
CHAP T E R

16

Query Optimization

Pratie Exerises

16.1 Download the university database shema and the large university dataset from

dbbook.om. Create the university shema on your favorite database, and load

the large university dataset. Use the explain feature desribed in Note 16.1 on

page 746 to view the plan hosen by the database, in di�erent ases as detailed

below.

a. Write a query with an equality ondition on student.name (whih does

not have an index), and view the plan hosen.

b. Create an index on the attribute student.name, and view the plan hosen

for the above query.

. Create simple queries joining two relations, or three relations, and view

the plans hosen.

d. Create a query that omputes an aggregate with grouping, and view the

plan hosen.

e. Create an SQL query whose hosen plan uses a semijoin operation.

f. Create an SQL query that uses a not in lause, with a subquery using

aggregation. Observe what plan is hosen.

g. Create a query for whih the hosen plan uses orrelated evaluation (the

way orrelated evaluation is represented varies by database, but most

databases would show a �lter or a projet operator with a subplan or

subquery).

h. Create an SQL update query that updates a single row in a relation. View

the plan hosen for the update query.

121

http://dbbook.com

122 Chapter 16 Query Optimization

i. Create an SQL update query that updates a large number of rows in a re-

lation, using a subquery to ompute the new value. View the plan hosen

for the update query.

Answer:

The answer depends on the database.

FILL IN Suggested queries for eah exerise as veri�ed on some database

16.2 Show that the following equivalenes hold. Explain how you an apply them

to improve the e	ieny of ertain queries:

a. E

1

Æ

�

(E

2

* E

3

) � (E

1

Æ

�

E

2

* E

1

Æ

�

E

3

).

b. �

�

(

A

F

(E)) �

A

F

(�

�

(E)), where � uses only attributes from A.

. �

�

(E

1

�E

2

) � �

�

(E

1

)�E

2

, where � uses only attributes from E

1

.

Answer:

a. E

1

Æ

�

(E

2

* E

3

) = (E

1

Æ

�

E

2

* E

1

Æ

�

E

3

).

Let us rename (E

1

Æ

�

(E

2

*E

3

)) as R

1

, (E

1

Æ

�

E

2

) asR

2

and (E

1

Æ

�

E

3

)

as R

3

. It is lear that if a tuple t belongs to R

1

, it will also belong to R

2

.

If a tuple t belongs to R

3

, t[E

3

's attributes℄ will belong to E

3

, hene t

annot belong to R

1

. From these two we an say that

Åt, t Ë R

1

Ù t Ë (R

2

* R

3

)

It is lear that if a tuple t belongs to R

2

*R

3

, then t[R

2

's attributes℄ Ë E

2

and t[R

2

's attributes℄ Ì E

3

. Therefore:

Åt, t Ë (R

2

* R

3

) Ù t Ë R

1

The above two equations imply the given equivalene.

This equivalene is helpful beause evaluation of the right-hand side

join will produe many tuples whih will �nally be removed from the

result. The left-hand side expression an be evaluated more e	iently.

b. �

�

(

A

F

(E)) =

A

F

(�

�

(E)), where � uses only attributes from A.

� uses only attributes from A. Therefore if any tuple t in the output of

A

F

(E) is �ltered out by the seletion of the left-hand side, all the tuples

in E whose value in A is equal to t[A℄ are �ltered out by the seletion of

the right-hand side. Therefore:

Åt, t Ì �

�

(

A

F

(E)) Ù t Ì

A

F

(�

�

(E))

Using similar reasoning, we an also onlude that

Åt, t Ì

A

F

(�

�

(E)) Ù t Ì �

�

(

A

F

(E))

Pratie Exerises 123

The above two equations imply the given equivalene.

This equivalene is helpful beause evaluation of the right-hand side

avoids performing the aggregation on groups whih are going to be re-

moved from the result. Thus the right-hand side expression an be eval-

uated more e	iently than the left-hand side expression.

. �

�

(E

1

�E

2

) = �

�

(E

1

)�E

2

where � uses only attributes from E

1

.

� uses only attributes from E

1

. Therefore if any tuple t in the output of

(E

1

�E

2

) is �ltered out by the seletion of the left-hand side, all the

tuples in E

1

whose value is equal to t[E

1

℄ are �ltered out by the seletion

of the right-hand side. Therefore:

Åt, t Ì �

�

(E

1

�E

2

) Ù t Ì �

�

(E

1

)�E

2

Using similar reasoning, we an also onlude that

Åt, t Ì �

�

(E

1

)�E

2

Ù t Ì �

�

(E

1

�E

2

)

The above two equations imply the given equivalene.

This equivalene is helpful beause evaluation of the right-hand side

avoids produing many output tuples whih are going to be removed

from the result. Thus the right-hand side expression an be evaluated

more e	iently than the left-hand side expression.

