CHAPTER 18

Concurrency Control

Practice Exercises

18.1 Show that the two-phase locking protocol ensures conflict serializability and
that transactions can be serialized according to their lock points.

Answer:

Suppose two-phase locking does not ensure serializability. Then there exists a
set of transactions 7y, 7} ... T,,_; which obey 2PL and which produce a nonseri-
alizable schedule. A nonserializable schedule implies a cycle in the precedence
graph, and we shall show that 2PL cannot produce such cycles. Without loss
of generality, assume the following cycle exists in the precedence graph: 7;, —
I'—->T,— ..—- T, = T, Let o; be the time at which 7; obtains its last
lock (i.e. 7}'s lock point). Then for all transactions such that 7; — 7, a; < .
Then for the cycle we have

G < 0 < 0y < oo < Qg < 0

Since oy < a is a contradiction, no such cycle can exist. Hence 2PL cannot
produce nonserializable schedules. Because of the property that for all trans-
actions such that 7; - T}, o; < «, the lock point ordering of the transactions
is also a topological sort ordering of the precedence graph. Thus transactions
can be serialized according to their lock points.

18.2 Consider the following two transactions:

137

138 Chapter 18 Concurrency Control

T;,: read(4);
read(B);
ifA = OthenB:=B+1;
write(B).

T;5: read(B);
read(4);
if B = Othend =4+ 1;
write(4).

Add lock and unlock instructions to transactions 73, and 73, so that they ob-
serve the two-phase locking protocol. Can the execution of these transactions
result in a deadlock?

Answer:

a. Lock and unlock instructions:

Ty lock-S(A4)
read(4)
lock-X(B)
read(B)
if4A =0
thenB := B + 1
write(B)
unlock(A4)
unlock(B)

T;s: lock-S(B)
read(B)
lock-X(A4)
read(4)
ifB =0
thend .= 4 + 1
write(A4)
unlock(B)
unlock(4)

b. Execution of these transactions can result in deadlock. For example, con-
sider the following partial schedule:

18.3

18.4

18.5

Practice Exercises 139

T3 T3
lock-S (A4)
lock-S (B)
read(B)
read(A)
lock-X (B)
lock-X (A4)

The transactions are now deadlocked.

What benefit does rigorous two-phase locking provide? How does it compare
with other forms of two-phase locking?

Answer:

Rigorous two-phase locking has the advantages of strict 2PL. In addition it has
the property that for two conflicting transactions, their commit order is their
serializability order. In some systems users might expect this behavior.

Consider a database organized in the form of a rooted tree. Suppose that we
insert a dummy vertex between each pair of vertices. Show that, if we follow
the tree protocol on the new tree, we get better concurrency than if we follow
the tree protocol on the original tree.

Answer:

Consider two nodes 4 and B, where A4 is a parent of B. Let dummy vertex D
be added between 4 and B. Consider a case where transaction 7, has a lock
on B, and T, which has a lock on A wishes to lock B, and 75 wishes to lock
A. With the original tree, 7', cannot release the lock on 4 until it gets the lock
on B. With the modified tree, 7 can get a lock on D and release the lock on
A, which allows 77 to proceed while T waits for 7. Thus, the protocol allows
locks on vertices to be released earlier to other transactions, instead of holding
them when waiting for a lock on a child.

A generalization of the idea based on edge locks is described in Buckley
and Silberschatz, “Concurrency Control in Graph Protocols by Using Edge
Locks,” Proc. ACM SIGACT-SIGMOD Symposium on the Principles of Database
Systems, 1984 .

Show by example that there are schedules possible under the tree protocol that
are not possible under the two-phase locking protocol, and vice versa.

Answer:
Consider the tree-structured database graph given below.

140 Chapter 18 Concurrency Control

C

Schedule possible under tree protocol but not under 2PL:

T; T,
lock (4)
lock (B)
unlock (A4)
lock (4)
lock (C)
unlock (B)
lock (B)
unlock (4)
unlock (B)
unlock (C)

Schedule possible under 2PL but not under tree protocol:

T T,
lock (A)
lock (B)
lock (CO)
unlock (B)
unlock (A4)
unlock (C)

18.6 Locking is not done explicitly in persistent programming languages. Rather,
objects (or the corresponding pages) must be locked when the objects are ac-
cessed. Most modern operating systems allow the user to set access protections
(no access, read, write) on pages, and memory access that violate the access
protections result in a protection violation (see the Unix mprotect command,
for example). Describe how the access-protection mechanism can be used for
page-level locking in a persistent programming language.

