
CHAP T E R

17

Transations

Pratie Exerises

17.1 Suppose that there is a database system that never fails. Is a reovery manager

required for this system?

Answer:

Even in this ase the reoverymanager is needed to perform rollbak of aborted

transations for ases where the transation itself fails.

17.2 Consider a �le system suh as the one on your favorite operating system.

a. What are the steps involved in the reation and deletion of �les and in

writing data to a �le?

b. Explain how the issues of atomiity and durability are relevant to the

reation and deletion of �les and to writing data to �les.

Answer:

There are several steps in the reation of a �le. A storage area is assigned to the

�le in the �le system. (In UNIX, a unique i-number is given to the �le and an

i-node entry is inserted into the i-list.) Deletion of �le involves exatly opposite

steps.

For the �le system user, durability is important for obvious reasons, but

atomiity is not relevant generally as the �le system doesn't support transa-

tions. To the �le system implementor, though, many of the internal �le sys-

tem ations need to have transation semantis. All steps involved in re-

ation/deletion of the �le must be atomi, otherwise there will be unreferene-

able �les or unusable areas in the �le system.

17.3 Database-system implementers have paid muh more attention to the ACID

properties than have �le-system implementers. Why might this be the ase?

Answer:

131

132 Chapter 17 Transations

Database systems usually perform ruial tasks whose e�ets need to be atomi

and durable, and whose outome a�ets the real world in a permanent manner.

Examples of suh tasks are monetary transations, seat bookings et. Hene

the ACID properties have to be ensured. In ontrast, most users of �le systems

would not be willing to pay the prie (monetary, disk spae, time) of supporting

ACID properties.

17.4 What lass or lasses of storage an be used to ensure durability? Why?

Answer:

Only stable storage ensures true durability. Even nonvolatile storage is susep-

tible to data loss, albeit less so than volatile storage. Stable storage is only an

abstration. It is approximated by redundant use of nonvolatile storage in whih

data are not only repliated but distributed phyially to redue to near zero the

hane of a single event asuing data loss.

17.5 Sine every on�it-serializable shedule is view serializable, why do we em-

phasize on�it serializability rather than view serializability?

Answer:

Most of the onurreny ontrol protools (protools for ensuring that only

serializable shedules are generated) used in pratie are based on on�it

serializability�they atually permit only a subset of on�it serializable shed-

ules. The general form of view serializability is very expensive to test, and only

a very restrited form of it is used for onurreny ontrol.

17.6 Consider the preedene graph of Figure 17.16. Is the orresponding shedule

on�it serializable? Explain your answer.

Answer:

T
1

T
4

T
5

T
3

T
2

Figure 17.16 Preedene graph for Pratie Exerise 17.6.

Pratie Exerises 133

There is a serializable shedule orresponding to the preedene graph sine

the graph is ayli. A possible shedule is obtained by doing a topologial

sort, that is, T

1

, T

2

, T

3

, T

4

, T

5

.

17.7 What is a asadeless shedule? Why is asadelessness of shedules desir-

able? Are there any irumstanes under whih it would be desirable to allow

nonasadeless shedules? Explain your answer.

Answer:

A asadeless shedule is one where, for eah pair of transations T

i

and T

j

suh that T

j

reads data items previously written by T

i

, the ommit operation of

T

i

appears before the read operation of T

j

. Casadeless shedules are desirable

beause the failure of a transation does not lead to the aborting of any other

transation. Of ourse this omes at the ost of less onurreny. If failures

our rarely, so that we an pay the prie of asading aborts for the inreased

onurreny, nonasadeless shedules might be desirable.

17.8 The lost update anomaly is said to our if a transation T

j

reads a data item,

then another transation T

k

writes the data item (possibly based on a previous

read), after whih T

j

writes the data item. The update performed by T

k

has

been lost, sine the update done by T

j

ignored the value written by T

k

.

a. Give an example of a shedule showing the lost update anomaly.

b. Give an example shedule to show that the lost update anomaly is possi-

ble with the read ommitted isolation level.

. Explain why the lost update anomaly is not possible with the repeatable

read isolation level.

