
CHAP T E R

19

Re
overy System

Pra
ti
e Exer
ises

19.1 Explain why log re
ords for transa
tions on the undo-list must be pro
essed in

reverse order, whereas redo is performed in a forward dire
tion.

Answer:

Within a single transa
tion in undo-list, suppose a data item is updated more

than on
e, say from 1 to 2, and then from 2 to 3. If the undo log re
ords are

pro
essed in forward order, the �nal value of the data item will be in
orre
tly

set to 2, whereas by pro
essing them in reverse order, the value is set to 1. The

same logi
 also holds for data items updated by more than one transa
tion on

undo-list.

Using the same example as above, but assuming the transa
tion
ommitted,

it is easy to see that if redo pro
essing pro
esses the re
ords in forward order,

the �nal value is set
orre
tly to 3, but if done in reverse order, the �nal value

is set in
orre
tly to 2.

19.2 Explain the purpose of the
he
kpoint me
hanism. How often should
he
k-

points be performed? How does the frequen
y of
he
kpoints a�e
t:

�

System performan
e when no failure o

urs?

�

The time it takes to re
over from a system
rash?

�

The time it takes to re
over from a media (disk) failure?

Answer:

Che
kpointing is done with log-based re
overy s
hemes to redu
e the time

required for re
overy after a
rash. If there is no
he
kpointing, then the entire

logmust be sear
hed after a
rash, and all transa
tions must be undone/redone

from the log. If
he
kpointing is performed, then most of the log re
ords prior

to the
he
kpoint
an be ignored at the time of re
overy.

Another reason to perform
he
kpoints is to
lear log re
ords from stable

storage as it gets full.

151

152 Chapter 19 Re
overy System

Sin
e
he
kpoints
ause some loss in performan
e while they are being

taken, their frequen
y should be redu
ed if fast re
overy is not
riti
al. If we

need fast re
overy,
he
kpointing frequen
y should be in
reased. If the amount

of stable storage available is less, frequent
he
kpointing is unavoidable.

Che
kpoints have no e�e
t on re
overy from a disk
rash; ar
hival dumps

are the equivalent of
he
kpoints for re
overy from disk
rashes.

19.3 Some database systems allow the administrator to
hoose between two forms

of logging: normal logging, used to re
over from system
rashes, and ar
hival

logging, used to re
over from media (disk) failure. When
an a log re
ord be

deleted, in ea
h of these
ases, using the re
overy algorithm of Se
tion 19.4?

Answer:

Normal logging: The following log re
ords
annot be deleted, sin
e they may

be required for re
overy:

a. Any log re
ord
orresponding to a transa
tion whi
h was a
tive during

the most re
ent
he
kpoint (i.e., whi
h is part of the <
he
kpoint L>

entry)

b. Any log re
ord
orresponding to transa
tions started after the re
ent

he
kpoint

All other log re
ords
an be deleted. After ea
h
he
kpoint, more re
ords be-

ome
andidates for deletion as per the above rule.

Deleting a log re
ord while retaining an earlier log re
ord would result in

gaps in the log and would require more
omplex log pro
essing. Therefore in

pra
ti
e, systems �nd a point in the log where all earlier log re
ords
an be

deleted, and they delete that part of the log. Often, the log is broken up into

multiple �les, and a �le is deleted when all log re
ords in the �le
an be deleted.

Ar
hival logging: Ar
hival logging retains log re
ords that may be needed for

re
overy from media failure (su
h as disk
rashes). Ar
hival dumps are the

equivalent of
he
kpoints for re
overy from media failure. The pre
eding

rules for deletion
an be used for ar
hival logs, but based on the last ar
hival

dump instead of the last
he
kpoint. The frequen
y of ar
hival dumps would

be less than
he
kpointing, sin
e a lot of data have to be written. Thus more

log re
ords would need to be retained with ar
hival logging.

19.4 Des
ribe how to modify the re
overy algorithm of Se
tion 19.4 to implement

savepoints and to perform rollba
k to a savepoint. (Savepoints are des
ribed

in Se
tion 19.9.3.)

Answer:

A savepoint
an be performed as follows:

Pra
ti
e Exer
ises 153

a. Output onto stable storage all log re
ords for that transa
tion whi
h are

urrently in main memory.

b. Output onto stable storage a log re
ord of the form <savepoint T

i

>, where

T

I

is the transa
tion identi�er.

To roll ba
k a
urrently exe
uting transa
tion partially to a parti
ular save-

point, exe
ute undo pro
essing for that transa
tion until the savepoint is

rea
hed. Redo log re
ords are generated as usual during the undo phase above.

