
CHAP T E R

18

Conurreny Control

Pratie Exerises

18.1 Show that the two-phase loking protool ensures on�it serializability and

that transations an be serialized aording to their lok points.

Answer:

Suppose two-phase loking does not ensure serializability. Then there exists a

set of transations T

0

, T

1

:::T

n*1

whih obey 2PL andwhih produe a nonseri-

alizable shedule. A nonserializable shedule implies a yle in the preedene

graph, and we shall show that 2PL annot produe suh yles. Without loss

of generality, assume the following yle exists in the preedene graph: T

0

�

T

1

� T

2

� ... � T

n*1

� T

0

. Let �

i

be the time at whih T

i

obtains its last

lok (i.e. T

i

's lok point). Then for all transations suh that T

i

� T

j

, �

i

< �

j

.

Then for the yle we have

�

0

< �

1

< �

2

< ::: < �

n*1

< �

0

Sine �

0

< �

0

is a ontradition, no suh yle an exist. Hene 2PL annot

produe nonserializable shedules. Beause of the property that for all trans-

ations suh that T

i

� T

j

, �

i

< �

j

, the lok point ordering of the transations

is also a topologial sort ordering of the preedene graph. Thus transations

an be serialized aording to their lok points.

18.2 Consider the following two transations:

137



138 Chapter 18 Conurreny Control

T

34

: read(A);

read(B);

if A = 0 then B := B + 1;

write(B).

T

35

: read(B);

read(A);

if B = 0 then A := A + 1;

write(A).

Add lok and unlok instrutions to transations T

31

and T

32

so that they ob-

serve the two-phase loking protool. Can the exeution of these transations

result in a deadlok?

Answer:

a. Lok and unlok instrutions:

T

34

: lok-S(A)

read(A)

lok-X(B)

read(B)

if A = 0

then B := B + 1

write(B)

unlok(A)

unlok(B)

T

35

: lok-S(B)

read(B)

lok-X(A)

read(A)

if B = 0

then A := A + 1

write(A)

unlok(B)

unlok(A)

b. Exeution of these transations an result in deadlok. For example, on-

sider the following partial shedule:



Pratie Exerises 139

T31 T32

lock-S (A)

lock-S (B)

read(B)

read(A)

lock-X (B)

lock-X (A)

The transations are now deadloked.

18.3 What bene�t does rigorous two-phase loking provide? How does it ompare

with other forms of two-phase loking?

Answer:

Rigorous two-phase loking has the advantages of strit 2PL. In addition it has

the property that for two on�iting transations, their ommit order is their

serializability order. In some systems users might expet this behavior.

18.4 Consider a database organized in the form of a rooted tree. Suppose that we

insert a dummy vertex between eah pair of verties. Show that, if we follow

the tree protool on the new tree, we get better onurreny than if we follow

the tree protool on the original tree.

Answer:

Consider two nodes A and B, where A is a parent of B. Let dummy vertex D

be added between A and B. Consider a ase where transation T

2

has a lok

on B, and T

1

, whih has a lok on A wishes to lok B, and T

3

wishes to lok

A. With the original tree, T

1

annot release the lok on A until it gets the lok

on B. With the modi�ed tree, T

1

an get a lok on D and release the lok on

A, whih allows T

3

to proeed while T

1

waits for T

2

. Thus, the protool allows

loks on verties to be released earlier to other transations, instead of holding

them when waiting for a lok on a hild.

A generalization of the idea based on edge loks is desribed in Bukley

and Silbershatz, �Conurreny Control in Graph Protools by Using Edge

Loks,� Pro. ACM SIGACT-SIGMOD Symposium on the Priniples of Database

Systems, 1984 .

18.5 Show by example that there are shedules possible under the tree protool that

are not possible under the two-phase loking protool, and vie versa.

Answer:

Consider the tree-strutured database graph given below.



140 Chapter 18 Conurreny Control

o 

o 

o 

A

B

C

Shedule possible under tree protool but not under 2PL:

T1 T2

lock (A)

lock (B)

unlock (A)

lock (A)

lock (C)

unlock (B)

lock (B)

unlock (A)

unlock (B)

unlock (C)

Shedule possible under 2PL but not under tree protool:

T1 T2

lock (A)

lock (B)

lock (C)

unlock (B)

unlock (A)

unlock (C)

18.6 Loking is not done expliitly in persistent programming languages. Rather,

objets (or the orresponding pages) must be loked when the objets are a-

essed.Most modern operating systems allow the user to set aess protetions

(no aess, read, write) on pages, and memory aess that violate the aess

protetions result in a protetion violation (see the Unixmprotet ommand,

for example). Desribe how the aess-protetion mehanism an be used for

page-level loking in a persistent programming language.