Answer:

The access protection mechanism can be used to implement page- level lock-
ing. Consider reads first. A process is allowed to read a page only after it read-
locks the page. This is implemented by using mprotect to initially turn off read

18.7

18.8

Practice Exercises 141

permissions to all pages, for the process. When the process tries to access an
address in a page, a protection violation occurs. The handler associated with
protection violation then requests a read lock on the page, and after the lock
is acquired, it uses mprotect to allow read access to the page by the process,
and finally allows the process to continue. Write access is handled similarly.

Consider a database system that includes an atomic increment operation, in
addition to the read and write operations. Let V' be the value of data item X.
The operation

increment(X) by C

sets the value of X to V' + C in an atomic step. The value of X is not available
to the transaction unless the latter executes a read(X).

Assume that increment operations lock the item in increment mode using the
compatibility matrix in Figure 18.25.

a. Show that, if all transactions lock the data that they access in the corre-
sponding mode, then two-phase locking ensures serializability.

b. Show that the inclusion of increment mode locks allows for increased
concurrency.

Answer:

a. Serializability can be shown by observing that if two transactions have an
I mode lock on the same item, the increment operations can be swapped,
just like read operations. However, any pair of conflicting operations
must be serialized in the order of the lock points of the corresponding
transactions, as shown in Exercise 15.1.

b. The increment lock mode being compatible with itself allows multiple
incrementing transactions to take the lock simultaneously, thereby im-
proving the concurrency of the protocol. In the absence of this mode, an
exclusive mode will have to be taken on a data item by each transaction
that wants to increment the value of this data item. An exclusive lock be-
ing incompatible with itself adds to the lock waiting time and obstructs
the overall progress of the concurrent schedule.

In general, increasing the true entries in the compatibility matrix in-
creases the concurrency and improves the throughput.

The proof is in Korth, “Locking Primitives in a Database System,” Journal of
the ACM Volume 30, (1983).

In timestamp ordering, W-timestamp(Q) denotes the largest timestamp of any
transaction that executed write(Q) successfully. Suppose that, instead, we de-
fined it to be the timestamp of the most recent transaction to execute write(Q)

142

Chapter 18 Concurrency Control

18.9

18.10

successfully. Would this change in wording make any difference? Explain your
answer.

Answer:
It would make no difference. The write protocol is such that the most recent
transaction to write an item is also the one with the largest timestamp to have
done so.

Use of multiple-granularity locking may require more or fewer locks than an
equivalent system with a single lock granularity. Provide examples of both sit-
uations, and compare the relative amount of concurrency allowed.

Answer:

If a transaction needs to access a large set of items, multiple granularity lock-
ing requires fewer locks, whereas if only one item needs to be accessed, the
single lock granularity system allows this with just one lock. Because all the
desired data items are locked and unlocked together in the multiple granularity
scheme, the locking overhead is low, but concurrency is also reduced.

For each of the following protocols, describe aspects of practical applications
that would lead you to suggest using the protocol, and aspects that would sug-
gest not using the protocol:

* Two-phase locking

* Two-phase locking with multiple-granularity locking.
* The tree protocol

* Timestamp ordering

° Validation

° Multiversion timestamp ordering

° Multiversion two-phase locking

Answer:

* Two-phase locking: Use for simple applications where a single granularity
is acceptable. If there are large read-only transactions, multiversion proto-
cols would do better. Also, if deadlocks must be avoided at all costs, the
tree protocol would be preferable.

* Two-phase locking with multiple granularity locking: Use for an applica-
tion mix where some applications access individual records and others
access whole relations or substantial parts thereof. The drawbacks of 2PL
mentioned above also apply to this one.

* The tree protocol: Use if all applications tend to access data items in an
order consistent with a particular partial order. This protocol is free of

Practice Exercises 143

deadlocks, but transactions will often have to lock unwanted nodes in or-
der to access the desired nodes.

