
CHAP T E R

19

Reovery System

Pratie Exerises

19.1 Explain why log reords for transations on the undo-list must be proessed in

reverse order, whereas redo is performed in a forward diretion.

Answer:

Within a single transation in undo-list, suppose a data item is updated more

than one, say from 1 to 2, and then from 2 to 3. If the undo log reords are

proessed in forward order, the �nal value of the data item will be inorretly

set to 2, whereas by proessing them in reverse order, the value is set to 1. The

same logi also holds for data items updated by more than one transation on

undo-list.

Using the same example as above, but assuming the transation ommitted,

it is easy to see that if redo proessing proesses the reords in forward order,

the �nal value is set orretly to 3, but if done in reverse order, the �nal value

is set inorretly to 2.

19.2 Explain the purpose of the hekpoint mehanism. How often should hek-

points be performed? How does the frequeny of hekpoints a�et:

�

System performane when no failure ours?

�

The time it takes to reover from a system rash?

�

The time it takes to reover from a media (disk) failure?

Answer:

Chekpointing is done with log-based reovery shemes to redue the time

required for reovery after a rash. If there is no hekpointing, then the entire

logmust be searhed after a rash, and all transations must be undone/redone

from the log. If hekpointing is performed, then most of the log reords prior

to the hekpoint an be ignored at the time of reovery.

Another reason to perform hekpoints is to lear log reords from stable

storage as it gets full.

151

152 Chapter 19 Reovery System

Sine hekpoints ause some loss in performane while they are being

taken, their frequeny should be redued if fast reovery is not ritial. If we

need fast reovery, hekpointing frequeny should be inreased. If the amount

of stable storage available is less, frequent hekpointing is unavoidable.

Chekpoints have no e�et on reovery from a disk rash; arhival dumps

are the equivalent of hekpoints for reovery from disk rashes.

19.3 Some database systems allow the administrator to hoose between two forms

of logging: normal logging, used to reover from system rashes, and arhival

logging, used to reover from media (disk) failure. When an a log reord be

deleted, in eah of these ases, using the reovery algorithm of Setion 19.4?

Answer:

Normal logging: The following log reords annot be deleted, sine they may

be required for reovery:

a. Any log reord orresponding to a transation whih was ative during

the most reent hekpoint (i.e., whih is part of the <hekpoint L>

entry)

b. Any log reord orresponding to transations started after the reent

hekpoint

All other log reords an be deleted. After eah hekpoint, more reords be-

ome andidates for deletion as per the above rule.

Deleting a log reord while retaining an earlier log reord would result in

gaps in the log and would require more omplex log proessing. Therefore in

pratie, systems �nd a point in the log where all earlier log reords an be

deleted, and they delete that part of the log. Often, the log is broken up into

multiple �les, and a �le is deleted when all log reords in the �le an be deleted.

Arhival logging: Arhival logging retains log reords that may be needed for

reovery from media failure (suh as disk rashes). Arhival dumps are the

equivalent of hekpoints for reovery from media failure. The preeding

rules for deletion an be used for arhival logs, but based on the last arhival

dump instead of the last hekpoint. The frequeny of arhival dumps would

be less than hekpointing, sine a lot of data have to be written. Thus more

log reords would need to be retained with arhival logging.

19.4 Desribe how to modify the reovery algorithm of Setion 19.4 to implement

savepoints and to perform rollbak to a savepoint. (Savepoints are desribed

in Setion 19.9.3.)

Answer:

A savepoint an be performed as follows:

Pratie Exerises 153

a. Output onto stable storage all log reords for that transation whih are

urrently in main memory.

b. Output onto stable storage a log reord of the form <savepoint T

i

>, where

T

I

is the transation identi�er.

To roll bak a urrently exeuting transation partially to a partiular save-

point, exeute undo proessing for that transation until the savepoint is

reahed. Redo log reords are generated as usual during the undo phase above.