It is possible to perform repeated undo to a single savepoint by writing a fresh

savepoint re
ord after rolling ba
k to that savepoint. The above algorithm
an

be extended to support multiple savepoints for a single transa
tion by giving

ea
h savepoint a name. However, on
e undo has rolled ba
k past a savepoint,

it is no longer possible to undo up to that savepoint.

19.5 Suppose the deferred modi�
ation te
hnique is used in a database.

a. Is the old value part of an update log re
ord required any more? Why or

why not?

b. If old values are not stored in update log re
ords, transa
tion undo is

learly not feasible. How would the redo phase of re
overy have to be

modi�ed as a result?

. Deferred modi�
ation
an be implemented by keeping updated data

items in lo
al memory of transa
tions and reading data items that have

not been updated dire
tly from the database bu�er. Suggest how to e	-

iently implement a data item read, ensuring that a transa
tion sees its

own updates.

d. What problem would arise with the above te
hnique if transa
tions per-

form a large number of updates?

Answer:

a. The old-value part of an update log re
ord is not required. If the trans-

a
tion has
ommitted, then the old value is no longer ne
essary as there

would be no need to undo the transa
tion. And if the transa
tion was

a
tive when the system
rashed, the old values are still safe in the stable

storage be
ause they haven't been modi�ed yet.

b. During the redo phase, the undo list need not be maintained any more,

sin
e the stable storage does not re�e
t updates due to any un
ommitted

transa
tion.

. A data item read will �rst issue a read request on the lo
al memory of

the transa
tion. If it is found there, it is returned. Otherwise, the item is

154 Chapter 19 Re
overy System

loaded from the database bu�er into the lo
al memory of the transa
tion

and then returned.

d. If a single transa
tion performs a large number of updates, there is a

possibility of the transa
tion running out of memory to store the lo
al

opies of the data items.

19.6 The shadow-paging s
heme requires the page table to be
opied. Suppose the

page table is represented as a B

+

-tree.

a. Suggest how to share as many nodes as possible between the new
opy

and the shadow
opy of the B

+

-tree, assuming that updates are made

only to leaf entries, with no insertions or deletions.

b. Even with the above optimization, logging is mu
h
heaper than a

shadow
opy s
heme, for transa
tions that perform small updates. Ex-

plain why.

Answer:

a. To begin with, we start with the
opy of just the root node pointing to

the shadow
opy. As modi�
ations are made, the leaf entry where the

modi�
ation is made and all the nodes in the path from that leaf node

to the root are
opied and updated. All other nodes are shared.

b. For transa
tions that perform small updates, the shadow-paging s
heme

would
opy multiple pages for a single update, even with the above op-

timization. Logging, on the other hand, just requires small re
ords to

be
reated for every update; the log re
ords are physi
ally together in

one page or a few pages, and thus only a few log page I/O operations

are required to
ommit a transa
tion. Furthermore, the log pages writ-

ten out a
ross subsequent transa
tion
ommits are likely to be adja
ent

physi
ally on disk, minimizing disk arm movement.

19.7 Suppose we (in
orre
tly) modify the re
overy algorithm of Se
tion 19.4 to

note log a
tions taken during transa
tion rollba
k. When re
overing from a

system
rash, transa
tions that were rolled ba
k earlier would then be in
luded

in undo-list and rolled ba
k again. Give an example to show how a
tions taken

during the undo phase of re
overy
ould result in an in
orre
t database state.

(Hint: Consider a data item updated by an aborted transa
tion and then up-

dated by a transa
tion that
ommits.)

Answer:

Consider the following log re
ords generated with the (in
orre
tly) modi�ed

re
overy algorithm:

1. <T

1

start>

Pra
ti
e Exer
ises 155

2. <T

1

, A, 1000, 900>

3. <T

2

start>

4. <T

2

, A, 1000, 2000>

5. <T

2

ommit>

A rollba
k a
tually happened between steps 2 and 3, but there are no log

re
ords re�e
ting the same. Now, this log data is pro
essed by the re
overy

algorithm. At the end of the redo phase, T

1

would get added to the undo-list,

and the value of A would be 2000. During the undo phase, sin
e T

1

is present

in the undo-list, the re
overy algorithm does an undo of statement 2, and A

takes the value 1000. The update made by T

2

, though
ommited, is lost.

The
orre
t sequen
e of logs is as follows:

1. <T

1

start>

2. <T

1

, A, 1000, 900>

3. <T

1

, A, 1000>

4. <T

1

abort>

5. <T

2

start>

6. <T

2

, A, 1000, 2000>

7. <T

2

ommit>

This would make sure that T

1

would not get added to the undo-list after the

redo phase.