Answer:

The aess protetion mehanism an be used to implement page- level lok-

ing. Consider reads �rst. A proess is allowed to read a page only after it read-

loks the page. This is implemented by usingmprotet to initially turn o� read



Pratie Exerises 141

permissions to all pages, for the proess. When the proess tries to aess an

address in a page, a protetion violation ours. The handler assoiated with

protetion violation then requests a read lok on the page, and after the lok

is aquired, it uses mprotet to allow read aess to the page by the proess,

and �nally allows the proess to ontinue. Write aess is handled similarly.

18.7 Consider a database system that inludes an atomi inrement operation, in

addition to the read and write operations. Let V be the value of data item X.

The operation

inrement(X) by C

sets the value of X to V + C in an atomi step. The value of X is not available

to the transation unless the latter exeutes a read(X).

Assume that inrement operations lok the item in inrement mode using the

ompatibility matrix in Figure 18.25.

a. Show that, if all transations lok the data that they aess in the orre-

sponding mode, then two-phase loking ensures serializability.

b. Show that the inlusion of inrement mode loks allows for inreased

onurreny.

Answer:

a. Serializability an be shown by observing that if two transations have an

I mode lok on the same item, the inrement operations an be swapped,

just like read operations. However, any pair of on�iting operations

must be serialized in the order of the lok points of the orresponding

transations, as shown in Exerise 15.1.

b. The inrement lok mode being ompatible with itself allows multiple

inrementing transations to take the lok simultaneously, thereby im-

proving the onurreny of the protool. In the absene of this mode, an

exlusive mode will have to be taken on a data item by eah transation

that wants to inrement the value of this data item. An exlusive lok be-

ing inompatible with itself adds to the lok waiting time and obstruts

the overall progress of the onurrent shedule.

In general, inreasing the true entries in the ompatibility matrix in-

reases the onurreny and improves the throughput.

The proof is in Korth, �Loking Primitives in a Database System,� Journal of

the ACM Volume 30, (1983).

18.8 In timestamp ordering,W-timestamp(Q) denotes the largest timestamp of any

transation that exeuted write(Q) suessfully. Suppose that, instead, we de-

�ned it to be the timestamp of the most reent transation to exeutewrite(Q)



142 Chapter 18 Conurreny Control

suessfully. Would this hange in wording make any di�erene? Explain your

answer.

Answer:

It would make no di�erene. The write protool is suh that the most reent

transation to write an item is also the one with the largest timestamp to have

done so.

18.9 Use of multiple-granularity loking may require more or fewer loks than an

equivalent system with a single lok granularity. Provide examples of both sit-

uations, and ompare the relative amount of onurreny allowed.

Answer:

If a transation needs to aess a large set of items, multiple granularity lok-

ing requires fewer loks, whereas if only one item needs to be aessed, the

single lok granularity system allows this with just one lok. Beause all the

desired data items are loked and unloked together in the multiple granularity

sheme, the loking overhead is low, but onurreny is also redued.

18.10 For eah of the following protools, desribe aspets of pratial appliations

that would lead you to suggest using the protool, and aspets that would sug-

gest not using the protool:

�

Two-phase loking

�

Two-phase loking with multiple-granularity loking.

�

The tree protool

�

Timestamp ordering

�

Validation

�

Multiversion timestamp ordering

�

Multiversion two-phase loking

Answer:

�

Two-phase loking: Use for simple appliations where a single granularity

is aeptable. If there are large read-only transations, multiversion proto-

ols would do better. Also, if deadloks must be avoided at all osts, the

tree protool would be preferable.

�

Two-phase loking with multiple granularity loking: Use for an applia-

tion mix where some appliations aess individual reords and others

aess whole relations or substantial parts thereof. The drawbaks of 2PL

mentioned above also apply to this one.

�

The tree protool: Use if all appliations tend to aess data items in an

order onsistent with a partiular partial order. This protool is free of



Pratie Exerises 143

deadloks, but transations will often have to lok unwanted nodes in or-

der to aess the desired nodes.

