
CHAP T E R

17

Transa
tions

Pra
ti
e Exer
ises

17.1 Suppose that there is a database system that never fails. Is a re
overy manager

required for this system?

Answer:

Even in this
ase the re
overymanager is needed to perform rollba
k of aborted

transa
tions for
ases where the transa
tion itself fails.

17.2 Consider a �le system su
h as the one on your favorite operating system.

a. What are the steps involved in the
reation and deletion of �les and in

writing data to a �le?

b. Explain how the issues of atomi
ity and durability are relevant to the

reation and deletion of �les and to writing data to �les.

Answer:

There are several steps in the
reation of a �le. A storage area is assigned to the

�le in the �le system. (In UNIX, a unique i-number is given to the �le and an

i-node entry is inserted into the i-list.) Deletion of �le involves exa
tly opposite

steps.

For the �le system user, durability is important for obvious reasons, but

atomi
ity is not relevant generally as the �le system doesn't support transa
-

tions. To the �le system implementor, though, many of the internal �le sys-

tem a
tions need to have transa
tion semanti
s. All steps involved in
re-

ation/deletion of the �le must be atomi
, otherwise there will be unreferen
e-

able �les or unusable areas in the �le system.

17.3 Database-system implementers have paid mu
h more attention to the ACID

properties than have �le-system implementers. Why might this be the
ase?

Answer:

131

132 Chapter 17 Transa
tions

Database systems usually perform
ru
ial tasks whose e�e
ts need to be atomi

and durable, and whose out
ome a�e
ts the real world in a permanent manner.

Examples of su
h tasks are monetary transa
tions, seat bookings et
. Hen
e

the ACID properties have to be ensured. In
ontrast, most users of �le systems

would not be willing to pay the pri
e (monetary, disk spa
e, time) of supporting

ACID properties.

17.4 What
lass or
lasses of storage
an be used to ensure durability? Why?

Answer:

Only stable storage ensures true durability. Even nonvolatile storage is sus
ep-

tible to data loss, albeit less so than volatile storage. Stable storage is only an

abstra
tion. It is approximated by redundant use of nonvolatile storage in whi
h

data are not only repli
ated but distributed phyi
ally to redu
e to near zero the

han
e of a single event
asuing data loss.

17.5 Sin
e every
on�i
t-serializable s
hedule is view serializable, why do we em-

phasize
on�i
t serializability rather than view serializability?

Answer:

Most of the
on
urren
y
ontrol proto
ols (proto
ols for ensuring that only

serializable s
hedules are generated) used in pra
ti
e are based on
on�i
t

serializability�they a
tually permit only a subset of
on�i
t serializable s
hed-

ules. The general form of view serializability is very expensive to test, and only

a very restri
ted form of it is used for
on
urren
y
ontrol.

17.6 Consider the pre
eden
e graph of Figure 17.16. Is the
orresponding s
hedule

on�i
t serializable? Explain your answer.

Answer:

T
1

T
4

T
5

T
3

T
2

Figure 17.16 Pre
eden
e graph for Pra
ti
e Exer
ise 17.6.

Pra
ti
e Exer
ises 133

There is a serializable s
hedule
orresponding to the pre
eden
e graph sin
e

the graph is a
y
li
. A possible s
hedule is obtained by doing a topologi
al

sort, that is, T

1

, T

2

, T

3

, T

4

, T

5

.

17.7 What is a
as
adeless s
hedule? Why is
as
adelessness of s
hedules desir-

able? Are there any
ir
umstan
es under whi
h it would be desirable to allow

non
as
adeless s
hedules? Explain your answer.

Answer:

A
as
adeless s
hedule is one where, for ea
h pair of transa
tions T

i

and T

j

su
h that T

j

reads data items previously written by T

i

, the
ommit operation of

T

i

appears before the read operation of T

j

. Cas
adeless s
hedules are desirable

be
ause the failure of a transa
tion does not lead to the aborting of any other

transa
tion. Of
ourse this
omes at the
ost of less
on
urren
y. If failures

o

ur rarely, so that we
an pay the pri
e of
as
ading aborts for the in
reased

on
urren
y, non
as
adeless s
hedules might be desirable.

17.8 The lost update anomaly is said to o

ur if a transa
tion T

j

reads a data item,

then another transa
tion T

k

writes the data item (possibly based on a previous

read), after whi
h T

j

writes the data item. The update performed by T

k

has

been lost, sin
e the update done by T

j

ignored the value written by T

k

.

a. Give an example of a s
hedule showing the lost update anomaly.

b. Give an example s
hedule to show that the lost update anomaly is possi-

ble with the read
ommitted isolation level.

. Explain why the lost update anomaly is not possible with the repeatable

read isolation level.