Answer:

a. A shedule showing the lost update anomaly:

T1 T2

read(A)

write(A)

read(A)

write(A)

In the above shedule, the value written by the transation T

2

is lost

beause of the write of the transation T

1

.

b. Lost update anomaly in read-ommitted isolation level:

134 Chapter 17 Transations

T1 T2

lock-S(A)

read(A)

unlock(A)

lock-X(A)

write(A)

unlock(A)

commit

lock-X(A)

read(A)

write(A)

unlock(A)

commit

The loking in the above shedule ensures the read-ommitted isolation

level. The value written by transation T

2

is lost due to T

1

's write.

. Lost update anomaly is not possible in repeatable read isolation level.

In repeatable read isolation level, a transation T

1

reading a data item

X holds a shared lok on X till the end. This makes it impossible for a

newer transation T

2

to write the value of X (whih requires X-lok) until

T

1

�nishes. This fores the serialization order T

1

, T

2

, and thus the value

written by T

2

is not lost.

17.9 Consider a database for a bank where the database system uses snapshot iso-

lation. Desribe a partiular senario in whih a nonserializable exeution o-

urs that would present a problem for the bank.

Answer:

Suppose that the bank enfores the integrity onstraint that the sum of the

balanes in the heking and the savings aount of a ustomer must not be

negative. Suppose the heking and savings balanes for a ustomer are $100

and $200 respetively.

Suppose that transation T

1

withdraws $200 from the heking aount

after verifying the integrity onstraint by reading both the balanes. Suppose

that onurrent transation T

2

withdraws $200 from the heking aount af-

ter verifying the integrity onstraint by reading both the balanes.

Sine eah of the transations heks the integrity onstraints on its own

snapshot, if they run onurrently, eah will believe that the sum of the bal-

anes after the withdrawal is $100, and therefore its withdrawal does not vio-

late the integrity onstraint. Sine the two transations update di�erent data

items, they do not have any update on�it, and under snapshot isolation both

Pratie Exerises 135

of them an ommit. This is a nonserializable exeution whih results into a

serious problem.

17.10 Consider a database for an airline where the database system uses snapshot

isolation. Desribe a partiular senario in whih a nonserializable exeution

ours, but the airline may be willing to aept it in order to gain better overall

performane.

Answer:

Consider a web-based airline reservation system. There ould be many on-

urrent requests to see the list of available �ights and available seats in eah

�ight and to book tikets. Suppose there are two users A and B onurrently

aessing this web appliation, and only one seat is left on a �ight.

Suppose that both user A and user B exeute transations to book a seat on

the �ight and suppose that eah transation heks the total number of seats

booked on the �ight, and inserts a new booking reord if there are enough seats

left. Let T

3

and T

4

be their respetive booking transations, whih run onur-

rently. Now T

3

and T

4

will see from their snapshots that one tiket is available

and will insert new booking reords. Sine the two transations do not update

any ommon data item (tuple), snapshot isolation allows both transations to

ommit. This results in an extra booking, beyond the number of seats available

on the �ight.

However, this situation is usually not very serious sine anellations of-

ten resolve the on�it; even if the on�it is present at the time the �ight

is to leave, the airline an arrange a di�erent �ight for one of the passengers

on the �ight, giving inentives to aept the hange. Using snapshot isolation

improves the overall performane in this ase sine the booking transations

read the data from their snapshots only and do not blok other onurrent

transations.

17.11 The de�nition of a shedule assumes that operations an be totally ordered

by time. Consider a database system that runs on a system with multiple pro-

essors, where it is not always possible to establish an exat ordering between

operations that exeuted on di�erent proessors. However, operations on a

data item an be totally ordered.

Does this situation ause any problem for the de�nition of on�it serializ-

ability? Explain your answer.

Answer:

The given situation will not ause any problem for the de�nition of on�it

serializability sine the ordering of operations on eah data item is neessary

for on�it serializability, whereas the ordering of operations on di�erent data

items is not important.

136 Chapter 17 Transations

T1 T2

read(A)

write(B)

read(B)

For the above shedule to be on�it serializable, the only ordering require-

ment is read(B) -> write(B). read(A) and read(B) an be in any order.

Therefore, as long as the operations on a data item an be totally ordered,

the de�nition of on�it serializability should hold on the givenmultiproessor

system.

	Query Optimization
	Exercises

