
CHAP T E R

18

Con
urren
y Control

Pra
ti
e Exer
ises

18.1 Show that the two-phase lo
king proto
ol ensures 
on�i
t serializability and

that transa
tions 
an be serialized a

ording to their lo
k points.

Answer:

Suppose two-phase lo
king does not ensure serializability. Then there exists a

set of transa
tions T

0

, T

1

:::T

n*1

whi
h obey 2PL andwhi
h produ
e a nonseri-

alizable s
hedule. A nonserializable s
hedule implies a 
y
le in the pre
eden
e

graph, and we shall show that 2PL 
annot produ
e su
h 
y
les. Without loss

of generality, assume the following 
y
le exists in the pre
eden
e graph: T

0

�

T

1

� T

2

� ... � T

n*1

� T

0

. Let �

i

be the time at whi
h T

i

obtains its last

lo
k (i.e. T

i

's lo
k point). Then for all transa
tions su
h that T

i

� T

j

, �

i

< �

j

.

Then for the 
y
le we have

�

0

< �

1

< �

2

< ::: < �

n*1

< �

0

Sin
e �

0

< �

0

is a 
ontradi
tion, no su
h 
y
le 
an exist. Hen
e 2PL 
annot

produ
e nonserializable s
hedules. Be
ause of the property that for all trans-

a
tions su
h that T

i

� T

j

, �

i

< �

j

, the lo
k point ordering of the transa
tions

is also a topologi
al sort ordering of the pre
eden
e graph. Thus transa
tions


an be serialized a

ording to their lo
k points.

18.2 Consider the following two transa
tions:

137



138 Chapter 18 Con
urren
y Control

T

34

: read(A);

read(B);

if A = 0 then B := B + 1;

write(B).

T

35

: read(B);

read(A);

if B = 0 then A := A + 1;

write(A).

Add lo
k and unlo
k instru
tions to transa
tions T

31

and T

32

so that they ob-

serve the two-phase lo
king proto
ol. Can the exe
ution of these transa
tions

result in a deadlo
k?

Answer:

a. Lo
k and unlo
k instru
tions:

T

34

: lo
k-S(A)

read(A)

lo
k-X(B)

read(B)

if A = 0

then B := B + 1

write(B)

unlo
k(A)

unlo
k(B)

T

35

: lo
k-S(B)

read(B)

lo
k-X(A)

read(A)

if B = 0

then A := A + 1

write(A)

unlo
k(B)

unlo
k(A)

b. Exe
ution of these transa
tions 
an result in deadlo
k. For example, 
on-

sider the following partial s
hedule:



Pra
ti
e Exer
ises 139

T31 T32

lock-S (A)

lock-S (B)

read(B)

read(A)

lock-X (B)

lock-X (A)

The transa
tions are now deadlo
ked.

18.3 What bene�t does rigorous two-phase lo
king provide? How does it 
ompare

with other forms of two-phase lo
king?

Answer:

Rigorous two-phase lo
king has the advantages of stri
t 2PL. In addition it has

the property that for two 
on�i
ting transa
tions, their 
ommit order is their

serializability order. In some systems users might expe
t this behavior.

18.4 Consider a database organized in the form of a rooted tree. Suppose that we

insert a dummy vertex between ea
h pair of verti
es. Show that, if we follow

the tree proto
ol on the new tree, we get better 
on
urren
y than if we follow

the tree proto
ol on the original tree.

Answer:

Consider two nodes A and B, where A is a parent of B. Let dummy vertex D

be added between A and B. Consider a 
ase where transa
tion T

2

has a lo
k

on B, and T

1

, whi
h has a lo
k on A wishes to lo
k B, and T

3

wishes to lo
k

A. With the original tree, T

1


annot release the lo
k on A until it gets the lo
k

on B. With the modi�ed tree, T

1


an get a lo
k on D and release the lo
k on

A, whi
h allows T

3

to pro
eed while T

1

waits for T

2

. Thus, the proto
ol allows

lo
ks on verti
es to be released earlier to other transa
tions, instead of holding

them when waiting for a lo
k on a 
hild.

A generalization of the idea based on edge lo
ks is des
ribed in Bu
kley

and Silbers
hatz, �Con
urren
y Control in Graph Proto
ols by Using Edge

Lo
ks,� Pro
. ACM SIGACT-SIGMOD Symposium on the Prin
iples of Database

Systems, 1984 .