�

Timestamp ordering: Use if the appliation demands a onurrent exe-

ution that is equivalent to a partiular serial ordering (say, the order of

arrival), rather than any serial ordering. But on�its are handled by roll

bak of transations rather than waiting, and shedules are not reover-

able. To make them reoverable, additional overheads and inreased re-

sponse time have to be tolerated. Not suitable if there are long read-only

transations, sine they will starve. Deadloks are absent.

�

Validation: If the probability that two onurrently exeuting transations

on�it is low, this protool an be used advantageously to get better on-

urreny and good response times with low overheads. Not suitable under

high ontention, when a lot of wasted work will be done.

�

Multiversion timestamp ordering: Use if timestamp ordering is appropri-

ate but it is desirable for read requests to never wait. Shares the other

disadvantages of the timestamp ordering protool.

�

Multiversion two-phase loking: This protool allows read-only transa-

tions to always ommit without ever waiting. Update transations follow

2PL, thus allowing reoverable shedules with on�its solved by waiting

rather than roll bak. But the problem of deadloks omes bak, though

read-only transations annot get involved in them. Keeping multiple ver-

sions adds spae and time overheads though, therefore plain 2PL may be

preferable in low-on�it situations.

18.11 Explain why the following tehnique for transation exeution may provide

better performane than just using strit two-phase loking: First exeute the

transation without aquiring any loks and without performing any writes

to the database as in the validation-based tehniques, but unlike the validation

tehniques do not perform either validation or writes on the database. Instead,

rerun the transation using strit two-phase loking. (Hint: Consider waits for

disk I/O.)

Answer:

A transation waits on (a) disk I/O and (b) lok aquisition. Transations gen-

erally wait on disk reads and not on disk writes as disk writes are handled

by the bu�ering mehanism in asynhronous fashion and transations update

only the in-memory opy of the disk bloks.

The tehnique proposed essentially separates the waiting times into two

phases. The �rst phase�where transation is exeuted without aquiring any

loks and without performing any writes to the database�aounts for almost

all the waiting time on disk I/O as it reads all the data bloks it needs from



144 Chapter 18 Conurreny Control

disk if they are not already in memory. The seond phase�the transation re-

exeution with strit two-phase loking�aounts for all the waiting time on

aquiring loks. The seond phase may, though rarely, involve a small waiting

time on disk I/O if a disk blok that the transation needs is �ushed to memory

(by bu�er manager) before the seond phase starts.

The tehnique may inrease onurreny as transations spend almost no

time on disk I/O with loks held and hene loks are held for a shorter time.

In the �rst phase, the transation reads all the data items required�and not

already in memory�from disk. The loks are aquired in the seond phase

and the transation does almost no disk I/O in this phase. Thus the transation

avoids spending time in disk I/O with loks held.

The tehnique may even inrease disk throughput as the disk I/O is not

stalled for want of a lok. Consider the following senario with strit two-phase

loking protool: A transation is waiting for a lok, the disk is idle, and there

are some items to be read from disk. In suh a situation, disk bandwidth is

wasted. But in the proposed tehnique, the transation will read all the required

items from the disk without aquiring any lok, and the disk bandwidth may

be properly utilized.

Note that the proposed tehnique ismost useful if the omputation involved

in the transations is less and most of the time is spent in disk I/O and waiting

on loks, as is usually the ase in disk-resident databases. If the transation is

omputation intensive, there may be wasted work. An optimization is to save

the updates of transations in a temporary bu�er, and instead of reexeuting

the transation, to ompare the data values of items when they are loked with

the values used earlier. If the two values are the same for all items, then the

bu�ered updates of the transation are exeuted, instead of reexeuting the

entire transation.

18.12 Consider the timestamp-ordering protool, and two transations, one that

writes two data items p and q, and another that reads the same two data items.

Give a shedule whereby the timestamp test for a write operation fails and

auses the �rst transation to be restarted, in turn ausing a asading abort

of the other transation. Show how this ould result in starvation of both trans-

ations. (Suh a situation, where two or more proesses arry out ations, but

are unable to omplete their task beause of interation with the other pro-

esses, is alled a livelok.)

Answer:

Consider two transations T

1

and T

2

shown below.



Pratie Exerises 145

T1 T2

write (p)

read (p)

read (q)

write (q)

Let TS(T

1

) < TS(T

2

), and let the timestamp test at eah operation exept

write(q) be suessful. When transation T

1

does the timestamp test for

write(q), it �nds that TS(T

1

) < R-timestamp(q), sine TS(T

1

) < TS(T

2

) and

R-timestamp(q) = TS(T

2

). Hene thewrite operation fails, and transation T

1

rolls bak. The asading results in transation T

2

also being rolled bak as it

uses the value for item p that is written by transation T

1

.

