Consider the bank database of Figure 16.9, where the primary keys are under-

lined. Constru
t the following SQL queries for this relational database.

a. Write a nested query on the relation a

ount to �nd, for ea
h bran
h

with name starting with B, all a

ounts with the maximum balan
e at

the bran
h.

b. Rewrite the pre
eding query without using a nested subquery; in other

words, de
orrelate the query, but in SQL.


. Give a relational algebra expression using semijoin equivalent to the

query.
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d. Give a pro
edure (similar to that des
ribed in Se
tion 16.4.4) for de
or-

relating su
h queries.

Answer:

a. The nested query is as follows:

sele
t S.a
ount number

from a

ount S

where S.bran
h name like 'B%' and

S.balan
e =

(sele
t max(T.balan
e)

from a

ount T

where T.bran
h name = S.bran
h name)

b. The de
orrelated query is as follows:


reate table t

1

as

sele
t bran
h name, max(balan
e)

from a

ount

group by bran
h name

sele
t a

ount number

from a

ount, t

1

where a

ount.bran
h name like 'B%' and

a

ount.bran
h name = t

1

.bran
h name and

a

ount.balan
e = t

1

.balan
e


. FILL IN

d. In general, 
onsider the queries of the form:

bran
h(bran
h name, bran
h 
ity, assets)


ustomer (
ustomer name, 
ustomer street, 
ustomer 
ity)

loan (loan number, bran
h name, amount)

borrower (
ustomer name, loan number)

a

ount (a

ount number, bran
h name, balan
e )

depositor (
ustomer name, a

ount number)

Figure 16.9 Banking database.
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sele
t 5

from L

1

where P

1

and

A

1

op

(sele
t f(A

2

)

from L

2

where P

2

)

where f is some aggregate fun
tion on attributes A

2

and op is some

boolean binary operator. It 
an be rewritten as

***** FILL IN **** GIVE Relational algebra version *****


reate table t

1

as

sele
t f(A

2

),V

from L

2

where P

1

2

group by V

sele
t 5

from L

1

, t

1

where P

1

and P

2

2

and

A

1

op t

1

:A

2

where P

1

2


ontains predi
ates in P

2

without sele
tions involving 
orrela-

tion variables, and P

2

2

introdu
es the sele
tions involving the 
orrelation

variables. V 
ontains all the attributes that are used in the sele
tions in-

volving 
orrelation variables in the nested query.
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