18.5 Show by example that there are s
hedules possible under the tree proto
ol that

are not possible under the two-phase lo
king proto
ol, and vi
e versa.

Answer:

Consider the tree-stru
tured database graph given below.



140 Chapter 18 Con
urren
y Control

o 

o 

o 

A

B

C

S
hedule possible under tree proto
ol but not under 2PL:

T1 T2

lock (A)

lock (B)

unlock (A)

lock (A)

lock (C)

unlock (B)

lock (B)

unlock (A)

unlock (B)

unlock (C)

S
hedule possible under 2PL but not under tree proto
ol:

T1 T2

lock (A)

lock (B)

lock (C)

unlock (B)

unlock (A)

unlock (C)

18.6 Lo
king is not done expli
itly in persistent programming languages. Rather,

obje
ts (or the 
orresponding pages) must be lo
ked when the obje
ts are a
-


essed.Most modern operating systems allow the user to set a

ess prote
tions

(no a

ess, read, write) on pages, and memory a

ess that violate the a

ess

prote
tions result in a prote
tion violation (see the Unixmprote
t 
ommand,

for example). Des
ribe how the a

ess-prote
tion me
hanism 
an be used for

page-level lo
king in a persistent programming language.

Answer:

The a

ess prote
tion me
hanism 
an be used to implement page- level lo
k-

ing. Consider reads �rst. A pro
ess is allowed to read a page only after it read-

lo
ks the page. This is implemented by usingmprote
t to initially turn o� read



Pra
ti
e Exer
ises 141

permissions to all pages, for the pro
ess. When the pro
ess tries to a

ess an

address in a page, a prote
tion violation o

urs. The handler asso
iated with

prote
tion violation then requests a read lo
k on the page, and after the lo
k

is a
quired, it uses mprote
t to allow read a

ess to the page by the pro
ess,

and �nally allows the pro
ess to 
ontinue. Write a

ess is handled similarly.

18.7 Consider a database system that in
ludes an atomi
 in
rement operation, in

addition to the read and write operations. Let V be the value of data item X.

The operation

in
rement(X) by C

sets the value of X to V + C in an atomi
 step. The value of X is not available

to the transa
tion unless the latter exe
utes a read(X).

Assume that in
rement operations lo
k the item in in
rement mode using the


ompatibility matrix in Figure 18.25.

a. Show that, if all transa
tions lo
k the data that they a

ess in the 
orre-

sponding mode, then two-phase lo
king ensures serializability.

b. Show that the in
lusion of in
rement mode lo
ks allows for in
reased


on
urren
y.

Answer:

a. Serializability 
an be shown by observing that if two transa
tions have an

I mode lo
k on the same item, the in
rement operations 
an be swapped,

just like read operations. However, any pair of 
on�i
ting operations

must be serialized in the order of the lo
k points of the 
orresponding

transa
tions, as shown in Exer
ise 15.1.

b. The in
rement lo
k mode being 
ompatible with itself allows multiple

in
rementing transa
tions to take the lo
k simultaneously, thereby im-

proving the 
on
urren
y of the proto
ol. In the absen
e of this mode, an

ex
lusive mode will have to be taken on a data item by ea
h transa
tion

that wants to in
rement the value of this data item. An ex
lusive lo
k be-

ing in
ompatible with itself adds to the lo
k waiting time and obstru
ts

the overall progress of the 
on
urrent s
hedule.

In general, in
reasing the true entries in the 
ompatibility matrix in-


reases the 
on
urren
y and improves the throughput.

The proof is in Korth, �Lo
king Primitives in a Database System,� Journal of

the ACM Volume 30, (1983).

18.8 In timestamp ordering,W-timestamp(Q) denotes the largest timestamp of any

transa
tion that exe
uted write(Q) su

essfully. Suppose that, instead, we de-

�ned it to be the timestamp of the most re
ent transa
tion to exe
utewrite(Q)



142 Chapter 18 Con
urren
y Control

su

essfully. Would this 
hange in wording make any di�eren
e? Explain your

answer.

Answer:

It would make no di�eren
e. The write proto
ol is su
h that the most re
ent

transa
tion to write an item is also the one with the largest timestamp to have

done so.