It is possible to perform repeated undo to a single savepoint by writing a fresh

savepoint reord after rolling bak to that savepoint. The above algorithm an

be extended to support multiple savepoints for a single transation by giving

eah savepoint a name. However, one undo has rolled bak past a savepoint,

it is no longer possible to undo up to that savepoint.

19.5 Suppose the deferred modi�ation tehnique is used in a database.

a. Is the old value part of an update log reord required any more? Why or

why not?

b. If old values are not stored in update log reords, transation undo is

learly not feasible. How would the redo phase of reovery have to be

modi�ed as a result?

. Deferred modi�ation an be implemented by keeping updated data

items in loal memory of transations and reading data items that have

not been updated diretly from the database bu�er. Suggest how to e	-

iently implement a data item read, ensuring that a transation sees its

own updates.

d. What problem would arise with the above tehnique if transations per-

form a large number of updates?

Answer:

a. The old-value part of an update log reord is not required. If the trans-

ation has ommitted, then the old value is no longer neessary as there

would be no need to undo the transation. And if the transation was

ative when the system rashed, the old values are still safe in the stable

storage beause they haven't been modi�ed yet.

b. During the redo phase, the undo list need not be maintained any more,

sine the stable storage does not re�et updates due to any unommitted

transation.

. A data item read will �rst issue a read request on the loal memory of

the transation. If it is found there, it is returned. Otherwise, the item is

154 Chapter 19 Reovery System

loaded from the database bu�er into the loal memory of the transation

and then returned.

d. If a single transation performs a large number of updates, there is a

possibility of the transation running out of memory to store the loal

opies of the data items.

19.6 The shadow-paging sheme requires the page table to be opied. Suppose the

page table is represented as a B

+

-tree.

a. Suggest how to share as many nodes as possible between the new opy

and the shadow opy of the B

+

-tree, assuming that updates are made

only to leaf entries, with no insertions or deletions.

b. Even with the above optimization, logging is muh heaper than a

shadow opy sheme, for transations that perform small updates. Ex-

plain why.

Answer:

a. To begin with, we start with the opy of just the root node pointing to

the shadow opy. As modi�ations are made, the leaf entry where the

modi�ation is made and all the nodes in the path from that leaf node

to the root are opied and updated. All other nodes are shared.

b. For transations that perform small updates, the shadow-paging sheme

would opy multiple pages for a single update, even with the above op-

timization. Logging, on the other hand, just requires small reords to

be reated for every update; the log reords are physially together in

one page or a few pages, and thus only a few log page I/O operations

are required to ommit a transation. Furthermore, the log pages writ-

ten out aross subsequent transation ommits are likely to be adjaent

physially on disk, minimizing disk arm movement.

19.7 Suppose we (inorretly) modify the reovery algorithm of Setion 19.4 to

note log ations taken during transation rollbak. When reovering from a

system rash, transations that were rolled bak earlier would then be inluded

in undo-list and rolled bak again. Give an example to show how ations taken

during the undo phase of reovery ould result in an inorret database state.

(Hint: Consider a data item updated by an aborted transation and then up-

dated by a transation that ommits.)

Answer:

Consider the following log reords generated with the (inorretly) modi�ed

reovery algorithm:

1. <T

1

start>

Pratie Exerises 155

2. <T

1

, A, 1000, 900>

3. <T

2

start>

4. <T

2

, A, 1000, 2000>

5. <T

2

ommit>

A rollbak atually happened between steps 2 and 3, but there are no log

reords re�eting the same. Now, this log data is proessed by the reovery

algorithm. At the end of the redo phase, T

1

would get added to the undo-list,

and the value of A would be 2000. During the undo phase, sine T

1

is present

in the undo-list, the reovery algorithm does an undo of statement 2, and A

takes the value 1000. The update made by T

2

, though ommited, is lost.

The orret sequene of logs is as follows:

1. <T

1

start>

2. <T

1

, A, 1000, 900>

3. <T

1

, A, 1000>

4. <T

1

abort>

5. <T

2

start>

6. <T

2

, A, 1000, 2000>

7. <T

2

ommit>

This would make sure that T

1

would not get added to the undo-list after the

redo phase.