16.3 For eah of the following pairs of expressions, give instanes of relations that

show the expressions are not equivalent.

a. �

A

(r * s) and �

A

(r) * �

A

(s).

b. �

B<4

(

A

max(B) as B

(r)) and

A

max(B) as B

(�

B<4

(r)).

. In the preeding expressions, if both ourrenes of max were replaed

by min, would the expressions be equivalent?

d. (r� s)� t and r�(s� t)

In other words, the natural right outer join is not assoiative.

e. �

�

(E

1

�E

2

) and E

1

� �

�

(E

2

), where � uses only attributes from E

2

.

Answer:

a. R = ^(1, 2)`, S = ^(1, 3)`

The result of the left-hand side expression is ^(1)`, whereas the result of

the right-hand side expression is empty.

b. R = ^(1, 2), (1, 5)`

The left-hand side expression has an empty result, whereas the right hand

side one has the result ^(1, 2)`.

124 Chapter 16 Query Optimization

. Yes, on replaing themax by themin, the expressions will beome equiv-

alent. Any tuple that the seletion in the rhs eliminates would not pass

the seletion on the lhs if it were the minimum value and would be elim-

inated anyway if it were not the minimum value.

d. R = ^(1, 2)`, S = ^(2, 3)`, T = ^(1, 4)`. The left-hand expres-

sion gives ^(1, 2, null, 4)` whereas the the right-hand expression gives

^(1, 2, 3, null)`.

e. Let R be of the shema (A,B) and S of (A,C). Let R = ^(1, 2)`, S =

^(2, 3)` and let � be the expression C = 1. The left side expression's

result is empty, whereas the right side expression results in ^(1, 2, null)`.

16.4 SQL allows relations with dupliates (Chapter 3), and the multiset version of

the relational algebra is de�ned in Note 3.1 on page 80, Note 3.2 on page 97,

and Note 3.3 on page 108. Chek whih of the equivalene rules 1 through 7.b

hold for the multiset version of the relational algebra.

Answer:

All the equivalene rules 1 through 7.b of setion Setion 16.2.1 hold for the

multiset version of the relational algebra de�ned in Chapter 2.

There exist equivalene rules that hold for the ordinary relational algebra but

do not hold for the multiset version. For example onsider the rule :-

A ã B = A ä B * (A * B) * (B * A)

This is learly valid in plain relational algebra. Consider a multiset instane

in whih a tuple t ours 4 times in A and 3 times in B. t will our 3 times

in the output of the left-hand side expression, but 6 times in the output of the

right-hand side expression. The reason for this rule to not hold in the multiset

version is the asymmetry in the semantis of multiset union and intersetion.

16.5 Consider the relations r

1

(A,B,C), r

2

(C,D,E), and r

3

(E, F), with primary keys

A, C, and E, respetively. Assume that r

1

has 1000 tuples, r

2

has 1500 tuples,

and r

3

has 750 tuples. Estimate the size of r

1

Æ r

2

Æ r

3

, and give an e	ient

strategy for omputing the join.

Answer:

�

The relation resulting from the join of r

1

, r

2

, and r

3

will be the same no

matter whih way we join them, due to the assoiative and ommutative

properties of joins. So we will onsider the size based on the strategy of

((r

1

Æ r

2

) Æ r

3

). Joining r

1

with r

2

will yield a relation of at most 1000

tuples, sine C is a key for r

2

. Likewise, joining that result with r

3

will yield

a relation of at most 1000 tuples beause E is a key for r

3

. Therefore, the

�nal relation will have at most 1000 tuples.

Pratie Exerises 125

�

An e	ient strategy for omputing this join would be to reate an index

on attribute C for relation r

2

and on E for r

3

. Then for eah tuple in r

1

, we

do the following:

a. Use the index for r

2

to look up at most one tuple whih mathes the

C value of r

1

.

b. Use the reated index on E to look up in r

3

at most one tuple whih

mathes the unique value for E in r

2

.

16.6 Consider the relations r

1

(A,B,C), r

2

(C,D,E), and r

3

(E, F) of Pratie Exer-

ise 16.5. Assume that there are no primary keys, exept the entire shema.

Let V (C, r

1

) be 900, V (C, r

2

) be 1100, V (E, r

2

) be 50, and V (E, r

3

) be 100.

Assume that r

1

has 1000 tuples, r

2

has 1500 tuples, and r

3

has 750 tuples. Es-

timate the size of r

1

Æ r

2

Æ r

3

and give an e	ient strategy for omputing

the join.

Answer:

The estimated size of the relation an be determined by alulating the average

number of tuples whih would be joined with eah tuple of the seond relation.