If this senario is exatly repeated every time the transations are restarted,

this ould result in starvation of both transations.

18.13 Devise a timestamp-based protool that avoids the phantom phenomenon.

Answer:

In the text, we onsidered two approahes to dealing with the phantom phe-

nomenon by means of loking. The oarser granularity approah obviously

works for timestamps as well. The B

+

-tree index- based approah an be

adapted to timestamping by treating index bukets as data items with times-

tamps assoiated with them, and requiring that all read aesses use an index.

We now show that this simple method works. Suppose a transation T

i

wants

to aess all tuples with a partiular range of searh key values, using a B

+

-

tree index on that searh key. T

i

will need to read all the bukets in that index

whih have key values in that range. It an be seen that any delete or insert of

a tuple with a key value in the same range will need to write one of the index

bukets read by T

i

. Thus the logial on�it is onverted to a on�it on an

index buket, and the phantom phenomenon is avoided.

18.14 Suppose that we use the tree protool of Setion 18.1.5 to manage onurrent

aess to a B

+

-tree. Sine a split may our on an insert that a�ets the root, it

appears that an insert operation annot release any loks until it has ompleted

the entire operation. Under what irumstanes is it possible to release a lok

earlier?

Answer:

Note: The tree protool of Setion Setion 18.1.5 whih is referred to in this

question is di�erent from the multigranularity protool of Setion 18.3 and

the B

+

-tree onurreny protool of Setion 18.10.2.

One strategy for early lok releasing is given here. Going down the tree from

the root, if the urrently visited node's hild is not full, release loks held on

all nodes exept the urrent node, then request an X-lok on the hild node.



146 Chapter 18 Conurreny Control

After getting it, release the lok on the urrent node, and then desend to the

hild. On the other hand, if the hild is full, retain all loks held, request an

X-lok on the hild, and desend to it after getting the lok. On reahing the

leaf node, start the insertion proedure. This strategy results in holding loks

only on the full index tree nodes from the leaf upward, until and inluding the

�rst non-full node.

An optimization to the above strategy is possible. Even if the urrent node's

hild is full, we an still release the loks on all nodes but the urrent one. But

after getting the X-lok on the hild node, we split it right away. Releasing the

lok on the urrent node and retaining just the lok on the appropriate split

hild, we desend into it, making it the urrent node. With this optimization,

at any time at most two loks are held, of a parent and a hild node.

18.15 The snapshot isolation protool uses a validation step whih, before perform-

ing a write of a data item by transation T , heks if a transation onurrent

with T has already written the data item.

a. A straightforward implementation uses a start timestamp and a ommit

timestamp for eah transation, in addition to an update set, that, is the

set of data items updated by the transation. Explain how to perform

validation for the �rst-ommitter-wins sheme by using the transation

timestamps along with the update sets. You may assume that validation

and other ommit proessing steps are exeuted serially, that is, for one

transation at a time,

b. Explain how the validation step an be implemented as part of ommit

proessing for the �rst-ommitter-wins sheme, using a modi�ation of

the above sheme, where instead of using update sets, eah data item

has a write timestamp assoiated with it. Again, you may assume that

validation and other ommit proessing steps are exeuted serially.

. The �rst-updater-wins sheme an be implemented using timestamps as

desribed above, exept that validation is done immediately after aquir-

ing an exlusive lok, instead of being done at ommit time.

i. Explain how to assign write timestamps to data items to implement

the �rst-updater-wins sheme.

ii. Show that as a result of loking, if the validation is repeated at om-

mit time the result would not hange.

iii. Explain why there is no need to perform validation and other ommit

proessing steps serially in this ase.

Answer:

a. Validation test for �rst-ommitter-wins sheme: Let StartTS(T

i

),

CommitTS(T

i

) and be the timestamps assoiated with a transation T

i



Pratie Exerises 147

and the update set for T

i

be update set(T

i

). Then for all transations T

k

with CommitTS(T

k

) < CommitTS(T

i

), one of the following two ondi-

tions must hold:

�

If CommitTS(T

k

) < StartTS(T

k

), T

k

ompletes its exeution before

T

i

started, the serializability is maintained.