18.9 Use of multiple-granularity lo
king may require more or fewer lo
ks than an

equivalent system with a single lo
k granularity. Provide examples of both sit-

uations, and 
ompare the relative amount of 
on
urren
y allowed.

Answer:

If a transa
tion needs to a

ess a large set of items, multiple granularity lo
k-

ing requires fewer lo
ks, whereas if only one item needs to be a

essed, the

single lo
k granularity system allows this with just one lo
k. Be
ause all the

desired data items are lo
ked and unlo
ked together in the multiple granularity

s
heme, the lo
king overhead is low, but 
on
urren
y is also redu
ed.

18.10 For ea
h of the following proto
ols, des
ribe aspe
ts of pra
ti
al appli
ations

that would lead you to suggest using the proto
ol, and aspe
ts that would sug-

gest not using the proto
ol:

�

Two-phase lo
king

�

Two-phase lo
king with multiple-granularity lo
king.

�

The tree proto
ol

�

Timestamp ordering

�

Validation

�

Multiversion timestamp ordering

�

Multiversion two-phase lo
king

Answer:

�

Two-phase lo
king: Use for simple appli
ations where a single granularity

is a

eptable. If there are large read-only transa
tions, multiversion proto-


ols would do better. Also, if deadlo
ks must be avoided at all 
osts, the

tree proto
ol would be preferable.

�

Two-phase lo
king with multiple granularity lo
king: Use for an appli
a-

tion mix where some appli
ations a

ess individual re
ords and others

a

ess whole relations or substantial parts thereof. The drawba
ks of 2PL

mentioned above also apply to this one.

�

The tree proto
ol: Use if all appli
ations tend to a

ess data items in an

order 
onsistent with a parti
ular partial order. This proto
ol is free of



Pra
ti
e Exer
ises 143

deadlo
ks, but transa
tions will often have to lo
k unwanted nodes in or-

der to a

ess the desired nodes.

�

Timestamp ordering: Use if the appli
ation demands a 
on
urrent exe-


ution that is equivalent to a parti
ular serial ordering (say, the order of

arrival), rather than any serial ordering. But 
on�i
ts are handled by roll

ba
k of transa
tions rather than waiting, and s
hedules are not re
over-

able. To make them re
overable, additional overheads and in
reased re-

sponse time have to be tolerated. Not suitable if there are long read-only

transa
tions, sin
e they will starve. Deadlo
ks are absent.

�

Validation: If the probability that two 
on
urrently exe
uting transa
tions


on�i
t is low, this proto
ol 
an be used advantageously to get better 
on-


urren
y and good response times with low overheads. Not suitable under

high 
ontention, when a lot of wasted work will be done.

�

Multiversion timestamp ordering: Use if timestamp ordering is appropri-

ate but it is desirable for read requests to never wait. Shares the other

disadvantages of the timestamp ordering proto
ol.

�

Multiversion two-phase lo
king: This proto
ol allows read-only transa
-

tions to always 
ommit without ever waiting. Update transa
tions follow

2PL, thus allowing re
overable s
hedules with 
on�i
ts solved by waiting

rather than roll ba
k. But the problem of deadlo
ks 
omes ba
k, though

read-only transa
tions 
annot get involved in them. Keeping multiple ver-

sions adds spa
e and time overheads though, therefore plain 2PL may be

preferable in low-
on�i
t situations.

18.11 Explain why the following te
hnique for transa
tion exe
ution may provide

better performan
e than just using stri
t two-phase lo
king: First exe
ute the

transa
tion without a
quiring any lo
ks and without performing any writes

to the database as in the validation-based te
hniques, but unlike the validation

te
hniques do not perform either validation or writes on the database. Instead,

rerun the transa
tion using stri
t two-phase lo
king. (Hint: Consider waits for

disk I/O.)

Answer:

A transa
tion waits on (a) disk I/O and (b) lo
k a
quisition. Transa
tions gen-

erally wait on disk reads and not on disk writes as disk writes are handled

by the bu�ering me
hanism in asyn
hronous fashion and transa
tions update

only the in-memory 
opy of the disk blo
ks.