Answer:

a. A s
hedule showing the lost update anomaly:

T1 T2

read(A)

write(A)

read(A)

write(A)

In the above s
hedule, the value written by the transa
tion T

2

is lost

be
ause of the write of the transa
tion T

1

.

b. Lost update anomaly in read-
ommitted isolation level:

134 Chapter 17 Transa
tions

T1 T2

lock-S(A)

read(A)

unlock(A)

lock-X(A)

write(A)

unlock(A)

commit

lock-X(A)

read(A)

write(A)

unlock(A)

commit

The lo
king in the above s
hedule ensures the read-
ommitted isolation

level. The value written by transa
tion T

2

is lost due to T

1

's write.

. Lost update anomaly is not possible in repeatable read isolation level.

In repeatable read isolation level, a transa
tion T

1

reading a data item

X holds a shared lo
k on X till the end. This makes it impossible for a

newer transa
tion T

2

to write the value of X (whi
h requires X-lo
k) until

T

1

�nishes. This for
es the serialization order T

1

, T

2

, and thus the value

written by T

2

is not lost.

17.9 Consider a database for a bank where the database system uses snapshot iso-

lation. Des
ribe a parti
ular s
enario in whi
h a nonserializable exe
ution o
-

urs that would present a problem for the bank.

Answer:

Suppose that the bank enfor
es the integrity
onstraint that the sum of the

balan
es in the
he
king and the savings a

ount of a
ustomer must not be

negative. Suppose the
he
king and savings balan
es for a
ustomer are $100

and $200 respe
tively.

Suppose that transa
tion T

1

withdraws $200 from the
he
king a

ount

after verifying the integrity
onstraint by reading both the balan
es. Suppose

that
on
urrent transa
tion T

2

withdraws $200 from the
he
king a

ount af-

ter verifying the integrity
onstraint by reading both the balan
es.

Sin
e ea
h of the transa
tions
he
ks the integrity
onstraints on its own

snapshot, if they run
on
urrently, ea
h will believe that the sum of the bal-

an
es after the withdrawal is $100, and therefore its withdrawal does not vio-

late the integrity
onstraint. Sin
e the two transa
tions update di�erent data

items, they do not have any update
on�i
t, and under snapshot isolation both

Pra
ti
e Exer
ises 135

of them
an
ommit. This is a nonserializable exe
ution whi
h results into a

serious problem.

17.10 Consider a database for an airline where the database system uses snapshot

isolation. Des
ribe a parti
ular s
enario in whi
h a nonserializable exe
ution

o

urs, but the airline may be willing to a

ept it in order to gain better overall

performan
e.

Answer:

Consider a web-based airline reservation system. There
ould be many
on-

urrent requests to see the list of available �ights and available seats in ea
h

�ight and to book ti
kets. Suppose there are two users A and B
on
urrently

a

essing this web appli
ation, and only one seat is left on a �ight.

Suppose that both user A and user B exe
ute transa
tions to book a seat on

the �ight and suppose that ea
h transa
tion
he
ks the total number of seats

booked on the �ight, and inserts a new booking re
ord if there are enough seats

left. Let T

3

and T

4

be their respe
tive booking transa
tions, whi
h run
on
ur-

rently. Now T

3

and T

4

will see from their snapshots that one ti
ket is available

and will insert new booking re
ords. Sin
e the two transa
tions do not update

any
ommon data item (tuple), snapshot isolation allows both transa
tions to

ommit. This results in an extra booking, beyond the number of seats available

on the �ight.

However, this situation is usually not very serious sin
e
an
ellations of-

ten resolve the
on�i
t; even if the
on�i
t is present at the time the �ight

is to leave, the airline
an arrange a di�erent �ight for one of the passengers

on the �ight, giving in
entives to a

ept the
hange. Using snapshot isolation

improves the overall performan
e in this
ase sin
e the booking transa
tions

read the data from their snapshots only and do not blo
k other
on
urrent

transa
tions.

17.11 The de�nition of a s
hedule assumes that operations
an be totally ordered

by time. Consider a database system that runs on a system with multiple pro-

essors, where it is not always possible to establish an exa
t ordering between

operations that exe
uted on di�erent pro
essors. However, operations on a

data item
an be totally ordered.

Does this situation
ause any problem for the de�nition of
on�i
t serializ-

ability? Explain your answer.

Answer:

The given situation will not
ause any problem for the de�nition of
on�i
t

serializability sin
e the ordering of operations on ea
h data item is ne
essary

for
on�i
t serializability, whereas the ordering of operations on di�erent data

items is not important.

136 Chapter 17 Transa
tions

T1 T2

read(A)

write(B)

read(B)

For the above s
hedule to be
on�i
t serializable, the only ordering require-

ment is read(B) -> write(B). read(A) and read(B)
an be in any order.

Therefore, as long as the operations on a data item
an be totally ordered,

the de�nition of
on�i
t serializability should hold on the givenmultipro
essor

system.

	Query Optimization
	Exercises