19.8 Disk spae alloated to a �le as a result of a transation should not be released

even if the transation is rolled bak. Explain why, and explain how ARIES

ensures that suh ations are not rolled bak.

Answer:

If a transation alloates a page to a relation, even if the transation is rolled

bak, the page alloation should not be undone beause other transations

may have stored reords in the same page. Suh operations that should not

be undone are alled nested top ations in ARIES. They an be modeled as

operations whose undo ation does nothing. In ARIES suh operations are

implemented by reating a dummy CLR whose UndoNextLSN is set suh that

the transation rollbak skips the log reords generated by the operation.

19.9 Suppose a transation deletes a reord, and the free spae generated thus is

alloated to a reord inserted by another transation, even before the �rst trans-

ation ommits.

a. What problem an our if the �rst transation needs to be rolled bak?

b. Would this problem be an issue if page-level loking is used instead of

tuple-level loking?

156 Chapter 19 Reovery System

. Suggest how to solve this problem while supporting tuple-level loking,

by logging post-ommit ations in speial log reords, and exeuting

them after ommit. Make sure your sheme ensures that suh ations

are performed exatly one.

Answer:

a. If the �rst transation needs to be rolled bak, the tuple deleted by that

transation will have to be restored. If undo is performed in the usual

physial manner using the old values of data items, the spae alloated to

the new tuple would get overwritten by the transation undo, damaging

the new tuples, and assoiated data strutures on the disk blok. This

means that a logial undo operation has to be performed, i.e., an insert

has to be performed to undo the delete, whih ompliates reovery.

On a related note, if the seond transation inserts with the same key,

integrity onstraints might be violated on rollbak.

b. If page-level loking is used, the free spae generated by the �rst trans-

ation is not alloated to another transation till the �rst one ommits.

So this problem will not be an issue if page-level loking is used.

. The problem an be solved by deferring freeing of spae until after the

transation ommits. To ensure that spae will be freed even if there is

a system rash immediately after ommit, the ommit log reord an be

modi�ed to ontain information about freeing of spae (and other sim-

ilar operations) whih must be performed after ommit. The exeution

of these operations an be performed as a transation and log reords

generated, following by a post-ommit log reord whih indiates that

post-ommit proessing has been ompleted for the transation.

During reovery, if a ommit log reord is found with post-ommit

ations, but no post-ommit log reord is found, the e�ets of any partial

exeution of post-ommit operations are rolled bak during reovery,

and the post-ommit operations are reexeuted at the end of reovery.

If the post-ommit log reord is found, the post-ommit ations are not

reexeuted. Thus, the ations are guaranteed to be exeuted exatly one.

The problem of lashes on primary key values an be solved by hold-

ing key-level loks so that no other transation an use the key until the

�rst transation ompletes.

19.10 Explain the reasons why reovery of interative transations is more di	ult

to deal with than is reovery of bath transations. Is there a simple way to deal

with this di	ulty? (Hint: Consider an automati teller mahine transation

in whih ash is withdrawn.)

Answer:

Pratie Exerises 157

Interative transations are more di	ult to reover from than bath transa-

tions beause some ations may be irrevoable. For example, an output (write)

statement may have �red a missile or aused a bank mahine to give money to

a ustomer. The best way to deal with this is to try to do all output statements

at the end of the transation. That way if the transation aborts in the middle,

no harm will be have been done.

Output operations should ideally be done atomially; for example, ATM

mahines often ount out notes and deliver all the notes together instead of

delivering notes one at a time. If output operations annot be done atomially,

a physial log of output operations, suh as a disk log of events, or even a video

log of what happened in the physial world an bemaintained to allow perform

reovery to be performed manually later, for example, by rediting ash bak

to a ustomer's aount.