19.8 Disk spa
e allo
ated to a �le as a result of a transa
tion should not be released

even if the transa
tion is rolled ba
k. Explain why, and explain how ARIES

ensures that su
h a
tions are not rolled ba
k.

Answer:

If a transa
tion allo
ates a page to a relation, even if the transa
tion is rolled

ba
k, the page allo
ation should not be undone be
ause other transa
tions

may have stored re
ords in the same page. Su
h operations that should not

be undone are
alled nested top a
tions in ARIES. They
an be modeled as

operations whose undo a
tion does nothing. In ARIES su
h operations are

implemented by
reating a dummy CLR whose UndoNextLSN is set su
h that

the transa
tion rollba
k skips the log re
ords generated by the operation.

19.9 Suppose a transa
tion deletes a re
ord, and the free spa
e generated thus is

allo
ated to a re
ord inserted by another transa
tion, even before the �rst trans-

a
tion
ommits.

a. What problem
an o

ur if the �rst transa
tion needs to be rolled ba
k?

b. Would this problem be an issue if page-level lo
king is used instead of

tuple-level lo
king?

156 Chapter 19 Re
overy System

. Suggest how to solve this problem while supporting tuple-level lo
king,

by logging post-
ommit a
tions in spe
ial log re
ords, and exe
uting

them after
ommit. Make sure your s
heme ensures that su
h a
tions

are performed exa
tly on
e.

Answer:

a. If the �rst transa
tion needs to be rolled ba
k, the tuple deleted by that

transa
tion will have to be restored. If undo is performed in the usual

physi
al manner using the old values of data items, the spa
e allo
ated to

the new tuple would get overwritten by the transa
tion undo, damaging

the new tuples, and asso
iated data stru
tures on the disk blo
k. This

means that a logi
al undo operation has to be performed, i.e., an insert

has to be performed to undo the delete, whi
h
ompli
ates re
overy.

On a related note, if the se
ond transa
tion inserts with the same key,

integrity
onstraints might be violated on rollba
k.

b. If page-level lo
king is used, the free spa
e generated by the �rst trans-

a
tion is not allo
ated to another transa
tion till the �rst one
ommits.

So this problem will not be an issue if page-level lo
king is used.

. The problem
an be solved by deferring freeing of spa
e until after the

transa
tion
ommits. To ensure that spa
e will be freed even if there is

a system
rash immediately after
ommit, the
ommit log re
ord
an be

modi�ed to
ontain information about freeing of spa
e (and other sim-

ilar operations) whi
h must be performed after
ommit. The exe
ution

of these operations
an be performed as a transa
tion and log re
ords

generated, following by a post-
ommit log re
ord whi
h indi
ates that

post-
ommit pro
essing has been
ompleted for the transa
tion.

During re
overy, if a
ommit log re
ord is found with post-
ommit

a
tions, but no post-
ommit log re
ord is found, the e�e
ts of any partial

exe
ution of post-
ommit operations are rolled ba
k during re
overy,

and the post-
ommit operations are reexe
uted at the end of re
overy.

If the post-
ommit log re
ord is found, the post-
ommit a
tions are not

reexe
uted. Thus, the a
tions are guaranteed to be exe
uted exa
tly on
e.

The problem of
lashes on primary key values
an be solved by hold-

ing key-level lo
ks so that no other transa
tion
an use the key until the

�rst transa
tion
ompletes.

19.10 Explain the reasons why re
overy of intera
tive transa
tions is more di	
ult

to deal with than is re
overy of bat
h transa
tions. Is there a simple way to deal

with this di	
ulty? (Hint: Consider an automati
 teller ma
hine transa
tion

in whi
h
ash is withdrawn.)

Answer:

Pra
ti
e Exer
ises 157

Intera
tive transa
tions are more di	
ult to re
over from than bat
h transa
-

tions be
ause some a
tions may be irrevo
able. For example, an output (write)

statement may have �red a missile or
aused a bank ma
hine to give money to

a
ustomer. The best way to deal with this is to try to do all output statements

at the end of the transa
tion. That way if the transa
tion aborts in the middle,

no harm will be have been done.

Output operations should ideally be done atomi
ally; for example, ATM

ma
hines often
ount out notes and deliver all the notes together instead of

delivering notes one at a time. If output operations
annot be done atomi
ally,

a physi
al log of output operations, su
h as a disk log of events, or even a video

log of what happened in the physi
al world
an bemaintained to allow perform

re
overy to be performed manually later, for example, by
rediting
ash ba
k

to a
ustomer's a

ount.

