
CHAP T E R

20

Database-System Ar
hite
tures

Pra
ti
e Exer
ises

20.1 Is a multiuser system ne
essarily a parallel system? Why or why not?

Answer:

No. A single pro
essor with only one 
ore 
an run multiple pro
esses to man-

age mutiple users. Most modern systems are parallel, however.

20.2 Atomi
 instru
tions su
h as 
ompare-and-swap and test-and-set also exe
ute a

memory fen
e as part of the instru
tion on many ar
hite
tures. Explain what

is the motivation for exe
uting the memory fen
e, from the viewpoint of data

in shared memory that is prote
ted by a mutex implemented by the atomi


instru
tion. Also explain what a pro
ess should do before releasing a mutex.

Answer:

FILL IN MORE

The memory fen
e ensures that the pro
ess that gets the mutex will see all

updates that happened before the instru
tion, as long as pro
esses exe
ute

a fen
e before releasing the mutex. Thus, even if the data was updated on a

di�erent 
ore, the pro
ess that a
quires the mutex is guaranteed to see the

latest value of the data.

20.3 Instead of storing shared stru
tures in shared memory, an alternative ar
hi-

te
ture would be to store them in the lo
al memory of a spe
ial pro
ess and

a

ess the shared data by interpro
ess 
ommuni
ation with the pro
ess. What

would be the drawba
k of su
h an ar
hite
ture?

Answer:

The drawba
ks would be that two interpro
ess messages would be required

to a
quire lo
ks, one for the request and one to 
on�rm grant. Interpro
ess


ommuni
ation is mu
h more expensive than memory a

ess, so the 
ost of

lo
king would in
rease. The pro
ess storing the shared stru
tures 
ould also

be
ome a bottlene
k.

161



162 Chapter 20 Database-System Ar
hite
tures

The bene�t of this alternative is that the lo
k table is prote
ted better from

erroneous updates sin
e only one pro
ess 
an a

ess it.

20.4 Explain the distin
tion between a lat
h and a lo
k as used for transa
tional


on
urren
y 
ontrol.

Answer:

Lat
hes are short-duration lo
ks that manage a

ess to internal system data

stru
tures. Lo
ks taken by transa
tions are taken on database data items and

are often held for a substantial fra
tion of the duration of the transa
tion.

Lat
h a
quisition and release are not 
overed by the two-phase lo
king proto-


ol.

20.5 Suppose a transa
tion is written in C with embedded SQL, and about 80 per-


ent of the time is spent in the SQL 
ode, with the remaining 20 per
ent spent

in C 
ode. How mu
h speedup 
an one hope to attain if parallelism is used

only for the SQL 
ode? Explain.

Answer:

Sin
e the part whi
h 
annot be parallelized takes 20% of the total running time,

the best speedup we 
an hope for is 5. In Amdahl's law:

1

(1*p)+(p_n)

, p = 4_5

and n is arbitrarily large. So, 1 * p = 1_5 and p_n aproa
hes zero.

20.6 Consider a pair of pro
esses in a shared memory system su
h that pro
ess

A updates a data stru
ture, and then sets a �ag to indi
ate that the update is


ompleted. Pro
ess B monitors the �ag, and starts pro
essing the data stru
-

ture only after it �nds the �ag is set.

Explain the problems that 
ould arise in a memory ar
hite
ture where

writes may be reordered, and explain how the sfen
e and lfen
e instru
tions


an be used to ensure the problem does not o

ur.

Answer:

The goal here is that the 
onsumer pro
ess B should see the data stru
ture state

after all updates have been 
ompleted. But out of order writes to main memory


an result in the 
onsumer pro
ess seeing some but not all the updates to the

data stru
ture, even after the �ag has been set.

To avoid this problem, the produ
er pro
ess A should issue an sfen
e af-

ter the updates, but before setting the �ag. It 
an optionally issue an sfen
e

after setting the �ag, to push the update to memory with minimum delay. The


onsumer pro
ess B should 
orrespondingly issue an lfen
e after the �ag has

been found to be set, before a

essing the datastru
ture.

20.7 In a shared-memory ar
hite
ture, why might the time to a

ess a memory lo-


ation vary depending on the memory lo
ation being a

essed?

Answer:



Pra
ti
e Exer
ises 163

In a NUMA ar
hite
ture, a pro
essor 
an a

ess its own memory faster than it


an a

ess shared memory asso
iated with another pro
essor due to the time

taken to transfer data between pro
essors.

20.8 Most operating systems for parallel ma
hines (i) allo
ate memory in a lo
al

memory area when a pro
ess requests memory, and (ii) avoid moving a pro-


ess from one 
ore to another. Why are these optimizations important with a

NUMA ar
hite
ture?

Answer:

In a NUMA ar
hite
ture, a pro
essor 
an a

ess its own memory faster that it


an a

ess shared memory asso
iated with another pro
essor due to the time

taken to transfer data between pro
essors. Thus, if the data of a pro
ess resides

in lo
al memory, the pro
ess exe
ution would be faster than if the memory is

non-lo
al.

Further, if a pro
ess moves from one 
ore to another, it may lose the ben-

e�ts of lo
al allo
ation of memory, and be for
ed to 
arry out many memory

a

esses from other 
ores. To avoid this problem,most operating systems avoid

moving a pro
ess from one 
ore to another wherever possible.

20.9 Some database operations su
h as joins 
an see a signi�
ant di�eren
e in

speed when data (e.g., one of the relations involved in a join) �ts in mem-

ory as 
ompared to the situation where the data do not �t in memory. Show

how this fa
t 
an explain the phenomenon of superlinear speedup, where an

appli
ation sees a speedup greater than the amount of resour
es allo
ated to

it.

Answer:

We illustrate this by an example. Suppose we double the amount of main mem-

ory and that as a result, one of the relations now �ts entirely in main memory.

We 
an now use a nested-loop join with the inner-loop relation entirely in main

memory and in
ur disk a

esses for reading the input relations only one time.

With the original amount of main memory, the best join strategy may have had

to read a relation in from disk more than on
e.

20.10 What is the key distin
tion between homogeneous and federated distributed

database systems?

Answer:

The key diferen
e is the degree of 
ooperation among the systems and the

degree of 
entralized 
ontrol. Homogeneous systems share a global s
hema,

run the same database-system software and a
tively 
ooperate on query pro-


essing. Federated systems may have distin
t s
hemas and software, and may


ooperate in only a limited manner.



164 Chapter 20 Database-System Ar
hite
tures

20.11 Why might a 
lient 
hoose to subs
ribe only to the basi
 infrastru
ture-as-a-

servi
e model rather than to the servi
es o�ered by other 
loud servi
e mod-

els?

Answer:

A 
lient may wish to 
ontrol its own appli
ations and thus may not wish to

subs
ribe to a software-as-a-servi
e model; or the 
lient might wish further to

be able to 
hoose and manage its own database system and thus not wish to

subs
ribe to a platform-as-a-servi
e model.

20.12 Why do 
loud-
omputing servi
es support traditional database systems best by

using a virtual ma
hine, instead of running dire
tly on the servi
e provider's

a
tual ma
hine, assuming that data is on external storage?

Answer:

By using a virtual ma
hine, if a physi
al ma
hine fails, virtual ma
hines run-

ning on that physi
al ma
hine 
an be restarted qui
kly on one or more other

physi
al ma
hines, improving availability. (Assuming of 
ourse that data re-

mains a

essible, either by storing multiple 
opies of data, or by storing data

in an highly available external storage system.)


	Recovery System
	Exercises


