
CHAP T E R

22

Parallel and Distributed Query

Proessing

Pratie Exerises

22.1 What form of parallelism (interquery, interoperation, or intraoperation) is

likely to be the most important for eah of the following tasks?

a. Inreasing the throughput of a system with many small queries

b. Inreasing the throughput of a system with a few large queries when the

number of disks and proessors is large

Answer:

a. When there are many small queries, interquery parallelism gives good

throughput. Parallelizing eah of these small queries would inrease the

initiation overhead, without any signi�ant redution in response time.

b. With a few large queries, intraquery parallelism is essential to get fast

response times. Given that there are large numbers of proessors and

disks, only intraoperation parallelism an take advantage of the parallel

hardware, for queries typially have few operations, but eah one needs

to proess a large number of tuples.

22.2 Desribe how partial aggregation an be implemented for the ount and avg

aggregate funtions to redue data transfer.

Answer:

FILL

22.3 With pipelined parallelism, it is often a good idea to perform several operations

in a pipeline on a single proessor, even when many proessors are available.

a. Explain why.

171

172 Chapter 22 Parallel and Distributed Query Proessing

b. Would the arguments you advaned in part a hold if the mahine has a

shared-memory arhiteture? Explain why or why not.

. Would the arguments in part a hold with independent parallelism? (That

is, are there ases where, even if the operations are not pipelined and

there are many proessors available, it is still a good idea to perform

several operations on the same proessor?)

Answer:

a. The speedup obtained by parallelizing the operations would be o�set by

the data transfer overhead, as eah tuple produed by an operator would

have to be transferred to its onsumer, whih is running on a di�erent

proessor.

b. In a shared-memory arhiteture, transferring the tuples is very e	ient.

So the above argument does not hold to any signi�ant degree.

. Even if two operations are independent, it may be that they both supply

their outputs to a ommon third operator. In that ase, running all three

on the same proessor may be better than transferring tuples aross pro-

essors.

22.4 Consider join proessing using symmetri fragment and repliate with range

partitioning. How an you optimize the evaluation if the join ondition is of

the form Ý r:A * s:B Ý f k, where k is a small onstant? Here, Ý x Ý denotes

the absolute value of x. A join with suh a join ondition is alled a band join.

Answer:

Relation r is partitioned into n partitions, r

0

, r

1

,§ , r

n*1

, and s is also parti-

tioned into n partitions, s

0

, s

1

,§ , s

n*1

. The partitions are repliated and as-

signed to proessors as shown in ??

Eah fragment is repliated on three proessors only, unlike in the general

ase where it is repliated on n proessors. The number of proessors required

is now approximately 3n, instead of n

2

in the general ase. Therefore, given the

same number of proessors, we an partition the relations intomore fragments

with this optimization, thus making eah loal join faster.

22.5 Suppose relation r is stored partitioned and indexed on A, and s is stored par-

titioned and indexed on B. Consider the query:

r:C

ount(s:D)

((�

A>5

(r)) Æ

r:B=s:B

s)

a. Give a parallel query plan using the exhange operator, for omputing

the subtree of the query involving only the selet and join operators.

b. Now extend the above to ompute the aggregate. Make sure to use pre-

aggregation to minimize the data transfer.

Pratie Exerises 173

. . . .

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

s0 s1 s2 s3 sn 1

r 0

r 1

r 2

r n 1

P0,0 P0,1

P1,0 P1,1 P1,2

P2,1 P2,2 P2,3

P n 1,
n 1

Figure 22.101 The three levels of data abstration.

. Skew during aggregation is a serious problem. Explain how pre-

aggregation as above an also signi�antly redue the e�et of skew dur-

ing aggregation.

Answer:

a. This is a small variant of an example from the hapter.

b. This one is very straightforward, sine it is already the example in the

hapter

. Pre-aggregation an greatly redue the size of the data sent to the �nal

aggregation step. So even if there is skew, the absolute data sizes are

smaller, resulting in signi�ant redution in the impat of the skew.

22.6 Suppose relation r is stored partitioned and indexed on A, and s is stored parti-

tioned and indexed on B. Consider the join r Æ

r:B=s:B

s. Suppose s is relatively

small, but not small enough to make asymmetri fragment-and-repliate join

the best hoie, and r is large, with most r tuples not mathing any s tuple. A

hash-join an be performed but with a semijoin �lter used to redue the data

transfer. Explain how semijoin �ltering using Bloom �lters would work in this

parallel join setting.

Answer:

174 Chapter 22 Parallel and Distributed Query Proessing

Sine s is small, it makes sense to send a Bloom�lter on s:B to all partitions of r.

Then we use the Bloom �lter to �nd r tuples that may math some s tuple, and

repartition the mathing r tuples on r:B, sending them to the nodes ontaining

s (whih is already partitioned on s:B). Then the join an be performed at eah

site storing s tuples. The Bloom �lter an signi�antly redue the number of r

tuples transferred.