19.11 Sometimes a transa
tion has to be undone after it has
ommitted be
ause it

was erroneously exe
uted�for example, be
ause of erroneous input by a bank

teller.

a. Give an example to show that using the normal transa
tion undo me
h-

anism to undo su
h a transa
tion
ould lead to an in
onsistent state.

b. One way to handle this situation is to bring the whole database to a state

prior to the
ommit of the erroneous transa
tion (
alled point-in-time re-

overy). Transa
tions that
ommitted later have their e�e
ts rolled ba
k

with this s
heme.

Suggest a modi�
ation to the re
overy algorithm of Se
tion 19.4 to

implement point-in-time re
overy using database dumps.

. Later nonerroneous transa
tions
an be reexe
uted logi
ally, if the up-

dates are available in the form of SQL but
annot be reexe
uted using

their log re
ords. Why?

Answer:

a. Consider the a bank a

ount A with balan
e $100. Consider two trans-

a
tions T

1

and T

2

, ea
h depositing $10 in the a

ount. Thus the bal-

an
e would be $120 after both these transa
tions are exe
uted. Let the

transa
tions exe
ute in sequen
e: T

1

�rst and then T

2

. The log re
ords

orresponding to the updates of A by transa
tions T

1

and T

2

would be

< T

1

,A, 100, 110 > and < T

2

,A, 110, 120 > respe
tively.

Say we wish to undo transa
tion T

1

. The normal transa
tion undo

me
hanism will repla
e the value in question�A in this example�with

the old-value �eld in the log re
ord. Thus if we undo transa
tion T

1

using

the normal transa
tion undo me
hanism, the resulting balan
e will be

158 Chapter 19 Re
overy System

$100 and we will, in e�e
t, undo both transa
tions, whereas we intend

to undo only transa
tion T

1

.

b. Let the erroneous transa
tion be T

e

.

�

Identify the latest ar
hival dump, say D, before the log re
ord < T

e

,

START>. Restore the database using the dump.

�

Redo all log re
ords starting from the dump D to the log re
ord

< T

e

, COMMIT>. Some transa
tion�apart from transa
tion T

e

�

would be a
tive at the
ommit time of transa
tion T

e

. Let S

1

be the

set of su
h transa
tions.

�

Roll ba
k T

e

and the transa
tions in the set S

1

. This
ompletes point-

in-time re
overy.

In
ase logi
al redo is possible, later transa
tions
an be rex-

e
uted logi
ally, assuming log re
ords
ontaining logi
al redo in-

formation were written for every transa
tion. To perform logi
al

redo of later transa
tions, s
an the log further starting from the log

re
ord < T

e

, COMMIT> to the end of the log. Note the transa
tions

that were started after the
ommit point of T

e

. Let the set of su
h

transa
tions be S

2

. Reexe
ute the transa
tions in set S

1

and S

2

log-

i
ally.

. Consider again an example from the �rst item. Let us assume that both

transa
tions are undone and the balan
e is reverted ba
k to the original

value $100.

Now we wish to redo transa
tion T

2

. If we redo the log re
ord < T

2

,A,

110, 120 >
orresponding to transa
tion T

2

, the balan
e will be
ome

$120 and we will, in e�e
t, redo both transa
tions, whereas we intend to

redo only transa
tion T

2

.

19.12 The re
overy te
hniques that we des
ribed assume that blo
ks are written

atomi
ally to disk. However, a blo
k may be partially written when power fails,

with some se
tors written, and others not yet written.

a. What problems
an partial blo
k writes
ause?

b. Partial blo
k writes
an be dete
ted using te
hniques similar to those

used to validate se
tor reads. Explain how.

. Explain how RAID 1
an be used to re
over from a partially written

blo
k, restoring the blo
k to either its old value or to its new value.

Answer:

FILL IN

Pra
ti
e Exer
ises 159

19.13 The Ora
le database system uses undo log re
ords to provide a snapshot view

of the database under snapshot isolation. The snapshot view seen by transa
-

tion T

i

re�e
ts updates of all transa
tions that had
ommitted when T

i

started

and the updates of T

i

; updates of all other transa
tions are not visible to T

i

.

Des
ribe a s
heme for bu�er handling whereby transa
tions are given a

snapshot view of pages in the bu�er. In
lude details of how to use the log to

generate the snapshot view. You
an assume that operations as well as their

undo a
tions a�e
t only one page.

Answer:

First, determine if a transa
tion is
urrently modifying the bu�er. If not, then

return the
urrent
ontents of the bu�er. Otherwise, examine the re
ords in

the undo log pertaining to this bu�er. Make a
opy of the bu�er, then for

ea
h relevant operation in the undo log, apply the operation to the bu�er
opy

starting with the most re
ent operation and working ba
kwards until the point

at whi
h the modifying transa
tion began. Finally, return the bu�er
opy as

the snapshot bu�er.

	Concurrency Control
	Exercises