In this ase, for eah tuple in r

1

, 1500/V (C, r

2

) = 15/11 tuples (on the average)

of r

2

would join with it. The intermediate relation would have 15000/11 tuples.

This relation is joined with r

3

to yield a result of approximately 10,227 tuples

(15000/11 � 750/100 = 10227). A good strategy should join r

1

and r

2

�rst,

sine the intermediate relation is about the same size as r

1

or r

2

. Then r

3

is

joined to this result.

16.7 Suppose that a B

+

-tree index on building is available on relation department

and that no other index is available. What would be the best way to handle the

following seletions that involve negation?

a. �

� (building < �Watson�)

(department)

b. �

� (building = �Watson�)

(department)

. �

� (building < �Watson� â budget < 50000)

(department)

Answer:

a. Use the index to loate the �rst tuple whose building �eld has value �Wat-

son�. From this tuple, follow the pointer hains till the end, retrieving all

the tuples.

b. For this query, the index serves no purpose. We an san the �le sequen-

tially and selet all tuples whose building �eld is anything other than

�Watson�.

. This query is equivalent to the query:

�

building g'Watson' á budget <5000)

(department).

126 Chapter 16 Query Optimization

Using the building index, we an retrieve all tuples with building value

greater than or equal to �Watson� by following the pointer hains from

the �rst �Watson� tuple.We also apply the additional riteria of budget <

5000 on every tuple.

16.8 Consider the query:

selet *

from r, s

where upper(r:A) = upper(s:A);

where �upper� is a funtion that returns its input argument with all lowerase

letters replaed by the orresponding upperase letters.

a. Find out what plan is generated for this query on the database system

you use.

b. Some database systems would use a (blok) nested-loop join for this

query, whih an be very ine	ient. Brie�y explain how hash-join or

merge-join an be used for this query.

Answer:

a. First reate relations r and s, and add some tuples to the two relations,

before �nding the plan hosen; or use existing relations in plae of r and

s. Compare the hosen plan with the plan hosen for a query diretly

equating r:A = s:B. Chek the estimated statistis, too. Some databases

may give the same plan, but with vastly di�erent statistis.

(On PostgreSQL, we found that the optimizer used the merge join

plan desribed in the answer to the next part of this question.)

b. To use hash join, hashing should be done after applying the upper()

funtion to r:A and s:A. Similarly, for merge join, the relations should

be sorted on the result of applying the upper() funtion on r:A and s:A.

The hash or merge join algorithms an then be used unhanged.

16.9 Give onditions under whih the following expressions are equivalent:

A,B

agg(C)

(E

1

Æ E

2

) and (

A

agg(C)

(E

1

)) Æ E

2

where agg denotes any aggregation operation. How an the above onditions

be relaxed if agg is one of min or max?

Answer:

The above expressions are equivalent provided E

2

ontains only attributes A

and B, with A as the primary key (so there are no dupliates). It is OK if E

2

does not ontain some A values that exist in the result of E

1

, sine suh values

will get �ltered out in either expression. However, if there are dupliate values

in E

2

:A, the aggregate results in the two ases would be di�erent.

Pratie Exerises 127

If the aggregate funtion is min or max, dupliate A values do not have any

e�et. However, there should be no dupliates on (A,B); the �rst expression

removes suh dupliates, while the seond does not.

16.10 Consider the issue of interesting orders in optimization. Suppose you are given

a query that omputes the natural join of a set of relations S. Given a subset

S1 of S, what are the interesting orders of S1?

Answer:

The interesting orders are all orders on subsets of attributes that an potentially

partiipate in join onditions in further joins. Thus, let T be the set of all

attributes of S1 that also our in any relation in S * S1. Then every ordering

of every subset of T is an interesting order.

16.11 Modify the FindBestPlan(S) funtion to reate a funtion FindBestPlan(S,O),

where O is a desired sort order for S, and whih onsiders interesting sort

orders. A null order indiates that the order is not relevant.Hints: An algorithm

A may give the desired order O; if not a sort operation may need to be added

to get the desired order. If A is a merge-join, FindBestPlan must be invoked on

the two inputs with the desired orders for the inputs.

Answer:

FILL IN

16.12 Show that, with n relations, there are (2(n*1))�_(n*1)� di�erent join orders.

Hint: A omplete binary tree is one where every internal node has exatly two

hildren. Use the fat that the number of di�erent omplete binary trees with

n leaf nodes is:

1

n

0

2(n * 1)

(n * 1)

1

If you wish, you an derive the formula for the number of omplete binary trees

with n nodes from the formula for the number of binary trees with n nodes.

The number of binary trees with n nodes is:

1

n + 1

0

2n

n

1

This number is known as the Catalan number, and its derivation an be found

in any standard textbook on data strutures or algorithms.