The te
hnique proposed essentially separates the waiting times into two

phases. The �rst phase�where transa
tion is exe
uted without a
quiring any

lo
ks and without performing any writes to the database�a

ounts for almost

all the waiting time on disk I/O as it reads all the data blo
ks it needs from



144 Chapter 18 Con
urren
y Control

disk if they are not already in memory. The se
ond phase�the transa
tion re-

exe
ution with stri
t two-phase lo
king�a

ounts for all the waiting time on

a
quiring lo
ks. The se
ond phase may, though rarely, involve a small waiting

time on disk I/O if a disk blo
k that the transa
tion needs is �ushed to memory

(by bu�er manager) before the se
ond phase starts.

The te
hnique may in
rease 
on
urren
y as transa
tions spend almost no

time on disk I/O with lo
ks held and hen
e lo
ks are held for a shorter time.

In the �rst phase, the transa
tion reads all the data items required�and not

already in memory�from disk. The lo
ks are a
quired in the se
ond phase

and the transa
tion does almost no disk I/O in this phase. Thus the transa
tion

avoids spending time in disk I/O with lo
ks held.

The te
hnique may even in
rease disk throughput as the disk I/O is not

stalled for want of a lo
k. Consider the following s
enario with stri
t two-phase

lo
king proto
ol: A transa
tion is waiting for a lo
k, the disk is idle, and there

are some items to be read from disk. In su
h a situation, disk bandwidth is

wasted. But in the proposed te
hnique, the transa
tion will read all the required

items from the disk without a
quiring any lo
k, and the disk bandwidth may

be properly utilized.

Note that the proposed te
hnique ismost useful if the 
omputation involved

in the transa
tions is less and most of the time is spent in disk I/O and waiting

on lo
ks, as is usually the 
ase in disk-resident databases. If the transa
tion is


omputation intensive, there may be wasted work. An optimization is to save

the updates of transa
tions in a temporary bu�er, and instead of reexe
uting

the transa
tion, to 
ompare the data values of items when they are lo
ked with

the values used earlier. If the two values are the same for all items, then the

bu�ered updates of the transa
tion are exe
uted, instead of reexe
uting the

entire transa
tion.

18.12 Consider the timestamp-ordering proto
ol, and two transa
tions, one that

writes two data items p and q, and another that reads the same two data items.

Give a s
hedule whereby the timestamp test for a write operation fails and


auses the �rst transa
tion to be restarted, in turn 
ausing a 
as
ading abort

of the other transa
tion. Show how this 
ould result in starvation of both trans-

a
tions. (Su
h a situation, where two or more pro
esses 
arry out a
tions, but

are unable to 
omplete their task be
ause of intera
tion with the other pro-


esses, is 
alled a livelo
k.)

Answer:

Consider two transa
tions T

1

and T

2

shown below.



Pra
ti
e Exer
ises 145

T1 T2

write (p)

read (p)

read (q)

write (q)

Let TS(T

1

) < TS(T

2

), and let the timestamp test at ea
h operation ex
ept

write(q) be su

essful. When transa
tion T

1

does the timestamp test for

write(q), it �nds that TS(T

1

) < R-timestamp(q), sin
e TS(T

1

) < TS(T

2

) and

R-timestamp(q) = TS(T

2

). Hen
e thewrite operation fails, and transa
tion T

1

rolls ba
k. The 
as
ading results in transa
tion T

2

also being rolled ba
k as it

uses the value for item p that is written by transa
tion T

1

.

If this s
enario is exa
tly repeated every time the transa
tions are restarted,

this 
ould result in starvation of both transa
tions.

18.13 Devise a timestamp-based proto
ol that avoids the phantom phenomenon.

Answer:

In the text, we 
onsidered two approa
hes to dealing with the phantom phe-

nomenon by means of lo
king. The 
oarser granularity approa
h obviously

works for timestamps as well. The B

+

-tree index- based approa
h 
an be

adapted to timestamping by treating index bu
kets as data items with times-

tamps asso
iated with them, and requiring that all read a

esses use an index.

We now show that this simple method works. Suppose a transa
tion T

i

wants

to a

ess all tuples with a parti
ular range of sear
h key values, using a B

+

-

tree index on that sear
h key. T

i

will need to read all the bu
kets in that index

whi
h have key values in that range. It 
an be seen that any delete or insert of

a tuple with a key value in the same range will need to write one of the index

bu
kets read by T

i

. Thus the logi
al 
on�i
t is 
onverted to a 
on�i
t on an

index bu
ket, and the phantom phenomenon is avoided.