�

StartTS(T

i

) < CommitTS(T

k

) < CommitTS(T

i

), and update set(T

i

)

and update set(T

k

) do not interset

b. Validation test for �rst-ommitter-wins sheme with W-timestamps for

data items: If a transation T

i

writes a data item Q, then the W-

timestamp(Q) is set to CommitTS(T

i

). For the validation test of a trans-

ation T

i

to pass, the following ondition must hold:

�

For eah data item Q written by T

i

, W-timestamp(Q) < StartTS(T

i

).

. First-updater-wins sheme:

i. For a data item Q written by T

i

, the W-timestamp is assigned the

timestamp when the write ourred in T

i

ii. Sine the validation is done after aquiring the exlusive loks and

the exlusive loks are held till the end of the transation, the data

item annot be modi�ed in between the lok aquisition and ommit

time. So, the result of the validation test for a transation would be

the same at the ommit time as that at the update time.

iii. Beause of the exlusive loking, at most one transation an aquire

the lok on a data item at a time and do the validation testing. Thus,

two or more transations annot do validation testing for the same

data item simultaneously.

18.16 Consider funtions insert lathfree() and delete lathfree(), shown in Figure

18.23.

a. Explain how the ABA problem an our if a deleted node is reinserted.

b. Suppose that adjaent to head we store a ounter nt. Also suppose that

DCAS((head,nt), (oldhead, oldnt), (newhead, newnt)) atomially per-

forms a ompare-and-swap on the 128 bit value (head,nt). Modify the in-

sert lathfree() and delete lathfree() to use the DCAS operation to avoid

the ABA problem.

. Sine most proessors use only 48 bits of a 64 bit address to atually

address memory, explain how the other 16 bits an be used to implement

a ounter, in ase the DCAS operation is not supported.

Answer:

a. Let the head of the list be pointer n1, and the next three elements be n2

and n3. Suppose proess P1 whih is performing a delete, reads pointer



148 Chapter 18 Conurreny Control

n1 as head and n2 as newhead, but before it exeutes CAS(head, n1, n2),

proess P2 deletes n1, then deletes n2 and then inserts n1 bak at the

head.

The CAS would replae n1 by a pointer to n2, sine the head is still

n1. However, node n2 has meanwhile been deleted and is garbage. Thus,

the list is now inonsistent.

b. The following ode

atomi read(head, nt) {

repeat

oldhead = head

oldnt = nt

result = DCAS((head, nt), (oldhead, oldnt), (oldhead, oldnt))

until (result == suess)

return (oldhead, oldnt)

}

insert lathfree(head, value) {

node = new node

node*>value = value

repeat

(oldhead, oldnt) = atomi read(head, nt)

node*>next = oldhead

newnt = oldnt+1

result = DCAS(head, (oldhead, oldnt), (node, newnt))

until (result == suess)

}

delete lathfree(head) {

/* This funtion is not quite safe; see explanation in text. */

repeat

(oldhead, oldnt) = atomi read(head, nt)

newhead = oldhead*>next

newnt = oldnt+1

result = DCAS(head, (oldhead, oldnt), (newhead, newnt))

until (result == suess)

}

The atomi read funtion ensures that the 128 bit address, ounter pair is

read atomially, by using the DCAS instrution to ensure that the values

are still same (the DCAS instrution stores the same values bak if it

sueeds, so there is no hange in the value). If the DCAS fails, we may



Pratie Exerises 149

have read an old pointer and a new value, or vie versa, requiring the

values to be read again.

The ABA problem would be avoided by the modi�ed ode for in-

sert lathfree() and delete lathfree(), sine although the reinsert of the

n1 by P2 would result in the head having the same pointer n1 as earlier,

ounter nt would be di�erent from oldnt, resulting in the CAS opera-

tion of P1 failing.

. Most proessors use only the last 48 bits of a 64 bit address to aess

memory (whih an support 256 Terabytes of memory). The �rst 16 bits

of a 64 bit value an then be used as a ounter, and the last 48 bits as

the address, with the ounter and the address extrated using bit-and

operations before being used, and using bit-and and bit-or operations to

reonstrut the 64 bit value from a pointer and a ounter. If a hardware

implementation does not support DCAS, this ould be used as an alter-

native to a DCAS, although it still runs a the small risk of the ounter

wrapping around if there are exatly 64K other operations on the list

between the read of the head and the CAS operation.




	Transactions
	Exercises


