CHAPTER 1 7

Transactions

Practice Exercises

171

17.2

17.3

Suppose that there is a database system that never fails. Is a recovery manager
required for this system?

Answer:
Even in this case the recovery manager is needed to perform rollback of aborted
transactions for cases where the transaction itself fails.

Consider a file system such as the one on your favorite operating system.

a. What are the steps involved in the creation and deletion of files and in
writing data to a file?

b. Explain how the issues of atomicity and durability are relevant to the
creation and deletion of files and to writing data to files.

Answer:

There are several steps in the creation of a file. A storage area is assigned to the
file in the file system. (In UNIX, a unique i-number is given to the file and an
i-node entry is inserted into the i-list.) Deletion of file involves exactly opposite
steps.

For the file system user, durability is important for obvious reasons, but
atomicity is not relevant generally as the file system doesn’t support transac-
tions. To the file system implementor, though, many of the internal file sys-
tem actions need to have transaction semantics. All steps involved in cre-
ation/deletion of the file must be atomic, otherwise there will be unreference-
able files or unusable areas in the file system.

Database-system implementers have paid much more attention to the ACID
properties than have file-system implementers. Why might this be the case?

Answer:

131

132

Chapter 17

17.4

17.5

17.6

Transactions

Database systems usually perform crucial tasks whose effects need to be atomic
and durable, and whose outcome affects the real world in a permanent manner.
Examples of such tasks are monetary transactions, seat bookings etc. Hence
the ACID properties have to be ensured. In contrast, most users of file systems
would not be willing to pay the price (monetary, disk space, time) of supporting
ACID properties.

What class or classes of storage can be used to ensure durability? Why?

Answer:

Only stable storage ensures true durability. Even nonvolatile storage is suscep-
tible to data loss, albeit less so than volatile storage. Stable storage is only an
abstraction. It is approximated by redundant use of nonvolatile storage in which
data are not only replicated but distributed phyically to reduce to near zero the
chance of a single event casuing data loss.

Since every conflict-serializable schedule is view serializable, why do we em-
phasize conflict serializability rather than view serializability?

Answer:

Most of the concurrency control protocols (protocols for ensuring that only
serializable schedules are generated) used in practice are based on conflict
serializability—they actually permit only a subset of conflict serializable sched-
ules. The general form of view serializability is very expensive to test, and only
a very restricted form of it is used for concurrency control.

Consider the precedence graph of Figure 17.16. Is the corresponding schedule
conflict serializable? Explain your answer.

@ e

Figure 17.16 Precedence graph for Practice Exercise 17.6.

Answer:

17.7

17.8

Practice Exercises 133

There is a serializable schedule corresponding to the precedence graph since
the graph is acyclic. A possible schedule is obtained by doing a topological
sort, thatis, T, T,, T3, Ty, T.

What is a cascadeless schedule? Why is cascadelessness of schedules desir-
able? Are there any circumstances under which it would be desirable to allow
noncascadeless schedules? Explain your answer.

Answer:

A cascadeless schedule is one where, for each pair of transactions 7; and 7}
such that T} reads data items previously written by 7}, the commit operation of
T; appears before the read operation of T,. Cascadeless schedules are desirable
because the failure of a transaction does not lead to the aborting of any other
transaction. Of course this comes at the cost of less concurrency. If failures
occur rarely, so that we can pay the price of cascading aborts for the increased
concurrency, noncascadeless schedules might be desirable.

The lost update anomaly is said to occur if a transaction 7; reads a data item,
then another transaction 7}, writes the data item (possibly based on a previous
read), after which 7; writes the data item. The update performed by 7} has
been lost, since the update done by 7; ignored the value written by 7.

a. Give an example of a schedule showing the lost update anomaly.

b. Give an example schedule to show that the lost update anomaly is possi-
ble with the read committed isolation level.

c. Explain why the lost update anomaly is not possible with the repeatable
read isolation level.