18.14 Suppose that we use the tree proto
ol of Se
tion 18.1.5 to manage 
on
urrent

a

ess to a B

+

-tree. Sin
e a split may o

ur on an insert that a�e
ts the root, it

appears that an insert operation 
annot release any lo
ks until it has 
ompleted

the entire operation. Under what 
ir
umstan
es is it possible to release a lo
k

earlier?

Answer:

Note: The tree proto
ol of Se
tion Se
tion 18.1.5 whi
h is referred to in this

question is di�erent from the multigranularity proto
ol of Se
tion 18.3 and

the B

+

-tree 
on
urren
y proto
ol of Se
tion 18.10.2.

One strategy for early lo
k releasing is given here. Going down the tree from

the root, if the 
urrently visited node's 
hild is not full, release lo
ks held on

all nodes ex
ept the 
urrent node, then request an X-lo
k on the 
hild node.



146 Chapter 18 Con
urren
y Control

After getting it, release the lo
k on the 
urrent node, and then des
end to the


hild. On the other hand, if the 
hild is full, retain all lo
ks held, request an

X-lo
k on the 
hild, and des
end to it after getting the lo
k. On rea
hing the

leaf node, start the insertion pro
edure. This strategy results in holding lo
ks

only on the full index tree nodes from the leaf upward, until and in
luding the

�rst non-full node.

An optimization to the above strategy is possible. Even if the 
urrent node's


hild is full, we 
an still release the lo
ks on all nodes but the 
urrent one. But

after getting the X-lo
k on the 
hild node, we split it right away. Releasing the

lo
k on the 
urrent node and retaining just the lo
k on the appropriate split


hild, we des
end into it, making it the 
urrent node. With this optimization,

at any time at most two lo
ks are held, of a parent and a 
hild node.

18.15 The snapshot isolation proto
ol uses a validation step whi
h, before perform-

ing a write of a data item by transa
tion T , 
he
ks if a transa
tion 
on
urrent

with T has already written the data item.

a. A straightforward implementation uses a start timestamp and a 
ommit

timestamp for ea
h transa
tion, in addition to an update set, that, is the

set of data items updated by the transa
tion. Explain how to perform

validation for the �rst-
ommitter-wins s
heme by using the transa
tion

timestamps along with the update sets. You may assume that validation

and other 
ommit pro
essing steps are exe
uted serially, that is, for one

transa
tion at a time,

b. Explain how the validation step 
an be implemented as part of 
ommit

pro
essing for the �rst-
ommitter-wins s
heme, using a modi�
ation of

the above s
heme, where instead of using update sets, ea
h data item

has a write timestamp asso
iated with it. Again, you may assume that

validation and other 
ommit pro
essing steps are exe
uted serially.


. The �rst-updater-wins s
heme 
an be implemented using timestamps as

des
ribed above, ex
ept that validation is done immediately after a
quir-

ing an ex
lusive lo
k, instead of being done at 
ommit time.

i. Explain how to assign write timestamps to data items to implement

the �rst-updater-wins s
heme.

ii. Show that as a result of lo
king, if the validation is repeated at 
om-

mit time the result would not 
hange.

iii. Explain why there is no need to perform validation and other 
ommit

pro
essing steps serially in this 
ase.

Answer:

a. Validation test for �rst-
ommitter-wins s
heme: Let StartTS(T

i

),

CommitTS(T

i

) and be the timestamps asso
iated with a transa
tion T

i



Pra
ti
e Exer
ises 147

and the update set for T

i

be update set(T

i

). Then for all transa
tions T

k

with CommitTS(T

k

) < CommitTS(T

i

), one of the following two 
ondi-

tions must hold:

�

If CommitTS(T

k

) < StartTS(T

k

), T

k


ompletes its exe
ution before

T

i

started, the serializability is maintained.

�

StartTS(T

i

) < CommitTS(T

k

) < CommitTS(T

i

), and update set(T

i

)

and update set(T

k

) do not interse
t

b. Validation test for �rst-
ommitter-wins s
heme with W-timestamps for

data items: If a transa
tion T

i

writes a data item Q, then the W-

timestamp(Q) is set to CommitTS(T

i

). For the validation test of a trans-

a
tion T

i

to pass, the following 
ondition must hold:

�

For ea
h data item Q written by T

i

, W-timestamp(Q) < StartTS(T

i

).