* Timestamp ordering: Use if the application demands a concurrent exe-
cution that is equivalent to a particular serial ordering (say, the order of
arrival), rather than any serial ordering. But conflicts are handled by roll
back of transactions rather than waiting, and schedules are not recover-
able. To make them recoverable, additional overheads and increased re-
sponse time have to be tolerated. Not suitable if there are long read-only
transactions, since they will starve. Deadlocks are absent.

* Validation: If the probability that two concurrently executing transactions
conflict is low, this protocol can be used advantageously to get better con-
currency and good response times with low overheads. Not suitable under
high contention, when a lot of wasted work will be done.

° Multiversion timestamp ordering: Use if timestamp ordering is appropri-
ate but it is desirable for read requests to never wait. Shares the other
disadvantages of the timestamp ordering protocol.

° Multiversion two-phase locking: This protocol allows read-only transac-
tions to always commit without ever waiting. Update transactions follow
2PL, thus allowing recoverable schedules with conflicts solved by waiting
rather than roll back. But the problem of deadlocks comes back, though
read-only transactions cannot get involved in them. Keeping multiple ver-
sions adds space and time overheads though, therefore plain 2PL may be
preferable in low-conflict situations.

18.11 Explain why the following technique for transaction execution may provide
better performance than just using strict two-phase locking: First execute the
transaction without acquiring any locks and without performing any writes
to the database as in the validation-based techniques, but unlike the validation
techniques do not perform either validation or writes on the database. Instead,
rerun the transaction using strict two-phase locking. (Hint: Consider waits for
disk 1/0.)

Answer:

A transaction waits on (a) disk I/O and (b) lock acquisition. Transactions gen-
erally wait on disk reads and not on disk writes as disk writes are handled
by the buffering mechanism in asynchronous fashion and transactions update
only the in-memory copy of the disk blocks.

The technique proposed essentially separates the waiting times into two
phases. The first phase—where transaction is executed without acquiring any
locks and without performing any writes to the database—accounts for almost
all the waiting time on disk I/O as it reads all the data blocks it needs from

144

Chapter 18 Concurrency Control

18.12

disk if they are not already in memory. The second phase—the transaction re-
execution with strict two-phase locking—accounts for all the waiting time on
acquiring locks. The second phase may, though rarely, involve a small waiting
time on disk I/O if a disk block that the transaction needs is flushed to memory
(by buffer manager) before the second phase starts.

The technique may increase concurrency as transactions spend almost no
time on disk I/O with locks held and hence locks are held for a shorter time.
In the first phase, the transaction reads all the data items required—and not
already in memory—from disk. The locks are acquired in the second phase
and the transaction does almost no disk I/O in this phase. Thus the transaction
avoids spending time in disk I/O with locks held.

The technique may even increase disk throughput as the disk I/O is not
stalled for want of a lock. Consider the following scenario with strict two-phase
locking protocol: A transaction is waiting for a lock, the disk is idle, and there
are some items to be read from disk. In such a situation, disk bandwidth is
wasted. But in the proposed technique, the transaction will read all the required
items from the disk without acquiring any lock, and the disk bandwidth may
be properly utilized.

Note that the proposed technique is most useful if the computation involved
in the transactions is less and most of the time is spent in disk I/O and waiting
on locks, as is usually the case in disk-resident databases. If the transaction is
computation intensive, there may be wasted work. An optimization is to save
the updates of transactions in a temporary buffer, and instead of reexecuting
the transaction, to compare the data values of items when they are locked with
the values used earlier. If the two values are the same for all items, then the
buffered updates of the transaction are executed, instead of reexecuting the
entire transaction.

Consider the timestamp-ordering protocol, and two transactions, one that
writes two data items p and ¢, and another that reads the same two data items.
Give a schedule whereby the timestamp test for a write operation fails and
causes the first transaction to be restarted, in turn causing a cascading abort
of the other transaction. Show how this could result in starvation of both trans-
actions. (Such a situation, where two or more processes carry out actions, but
are unable to complete their task because of interaction with the other pro-
cesses, is called a livelock.)

Answer:
Consider two transactions 7, and 7, shown below.

