
CHAP T E R

22

Parallel and Distributed Query

Pro
essing

Pra
ti
e Exer
ises

22.1 What form of parallelism (interquery, interoperation, or intraoperation) is

likely to be the most important for ea
h of the following tasks?

a. In
reasing the throughput of a system with many small queries

b. In
reasing the throughput of a system with a few large queries when the

number of disks and pro
essors is large

Answer:

a. When there are many small queries, interquery parallelism gives good

throughput. Parallelizing ea
h of these small queries would in
rease the

initiation overhead, without any signi�
ant redu
tion in response time.

b. With a few large queries, intraquery parallelism is essential to get fast

response times. Given that there are large numbers of pro
essors and

disks, only intraoperation parallelism
an take advantage of the parallel

hardware, for queries typi
ally have few operations, but ea
h one needs

to pro
ess a large number of tuples.

22.2 Des
ribe how partial aggregation
an be implemented for the
ount and avg

aggregate fun
tions to redu
e data transfer.

Answer:

FILL

22.3 With pipelined parallelism, it is often a good idea to perform several operations

in a pipeline on a single pro
essor, even when many pro
essors are available.

a. Explain why.

171

172 Chapter 22 Parallel and Distributed Query Pro
essing

b. Would the arguments you advan
ed in part a hold if the ma
hine has a

shared-memory ar
hite
ture? Explain why or why not.

. Would the arguments in part a hold with independent parallelism? (That

is, are there
ases where, even if the operations are not pipelined and

there are many pro
essors available, it is still a good idea to perform

several operations on the same pro
essor?)

Answer:

a. The speedup obtained by parallelizing the operations would be o�set by

the data transfer overhead, as ea
h tuple produ
ed by an operator would

have to be transferred to its
onsumer, whi
h is running on a di�erent

pro
essor.

b. In a shared-memory ar
hite
ture, transferring the tuples is very e	
ient.

So the above argument does not hold to any signi�
ant degree.

. Even if two operations are independent, it may be that they both supply

their outputs to a
ommon third operator. In that
ase, running all three

on the same pro
essor may be better than transferring tuples a
ross pro-

essors.

22.4 Consider join pro
essing using symmetri
 fragment and repli
ate with range

partitioning. How
an you optimize the evaluation if the join
ondition is of

the form Ý r:A * s:B Ý f k, where k is a small
onstant? Here, Ý x Ý denotes

the absolute value of x. A join with su
h a join
ondition is
alled a band join.

Answer:

Relation r is partitioned into n partitions, r

0

, r

1

,§ , r

n*1

, and s is also parti-

tioned into n partitions, s

0

, s

1

,§ , s

n*1

. The partitions are repli
ated and as-

signed to pro
essors as shown in ??

Ea
h fragment is repli
ated on three pro
essors only, unlike in the general

ase where it is repli
ated on n pro
essors. The number of pro
essors required

is now approximately 3n, instead of n

2

in the general
ase. Therefore, given the

same number of pro
essors, we
an partition the relations intomore fragments

with this optimization, thus making ea
h lo
al join faster.

22.5 Suppose relation r is stored partitioned and indexed on A, and s is stored par-

titioned and indexed on B. Consider the query:

r:C

ount(s:D)

((�

A>5

(r)) Æ

r:B=s:B

s)

a. Give a parallel query plan using the ex
hange operator, for
omputing

the subtree of the query involving only the sele
t and join operators.

b. Now extend the above to
ompute the aggregate. Make sure to use pre-

aggregation to minimize the data transfer.

Pra
ti
e Exer
ises 173

. . . .

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

s0 s1 s2 s3 sn 1

r 0

r 1

r 2

r n 1

P0,0 P0,1

P1,0 P1,1 P1,2

P2,1 P2,2 P2,3

P n 1,
n 1

Figure 22.101 The three levels of data abstra
tion.

. Skew during aggregation is a serious problem. Explain how pre-

aggregation as above
an also signi�
antly redu
e the e�e
t of skew dur-

ing aggregation.

Answer:

a. This is a small variant of an example from the
hapter.

b. This one is very straightforward, sin
e it is already the example in the

hapter

. Pre-aggregation
an greatly redu
e the size of the data sent to the �nal

aggregation step. So even if there is skew, the absolute data sizes are

smaller, resulting in signi�
ant redu
tion in the impa
t of the skew.

22.6 Suppose relation r is stored partitioned and indexed on A, and s is stored parti-

tioned and indexed on B. Consider the join r Æ

r:B=s:B

s. Suppose s is relatively

small, but not small enough to make asymmetri
 fragment-and-repli
ate join

the best
hoi
e, and r is large, with most r tuples not mat
hing any s tuple. A

hash-join
an be performed but with a semijoin �lter used to redu
e the data

transfer. Explain how semijoin �ltering using Bloom �lters would work in this

parallel join setting.

Answer:

174 Chapter 22 Parallel and Distributed Query Pro
essing

Sin
e s is small, it makes sense to send a Bloom�lter on s:B to all partitions of r.

Then we use the Bloom �lter to �nd r tuples that may mat
h some s tuple, and

repartition the mat
hing r tuples on r:B, sending them to the nodes
ontaining

s (whi
h is already partitioned on s:B). Then the join
an be performed at ea
h

site storing s tuples. The Bloom �lter
an signi�
antly redu
e the number of r

tuples transferred.