. First-updater-wins s
heme:

i. For a data item Q written by T

i

, the W-timestamp is assigned the

timestamp when the write o

urred in T

i

ii. Sin
e the validation is done after a
quiring the ex
lusive lo
ks and

the ex
lusive lo
ks are held till the end of the transa
tion, the data

item 
annot be modi�ed in between the lo
k a
quisition and 
ommit

time. So, the result of the validation test for a transa
tion would be

the same at the 
ommit time as that at the update time.

iii. Be
ause of the ex
lusive lo
king, at most one transa
tion 
an a
quire

the lo
k on a data item at a time and do the validation testing. Thus,

two or more transa
tions 
annot do validation testing for the same

data item simultaneously.

18.16 Consider fun
tions insert lat
hfree() and delete lat
hfree(), shown in Figure

18.23.

a. Explain how the ABA problem 
an o

ur if a deleted node is reinserted.

b. Suppose that adja
ent to head we store a 
ounter 
nt. Also suppose that

DCAS((head,
nt), (oldhead, old
nt), (newhead, new
nt)) atomi
ally per-

forms a 
ompare-and-swap on the 128 bit value (head,
nt). Modify the in-

sert lat
hfree() and delete lat
hfree() to use the DCAS operation to avoid

the ABA problem.


. Sin
e most pro
essors use only 48 bits of a 64 bit address to a
tually

address memory, explain how the other 16 bits 
an be used to implement

a 
ounter, in 
ase the DCAS operation is not supported.

Answer:

a. Let the head of the list be pointer n1, and the next three elements be n2

and n3. Suppose pro
ess P1 whi
h is performing a delete, reads pointer



148 Chapter 18 Con
urren
y Control

n1 as head and n2 as newhead, but before it exe
utes CAS(head, n1, n2),

pro
ess P2 deletes n1, then deletes n2 and then inserts n1 ba
k at the

head.

The CAS would repla
e n1 by a pointer to n2, sin
e the head is still

n1. However, node n2 has meanwhile been deleted and is garbage. Thus,

the list is now in
onsistent.

b. The following 
ode

atomi
 read(head, 
nt) {

repeat

oldhead = head

old
nt = 
nt

result = DCAS((head, 
nt), (oldhead, old
nt), (oldhead, old
nt))

until (result == su

ess)

return (oldhead, old
nt)

}

insert lat
hfree(head, value) {

node = new node

node*>value = value

repeat

(oldhead, old
nt) = atomi
 read(head, 
nt)

node*>next = oldhead

new
nt = old
nt+1

result = DCAS(head, (oldhead, old
nt), (node, new
nt))

until (result == su

ess)

}

delete lat
hfree(head) {

/* This fun
tion is not quite safe; see explanation in text. */

repeat

(oldhead, old
nt) = atomi
 read(head, 
nt)

newhead = oldhead*>next

new
nt = old
nt+1

result = DCAS(head, (oldhead, old
nt), (newhead, new
nt))

until (result == su

ess)

}

The atomi
 read fun
tion ensures that the 128 bit address, 
ounter pair is

read atomi
ally, by using the DCAS instru
tion to ensure that the values

are still same (the DCAS instru
tion stores the same values ba
k if it

su

eeds, so there is no 
hange in the value). If the DCAS fails, we may



Pra
ti
e Exer
ises 149

have read an old pointer and a new value, or vi
e versa, requiring the

values to be read again.

The ABA problem would be avoided by the modi�ed 
ode for in-

sert lat
hfree() and delete lat
hfree(), sin
e although the reinsert of the

n1 by P2 would result in the head having the same pointer n1 as earlier,


ounter 
nt would be di�erent from old
nt, resulting in the CAS opera-

tion of P1 failing.


. Most pro
essors use only the last 48 bits of a 64 bit address to a

ess

memory (whi
h 
an support 256 Terabytes of memory). The �rst 16 bits

of a 64 bit value 
an then be used as a 
ounter, and the last 48 bits as

the address, with the 
ounter and the address extra
ted using bit-and

operations before being used, and using bit-and and bit-or operations to

re
onstru
t the 64 bit value from a pointer and a 
ounter. If a hardware

implementation does not support DCAS, this 
ould be used as an alter-

native to a DCAS, although it still runs a the small risk of the 
ounter

wrapping around if there are exa
tly 64K other operations on the list

between the read of the head and the CAS operation.




	Transactions
	Exercises