Answer:

Eah join order is a omplete binary tree (every non-leaf node has exatly two

hildren) with the relations as the leaves. The number of di�erent omplete

binary trees with n leaf nodes is

1

n

�

2(n*1)

(n*1)

�

. This is beause there is a bijetion

between the number of omplete binary trees with n leaves and number of

binary trees with n*1 nodes. Any omplete binary tree with n leaves has n*1

internal nodes. Removing all the leaf nodes, we get a binary tree with n * 1

128 Chapter 16 Query Optimization

nodes. Conversely, given any binary tree with n* 1 nodes, it an be onverted

to a omplete binary tree by adding n leaves in a unique way. The number

of binary trees with n * 1 nodes is given by

1

n

�

2(n*1)

(n*1)

�

, known as the Catalan

number. Multiplying this by n� for the number of permutations of the n leaves,

we get the desired result.

16.13 Show that the lowest-ost join order an be omputed in time O(3

n

). Assume

that you an store and look up information about a set of relations (suh as

the optimal join order for the set, and the ost of that join order) in onstant

time. (If you �nd this exerise di	ult, at least show the looser time bound of

O(2

2n

).)

Answer:

Consider the dynami programming algorithm given in Setion 16.4. For eah

subset having k + 1 relations, the optimal join order an be omputed in time

2

k+1

. That is beause for one partiular pair of subsets A and B, we need on-

stant time, and there are at most 2

k+1

* 2 di�erent subsets that A an denote.

Thus, over all the

�

n

k+1

�

subsets of size k + 1, this ost is

�

n

k+1

�

2

k+1

. Summing

over all k from 1 to n* 1 gives the binomial expansion of ((1+ x)

n

* x) with

x = 2. Thus the total ost is less than 3

n

.

16.14 Show that, if only left-deep join trees are onsidered, as in the System R opti-

mizer, the time taken to �nd themost e	ient join order is around n2

n

. Assume

that there is only one interesting sort order.

Answer:

The derivation of time taken is similar to the general ase, exept that instead

of onsidering 2

k+1

* 2 subsets of size less than or equal to k for A, we only

need to onsider k + 1 subsets of size exatly equal to k. That is beause the

right-hand operand of the topmost join has to be a single relation. Therefore

the total ost for �nding the best join order for all subsets of size k + 1 is

�

n

k+1

�

(k + 1), whih is equal to n

�

n*1

k

�

. Summing over all k from 1 to n * 1

using the binomial expansion of (1+ x)

n*1

with x = 1 gives a total ost of less

than n2

n*1

.

16.15 Consider the bank database of Figure 16.9, where the primary keys are under-

lined. Construt the following SQL queries for this relational database.

a. Write a nested query on the relation aount to �nd, for eah branh

with name starting with B, all aounts with the maximum balane at

the branh.

b. Rewrite the preeding query without using a nested subquery; in other

words, deorrelate the query, but in SQL.

. Give a relational algebra expression using semijoin equivalent to the

query.

Pratie Exerises 129

d. Give a proedure (similar to that desribed in Setion 16.4.4) for deor-

relating suh queries.

Answer:

a. The nested query is as follows:

selet S.aount number

from aount S

where S.branh name like 'B%' and

S.balane =

(selet max(T.balane)

from aount T

where T.branh name = S.branh name)

b. The deorrelated query is as follows:

reate table t

1

as

selet branh name, max(balane)

from aount

group by branh name

selet aount number

from aount, t

1

where aount.branh name like 'B%' and

aount.branh name = t

1

.branh name and

aount.balane = t

1

.balane

. FILL IN

d. In general, onsider the queries of the form:

branh(branh name, branh ity, assets)

ustomer (ustomer name, ustomer street, ustomer ity)

loan (loan number, branh name, amount)

borrower (ustomer name, loan number)

aount (aount number, branh name, balane)

depositor (ustomer name, aount number)

Figure 16.9 Banking database.

130 Chapter 16 Query Optimization

selet 5

from L

1

where P

1

and

A

1

op

(selet f(A

2

)

from L

2

where P

2

)

where f is some aggregate funtion on attributes A

2

and op is some

boolean binary operator. It an be rewritten as

***** FILL IN **** GIVE Relational algebra version *****

reate table t

1

as

selet f(A

2

),V

from L

2

where P

1

2

group by V

selet 5

from L

1

, t

1

where P

1

and P

2

2

and

A

1

op t

1

:A

2

where P

1

2

ontains prediates in P

2

without seletions involving orrela-

tion variables, and P

2

2

introdues the seletions involving the orrelation

variables. V ontains all the attributes that are used in the seletions in-

volving orrelation variables in the nested query.

	Query Processing
	Exercises