Note that repartitioning s does notmake sense sin
e it is already partitioned

on the join attribute, unlike r.

22.7 Suppose you want to
ompute r�

r:A=s:A

s.

a. Suppose s is a small relation, while r is stored partitioned on r:B. Give

an e	
ient parallel algorithm for
omputing the left outer join.

b. Now suppose that r is a small relation, and s is a large relation, stored

partitioned on attribute s:B. Give an e	
ient parallel algorithm for
om-

puting the above left outer join.

Answer:

a. Repli
ating s to all nodes, and
omputing the left outerjoin indepen-

dently at ea
h node would be a good option in this
ase.

b. The best te
hnique in this
ase is to repli
ate r to all nodes, and
ompute

r Æ s

i

at ea
h node i. Then, we send ba
k the list of r tuples that had

mat
hes at site i ba
k to a single node, whi
h takes the union of the

returned r tuples from ea
h node i. Tuples in r that are absent in this

union are then padded with nulls and added to the output.

22.8 Suppose you want to
ompute

A,B

sum(C)

on a relation s whi
h is stored par-

titioned on s:B. Explain how you would do it e	
iently, minimizing/avoiding

repartitioning, if the number of distin
t s:B values is large, and the distribution

of number of tuples with ea
h s:B value is relatively uniform.

Answer:

The aggregate
an be
omputed lo
ally at ea
h node, with no repartitioning

at all, sin
e partitioning on s:B implies partitioning on s:A, s:B. To understand

why, partitioning on (A,B) requires that tuples with the same value for (A,B)

must be in the same partition. Partitioning on just B, ignoring A, also satis�es

this requirement.

Of
ourse not partitioning at all also satis�es the requirement, but that

defeats the purpose of parallel query pro
essing. As long as the number of

distin
t s:B values is large enough and the number of tuples with ea
h s:B value

are relatively uniform and not highly skewed, using the existing partitioning on

s:B will give good performan
e.

Pra
ti
e Exer
ises 175

22.9 MapRedu
e implementations provide fault toleran
e, where you
an reexe
ute

only failed mappers or redu
ers. By default, a partitioned parallel join exe
u-

tion would have to be rerun
ompletely in
ase of even one node failure. It is

possible to modify a parallel partitioned join exe
ution to add fault toleran
e

in a manner similar to MapRedu
e, so failure of a node does not require full

reexe
ution of the query, but only a
tions related to that node. Explain what

needs to be done at the time of partitioning at the sending node and re
eiving

node to do this.

Answer: This is an appli
ation of ideas from MapRedu
e to join pro
essing.

There are two steps: �rst the data is repartitioned, and then join is performed,

orresponding to the map and redu
e steps.

A failure during the repartition
an be handled by reexe
uting the work

of the failed node. However, the destination must ensure that tuples are not

pro
essed twi
e. To do so, it
an store all re
eived tuples in lo
al disk, and

start pro
essing only after all tuples have been re
eived. If the sender fails

meanwhile, and a new node takes over, the re
eivers
an dis
ard all tuples

re
eived from the failed sender, and re
eive them again. This part is not too

expensive.

Failures during the �nal join
omputation
an be handled similar to re-

du
er failure, by getting the data again from the partitioners. However, in the

MapRedu
e paradigm tuples to be sent to redu
ers are stored on disk at the

mappers, so they
an be resent if required. This
an also be done with parallel

joins, but there is now a signi�
ant extra
ost of writing the tuples to disk.

Another option is to �nd the tuples to be sent to the failed join node by

res
anning the input. But now, all partitioners have to reread their entire input,

whi
h makes the pro
ess very expensive, similar in
ost to rerunning the join.

As a result this is not viewed as useful.

22.10 If a parallel data-store is used to store two relations r and s and we need to join

r and s, it may be useful to maintain the join as a materialized view. What are

the bene�ts and overheads in terms of overall throughput, use of spa
e, and

response time to user queries?

Answer:

Performing a join on a
loud data-storage system
an be very expensive, if

either of the relations to be joined is partitioned on attributes other than the

join attributes, sin
e a very large amount of data would need to be transferred

to perform the join. However, if r Æ s is maintained as a materialized view,

it
an be updated at a relatively low
ost ea
h time ea
h time either r or s is

updated, instead of in
urring a very large
ost when the query is exe
uted.

Thus, queries are bene�tted at some
ost to updates.

176 Chapter 22 Parallel and Distributed Query Pro
essing

With the materialized view, overall throughput will be mu
h better if the

join query is exe
uted reasonably often relative to updates, but may be worse

if the join is rarely used, but updates are frequent.

The materialized view will
ertainly require extra spa
e, but given that disk

apa
ities are very high relative to IO (seek) operations and transfer rates, the

extra spa
e is likely to not be an major overhead.

The materialized view will obviously be very useful to evaluate join queries,

redu
ing time greatly by redu
ing data transfer a
ross ma
hines.

22.11 Explain how ea
h of the following join algorithms
an be implemented using

the MapRedu
e framework:

a. Broad
ast join (also known as asymmetri
 fragment-and-repli
ate join).

b. Indexed nested loop join, where the inner relation is stored in a parallel

data-store.

. Partitioned join.

Answer:

FILL

	Parallel and Distributed Storage
	Exercises