Note that repartitioning s does notmake sense sine it is already partitioned

on the join attribute, unlike r.

22.7 Suppose you want to ompute r�

r:A=s:A

s.

a. Suppose s is a small relation, while r is stored partitioned on r:B. Give

an e	ient parallel algorithm for omputing the left outer join.

b. Now suppose that r is a small relation, and s is a large relation, stored

partitioned on attribute s:B. Give an e	ient parallel algorithm for om-

puting the above left outer join.

Answer:

a. Repliating s to all nodes, and omputing the left outerjoin indepen-

dently at eah node would be a good option in this ase.

b. The best tehnique in this ase is to repliate r to all nodes, and ompute

r Æ s

i

at eah node i. Then, we send bak the list of r tuples that had

mathes at site i bak to a single node, whih takes the union of the

returned r tuples from eah node i. Tuples in r that are absent in this

union are then padded with nulls and added to the output.

22.8 Suppose you want to ompute

A,B

sum(C)

on a relation s whih is stored par-

titioned on s:B. Explain how you would do it e	iently, minimizing/avoiding

repartitioning, if the number of distint s:B values is large, and the distribution

of number of tuples with eah s:B value is relatively uniform.

Answer:

The aggregate an be omputed loally at eah node, with no repartitioning

at all, sine partitioning on s:B implies partitioning on s:A, s:B. To understand

why, partitioning on (A,B) requires that tuples with the same value for (A,B)

must be in the same partition. Partitioning on just B, ignoring A, also satis�es

this requirement.

Of ourse not partitioning at all also satis�es the requirement, but that

defeats the purpose of parallel query proessing. As long as the number of

distint s:B values is large enough and the number of tuples with eah s:B value

are relatively uniform and not highly skewed, using the existing partitioning on

s:B will give good performane.

Pratie Exerises 175

22.9 MapRedue implementations provide fault tolerane, where you an reexeute

only failed mappers or reduers. By default, a partitioned parallel join exeu-

tion would have to be rerun ompletely in ase of even one node failure. It is

possible to modify a parallel partitioned join exeution to add fault tolerane

in a manner similar to MapRedue, so failure of a node does not require full

reexeution of the query, but only ations related to that node. Explain what

needs to be done at the time of partitioning at the sending node and reeiving

node to do this.

Answer: This is an appliation of ideas from MapRedue to join proessing.

There are two steps: �rst the data is repartitioned, and then join is performed,

orresponding to the map and redue steps.

A failure during the repartition an be handled by reexeuting the work

of the failed node. However, the destination must ensure that tuples are not

proessed twie. To do so, it an store all reeived tuples in loal disk, and

start proessing only after all tuples have been reeived. If the sender fails

meanwhile, and a new node takes over, the reeivers an disard all tuples

reeived from the failed sender, and reeive them again. This part is not too

expensive.

Failures during the �nal join omputation an be handled similar to re-

duer failure, by getting the data again from the partitioners. However, in the

MapRedue paradigm tuples to be sent to reduers are stored on disk at the

mappers, so they an be resent if required. This an also be done with parallel

joins, but there is now a signi�ant extra ost of writing the tuples to disk.

Another option is to �nd the tuples to be sent to the failed join node by

resanning the input. But now, all partitioners have to reread their entire input,

whih makes the proess very expensive, similar in ost to rerunning the join.

As a result this is not viewed as useful.

22.10 If a parallel data-store is used to store two relations r and s and we need to join

r and s, it may be useful to maintain the join as a materialized view. What are

the bene�ts and overheads in terms of overall throughput, use of spae, and

response time to user queries?

Answer:

Performing a join on a loud data-storage system an be very expensive, if

either of the relations to be joined is partitioned on attributes other than the

join attributes, sine a very large amount of data would need to be transferred

to perform the join. However, if r Æ s is maintained as a materialized view,

it an be updated at a relatively low ost eah time eah time either r or s is

updated, instead of inurring a very large ost when the query is exeuted.

Thus, queries are bene�tted at some ost to updates.

176 Chapter 22 Parallel and Distributed Query Proessing

With the materialized view, overall throughput will be muh better if the

join query is exeuted reasonably often relative to updates, but may be worse

if the join is rarely used, but updates are frequent.

The materialized view will ertainly require extra spae, but given that disk

apaities are very high relative to IO (seek) operations and transfer rates, the

extra spae is likely to not be an major overhead.

The materialized view will obviously be very useful to evaluate join queries,

reduing time greatly by reduing data transfer aross mahines.

22.11 Explain how eah of the following join algorithms an be implemented using

the MapRedue framework:

a. Broadast join (also known as asymmetri fragment-and-repliate join).

b. Indexed nested loop join, where the inner relation is stored in a parallel

data-store.

. Partitioned join.

Answer:

FILL

	Parallel and Distributed Storage
	Exercises