19.11 Sometimes a transation has to be undone after it has ommitted beause it

was erroneously exeuted�for example, beause of erroneous input by a bank

teller.

a. Give an example to show that using the normal transation undo meh-

anism to undo suh a transation ould lead to an inonsistent state.

b. One way to handle this situation is to bring the whole database to a state

prior to the ommit of the erroneous transation (alled point-in-time re-

overy). Transations that ommitted later have their e�ets rolled bak

with this sheme.

Suggest a modi�ation to the reovery algorithm of Setion 19.4 to

implement point-in-time reovery using database dumps.

. Later nonerroneous transations an be reexeuted logially, if the up-

dates are available in the form of SQL but annot be reexeuted using

their log reords. Why?

Answer:

a. Consider the a bank aount A with balane $100. Consider two trans-

ations T

1

and T

2

, eah depositing $10 in the aount. Thus the bal-

ane would be $120 after both these transations are exeuted. Let the

transations exeute in sequene: T

1

�rst and then T

2

. The log reords

orresponding to the updates of A by transations T

1

and T

2

would be

< T

1

,A, 100, 110 > and < T

2

,A, 110, 120 > respetively.

Say we wish to undo transation T

1

. The normal transation undo

mehanism will replae the value in question�A in this example�with

the old-value �eld in the log reord. Thus if we undo transation T

1

using

the normal transation undo mehanism, the resulting balane will be

158 Chapter 19 Reovery System

$100 and we will, in e�et, undo both transations, whereas we intend

to undo only transation T

1

.

b. Let the erroneous transation be T

e

.

�

Identify the latest arhival dump, say D, before the log reord < T

e

,

START>. Restore the database using the dump.

�

Redo all log reords starting from the dump D to the log reord

< T

e

, COMMIT>. Some transation�apart from transation T

e

�

would be ative at the ommit time of transation T

e

. Let S

1

be the

set of suh transations.

�

Roll bak T

e

and the transations in the set S

1

. This ompletes point-

in-time reovery.

In ase logial redo is possible, later transations an be rex-

euted logially, assuming log reords ontaining logial redo in-

formation were written for every transation. To perform logial

redo of later transations, san the log further starting from the log

reord < T

e

, COMMIT> to the end of the log. Note the transations

that were started after the ommit point of T

e

. Let the set of suh

transations be S

2

. Reexeute the transations in set S

1

and S

2

log-

ially.

. Consider again an example from the �rst item. Let us assume that both

transations are undone and the balane is reverted bak to the original

value $100.

Now we wish to redo transation T

2

. If we redo the log reord < T

2

,A,

110, 120 > orresponding to transation T

2

, the balane will beome

$120 and we will, in e�et, redo both transations, whereas we intend to

redo only transation T

2

.

19.12 The reovery tehniques that we desribed assume that bloks are written

atomially to disk. However, a blok may be partially written when power fails,

with some setors written, and others not yet written.

a. What problems an partial blok writes ause?

b. Partial blok writes an be deteted using tehniques similar to those

used to validate setor reads. Explain how.

. Explain how RAID 1 an be used to reover from a partially written

blok, restoring the blok to either its old value or to its new value.

Answer:

FILL IN

Pratie Exerises 159

19.13 The Orale database system uses undo log reords to provide a snapshot view

of the database under snapshot isolation. The snapshot view seen by transa-

tion T

i

re�ets updates of all transations that had ommitted when T

i

started

and the updates of T

i

; updates of all other transations are not visible to T

i

.

Desribe a sheme for bu�er handling whereby transations are given a

snapshot view of pages in the bu�er. Inlude details of how to use the log to

generate the snapshot view. You an assume that operations as well as their

undo ations a�et only one page.

Answer:

First, determine if a transation is urrently modifying the bu�er. If not, then

return the urrent ontents of the bu�er. Otherwise, examine the reords in

the undo log pertaining to this bu�er. Make a opy of the bu�er, then for

eah relevant operation in the undo log, apply the operation to the bu�er opy

starting with the most reent operation and working bakwards until the point

at whih the modifying transation began. Finally, return the bu�er opy as

the snapshot bu�er.

	Concurrency Control
	Exercises