18.13

18.14

Practice Exercises 145

T, | T
write (p)
read (p)
read (q)
write (q)

Let TS(7,) < TS(T,), and let the timestamp test at each operation except
write(q) be successful. When transaction 7 does the timestamp test for
write(g), it finds that TS(7}) < R-timestamp(qg), since TS(7) < TS(7,) and
R-timestamp(g) = TS(7,). Hence the write operation fails, and transaction 7}
rolls back. The cascading results in transaction 7, also being rolled back as it
uses the value for item p that is written by transaction 77.

If this scenario is exactly repeated every time the transactions are restarted,
this could result in starvation of both transactions.

Devise a timestamp-based protocol that avoids the phantom phenomenon.

Answer:

In the text, we considered two approaches to dealing with the phantom phe-
nomenon by means of locking. The coarser granularity approach obviously
works for timestamps as well. The B*-tree index- based approach can be
adapted to timestamping by treating index buckets as data items with times-
tamps associated with them, and requiring that all read accesses use an index.
We now show that this simple method works. Suppose a transaction 7; wants
to access all tuples with a particular range of search key values, using a B*-
tree index on that search key. 7; will need to read all the buckets in that index
which have key values in that range. It can be seen that any delete or insert of
a tuple with a key value in the same range will need to write one of the index
buckets read by 7;. Thus the logical conflict is converted to a conflict on an
index bucket, and the phantom phenomenon is avoided.

Suppose that we use the tree protocol of Section 18.1.5 to manage concurrent
access to a B*-tree. Since a split may occur on an insert that affects the root, it
appears that an insert operation cannot release any locks until it has completed
the entire operation. Under what circumstances is it possible to release a lock
earlier?

Answer:
Note: The tree protocol of Section Section 18.1.5 which is referred to in this
question is different from the multigranularity protocol of Section 18.3 and
the B*-tree concurrency protocol of Section 18.10.2.

One strategy for early lock releasing is given here. Going down the tree from
the root, if the currently visited node’s child is not full, release locks held on
all nodes except the current node, then request an X-lock on the child node.

146

Chapter 18 Concurrency Control

18.15

After getting it, release the lock on the current node, and then descend to the
child. On the other hand, if the child is full, retain all locks held, request an
X-lock on the child, and descend to it after getting the lock. On reaching the
leaf node, start the insertion procedure. This strategy results in holding locks
only on the full index tree nodes from the leaf upward, until and including the
first non-full node.

An optimization to the above strategy is possible. Even if the current node’s
child is full, we can still release the locks on all nodes but the current one. But
after getting the X-lock on the child node, we split it right away. Releasing the
lock on the current node and retaining just the lock on the appropriate split
child, we descend into it, making it the current node. With this optimization,
at any time at most two locks are held, of a parent and a child node.

The snapshot isolation protocol uses a validation step which, before perform-
ing a write of a data item by transaction 7', checks if a transaction concurrent
with 7T has already written the data item.

a. A straightforward implementation uses a start timestamp and a commit
timestamp for each transaction, in addition to an update set, that, is the
set of data items updated by the transaction. Explain how to perform
validation for the first-committer-wins scheme by using the transaction
timestamps along with the update sets. You may assume that validation
and other commit processing steps are executed serially, that is, for one
transaction at a time,

b. Explain how the validation step can be implemented as part of commit
processing for the first-committer-wins scheme, using a modification of
the above scheme, where instead of using update sets, each data item
has a write timestamp associated with it. Again, you may assume that
validation and other commit processing steps are executed serially.

c. The first-updater-wins scheme can be implemented using timestamps as
described above, except that validation is done immediately after acquir-
ing an exclusive lock, instead of being done at commit time.

i. Explain how to assign write timestamps to data items to implement
the first-updater-wins scheme.

ii. Show that as a result of locking, if the validation is repeated at com-
mit time the result would not change.

iii. Explain why there is no need to perform validation and other commit
processing steps serially in this case.

Answer:

a. Validation test for firstcommitter-wins scheme: Let StartTS(T)),
CommitTS(7}) and be the timestamps associated with a transaction 7;

18.16

Practice Exercises 147

and the update set for 7; be update_set(7;). Then for all transactions 7},
with CommitTS(7},) < CommitTS(7;), one of the following two condi-
tions must hold:

e If CommitTS(7},) < StartTS(T}), T, completes its execution before
T; started, the serializability is maintained.

e StartTS(7;) < CommitTS(7},) < CommitTS(7;), and update_set(7})
and update_set(7},) do not intersect

Validation test for first-committer-wins scheme with W-timestamps for
data items: If a transaction 7, writes a data item Q, then the W-
timestamp(Q) is set to CommitTS(7;). For the validation test of a trans-

action T; to pass, the following condition must hold:
* For each data item Q written by 7;, W-timestamp(Q) < StartTS(7;).