Answer:

a. A schedule showing the lost update anomaly:

Ti T,
read(4)
read(A4)
write(A4)
write(A4)

In the above schedule, the value written by the transaction 7, is lost
because of the write of the transaction 7.

b. Lost update anomaly in read-committed isolation level:

134

Chapter 17

17.9

Transactions

T T

lock-S(A4)

read(A4)

unlock(A4)
lock-X(A4)
read(A4)
write(4)
unlock(A4)
commit

lock-X(A)

write(A4)

unlock(A4)

commit

The locking in the above schedule ensures the read-committed isolation
level. The value written by transaction 7, is lost due to 7’s write.

c. Lost update anomaly is not possible in repeatable read isolation level.
In repeatable read isolation level, a transaction 7' reading a data item
X holds a shared lock on X till the end. This makes it impossible for a
newer transaction 7, to write the value of X (which requires X-lock) until
T finishes. This forces the serialization order 7, 75, and thus the value
written by 7), is not lost.

Consider a database for a bank where the database system uses snapshot iso-
lation. Describe a particular scenario in which a nonserializable execution oc-
curs that would present a problem for the bank.

Answer:

Suppose that the bank enforces the integrity constraint that the sum of the
balances in the checking and the savings account of a customer must not be
negative. Suppose the checking and savings balances for a customer are $100
and $200 respectively.

Suppose that transaction 7; withdraws $200 from the checking account
after verifying the integrity constraint by reading both the balances. Suppose
that concurrent transaction 7', withdraws $200 from the checking account af-
ter verifying the integrity constraint by reading both the balances.

Since each of the transactions checks the integrity constraints on its own
snapshot, if they run concurrently, each will believe that the sum of the bal-
ances after the withdrawal is $100, and therefore its withdrawal does not vio-
late the integrity constraint. Since the two transactions update different data
items, they do not have any update conflict, and under snapshot isolation both

17.10

17.11

Practice Exercises 135

of them can commit. This is a nonserializable execution which results into a
serious problem.

Consider a database for an airline where the database system uses snapshot
isolation. Describe a particular scenario in which a nonserializable execution
occurs, but the airline may be willing to accept it in order to gain better overall
performance.

Answer:

Consider a web-based airline reservation system. There could be many con-
current requests to see the list of available flights and available seats in each
flight and to book tickets. Suppose there are two users 4 and B concurrently
accessing this web application, and only one seat is left on a flight.

Suppose that both user 4 and user B execute transactions to book a seat on
the flight and suppose that each transaction checks the total number of seats
booked on the flight, and inserts a new booking record if there are enough seats
left. Let 75 and T, be their respective booking transactions, which run concur-
rently. Now 73 and T, will see from their snapshots that one ticket is available
and will insert new booking records. Since the two transactions do not update
any common data item (tuple), snapshot isolation allows both transactions to
commit. This results in an extra booking, beyond the number of seats available
on the flight.

However, this situation is usually not very serious since cancellations of-
ten resolve the conflict; even if the conflict is present at the time the flight
is to leave, the airline can arrange a different flight for one of the passengers
on the flight, giving incentives to accept the change. Using snapshot isolation
improves the overall performance in this case since the booking transactions
read the data from their snapshots only and do not block other concurrent
transactions.

The definition of a schedule assumes that operations can be totally ordered
by time. Consider a database system that runs on a system with multiple pro-
cessors, where it is not always possible to establish an exact ordering between
operations that executed on different processors. However, operations on a
data item can be totally ordered.

Does this situation cause any problem for the definition of conflict serializ-
ability? Explain your answer.

Answer:

The given situation will not cause any problem for the definition of conflict
serializability since the ordering of operations on each data item is necessary
for conflict serializability, whereas the ordering of operations on different data
items is not important.

136

Chapter 17

Transactions

n | B
read(A4)
read(B)
write(B)

For the above schedule to be conflict serializable, the only ordering require-
ment is read(B) -> write(B). read(4) and read(B) can be in any order.

Therefore, as long as the operations on a data item can be totally ordered,
the definition of conflict serializability should hold on the given multiprocessor
system.

	Query Optimization
	Exercises