First-updater-wins scheme:

i. For a data item Q written by 7}, the W-timestamp is assigned the
timestamp when the write occurred in 7

ii. Since the validation is done after acquiring the exclusive locks and

the exclusive locks are held till the end of the transaction, the data
item cannot be modified in between the lock acquisition and commit
time. So, the result of the validation test for a transaction would be
the same at the commit time as that at the update time.

iii. Because of the exclusive locking, at most one transaction can acquire

the lock on a data item at a time and do the validation testing. Thus,
two or more transactions cannot do validation testing for the same
data item simultaneously.

Consider functions insert_latchfree() and delete_latchfree(), shown in Figure

18.23.
a. Explain how the ABA problem can occur if a deleted node is reinserted.
b. Suppose that adjacent to sead we store a counter cnt. Also suppose that
DCAS((head,cnt), (oldhead, oldcnt), (newhead, newcnt)) atomically per-
forms a compare-and-swap on the 128 bit value (kead,cnt). Modify the in-
sert_latchfree() and delete_latchfree() to use the DCAS operation to avoid
the ABA problem.
c. Since most processors use only 48 bits of a 64 bit address to actually
address memory, explain how the other 16 bits can be used to implement
a counter, in case the DCAS operation is not supported.
Answer:
a. Let the head of the list be pointer #1, and the next three elements be 72

and n3. Suppose process P1 which is performing a delete, reads pointer

148

Chapter 18 Concurrency Control

n1 as head and n2 as newhead, but before it executes CAS(head, nl, n2),
process P2 deletes n1, then deletes #2 and then inserts #1 back at the
head.

The CAS would replace n1 by a pointer to n2, since the head is still
n1l. However, node n2 has meanwhile been deleted and is garbage. Thus,
the list is now inconsistent.

b. The following code

atomic_read(head, cnt) {

repeat
oldhead = head
oldent = cnt

result = DCAS((head, cnt), (oldhead, oldcnt), (oldhead, oldcnt))
until (result == success)
return (oldhead, oldcnt)

}

insert_latchfree(head, value) {
node = new node
node—>value = value
repeat
(oldhead, oldcnt) = atomic_read(head, cnt)
node—>next = oldhead
newcnt = oldcnt+1
result = DCAS(head, (oldhead, oldcnt), (node, newcnt))
until (result == success)

}

delete_latchfree(head) {

/* This function is not quite safe; see explanation in text. */
repeat

(oldhead, oldcnt) = atomic_read(head, cnt)

newhead = oldhead—>next

newcnt = oldcnt+1

result = DCAS(head, (oldhead, oldcnt), (newhead, newcnt))
until (result == success)

}

The atomic_read function ensures that the 128 bit address, counter pair is
read atomically, by using the DCAS instruction to ensure that the values
are still same (the DCAS instruction stores the same values back if it
succeeds, so there is no change in the value). If the DCAS fails, we may

Practice Exercises 149

have read an old pointer and a new value, or vice versa, requiring the
values to be read again.

The ABA problem would be avoided by the modified code for in-
sert_latchfree() and delete_latchfree(), since although the reinsert of the
n1 by P2 would result in the head having the same pointer n1 as earlier,
counter cnt would be different from oldcnt, resulting in the CAS opera-
tion of P1 failing.

Most processors use only the last 48 bits of a 64 bit address to access
memory (which can support 256 Terabytes of memory). The first 16 bits
of a 64 bit value can then be used as a counter, and the last 48 bits as
the address, with the counter and the address extracted using bit-and
operations before being used, and using bit-and and bit-or operations to
reconstruct the 64 bit value from a pointer and a counter. If a hardware
implementation does not support DCAS, this could be used as an alter-
native to a DCAS, although it still runs a the small risk of the counter
wrapping around if there are exactly 64K other operations on the list
between the read of the head and the CAS operation.

	Transactions
	Exercises

