
CHAP T E R

23

Parallel and Distributed

Transa
tion Pro
essing

Pra
ti
e Exer
ises

23.1 What are the key di�eren
es between a lo
al-area network and a wide-area

network, that a�e
t the design of a distributed database?

Answer:

Data transfer is mu
h faster, and
ommuni
ation laten
y is mu
h lower on

a lo
al-area network (LAN) than on a wide-area network (WAN). Proto
ols

that require multiple rounds of
ommuni
ation maybe a

eptable in a lo
al

area network, but distributed databases designed for wide-area networks try to

minimize the number of su
h rounds of
ommuni
ation.

Repli
ation to a lo
al node for redu
ing laten
y is quite important in a wide-

area network, but less so in a lo
al area network.

Network link failure and network partition are also more likely in a wide-area

network than in a lo
al area network, where systems
an be designed with

more redundan
y to deal with failures. Proto
ols designed for wide-area net-

works should handle su
h failures without
reating any in
onsisten
ies in the

database.

23.2 To build a highly available distributed system, you must know what kinds of

failures
an o

ur.

a. List possible types of failure in a distributed system.

b. Whi
h items in your list from part a are also appli
able to a
entralized

system?

Answer:

a. The types of failure that
an o

ur in a distributed system in
lude

i. Site failure.

177

178 Chapter 23 Parallel and Distributed Transa
tion Pro
essing

ii. Disk failure.

iii. Communi
ation failure, leading to dis
onne
tion of one or more

sites from the network.

b. The �rst two failure types
an also o

ur on
entralized systems.

23.3 Consider a failure that o

urs during 2PC for a transa
tion. For ea
h possible

failure that you listed in Exer
ise 23.2a, explain how 2PC ensures transa
tion

atomi
ity despite the failure.

Answer:

A proof that 2PC guarantees atomi

ommits/aborts in spite of site and link

failures follows. The main idea is that after all sites reply with a <ready T>

message, only the
oordinator of a transa
tion
an make a
ommit or abort

de
ision. Any subsequent
ommit or abort by a site
an happen only after it

as
ertains the
oordinator's de
ision, either dire
tly from the
oordinator or

indire
tly from some other site. Let us enumerate the
ases for a site aborting,

and then for a site
ommitting.

a. A site
an abort a transa
tion T (by writing an <abort T> log re
ord)

only under the following
ir
umstan
es:

i. It has not yet written a <ready T> log re
ord. In this
ase, the
oor-

dinator
ould not have got, and will not get, a<ready T> or<
ommit

T> message from this site. Therefore, only an abort de
ision
an be

made by the
oordinator.

ii. It has written the <ready T> log re
ord, but on inquiry it found out

that some other site has an <abort T> log re
ord. In this
ase it is

orre
t for it to abort, be
ause that other site would have as
ertained

the
oordinator's de
ision (either dire
tly or indire
tly) before a
tu-

ally aborting.

iii. It is itself the
oordinator. In this
ase also no site
ould have
om-

mitted, or will
ommit in the future, be
ause
ommit de
isions
an

be made only by the
oordinator.

b. A site
an
ommit a transa
tion T (by writing a <
ommit T> log re
ord)

only under the following
ir
umstan
es:

i. It has written the <ready T> log re
ord, and on inquiry it found out

that some other site has a <
ommit T> log re
ord. In this
ase it

is
orre
t for it to
ommit, be
ause that other site would have as
er-

tained the
oordinator's de
ision (either dire
tly or indire
tly) before

a
tually
ommitting.

Pra
ti
e Exer
ises 179

ii. It is itself the
oordinator. In this
ase no other parti
ipating site
an

abort or would have aborted be
ause abort de
isions are made only

by the
oordinator.

23.4 Consider a distributed system with two sites, A and B. Can site A distinguish

among the following?

�

B goes down.

�

The link between A and B goes down.

�

B is extremely overloaded and response time is 100 times longer than nor-

mal.

What impli
ations does your answer have for re
overy in distributed systems?

Answer:

Site A
annot distinguish between the three
ases until
ommuni
ation has

resumed with site B. The a
tion whi
h it performs while B is ina

essible must

be
orre
t irrespe
tive of whi
h of these situations has a
tually o

urred, and

it must be su
h that B
an re-integrate
onsistently into the distributed system

on
e
ommuni
ation is restored.

23.5 The persistent messaging s
heme des
ribed in this
hapter depends on time-

stamps. A drawba
k is that they
an dis
ard re
eived messages only if they are

too old, and may need to keep tra
k of a large number of re
eived messages.

Suggest an alternative s
heme based on sequen
e numbers instead of time-

stamps, that
an dis
ard messages more rapidly.

Answer:

We
an have a s
heme based on sequen
e numbers similar to the s
heme based

on timestamps. We tag ea
h message with a sequen
e number that is unique

for the (sending site, re
eiving site) pair. The number is in
reased by 1 for ea
h

new message sent from the sending site to the re
eiving site.

The re
eiving site stores and a
knowledges a re
eived message only if it has re-

eived all lower-numbered messages also; the message is stored in the re
eived-

messages relation.

The sending site retransmits a message until it has re
eived an a
k from the

re
eiving site
ontaining the sequen
e number of the transmitted message or a

higher sequen
e number. On
e the a
knowledgment is re
eived, it
an delete

the message from its send queue.

The re
eiving site dis
ards all messages it re
eives that have a lower sequen
e

number than the latest stored message from the sending site. The re
eiving

site dis
ards from re
eived-messages all but the (number of the) most re
ent

message from ea
h sending site (message
an be dis
arded only after being

pro
essed lo
ally).

180 Chapter 23 Parallel and Distributed Transa
tion Pro
essing

Note that this s
heme requires a �xed (and small) overhead at the re
eiving

site for ea
h sending site, regardless of the number of messages re
eived. In

ontrast, the timestamp s
heme requires extra spa
e for every message. The

timestamp s
heme would have lower storage overhead if the number of mes-

sages re
eived within the timeout interval is small
ompared to the number of

sites, whereas the sequen
e number s
heme would have lower overhead other-

wise.

23.6 Explain the di�eren
e between data repli
ation in a distributed system and the

maintenan
e of a remote ba
kup site.

Answer:

In remote ba
kup systems, all transa
tions are performed at the primary site

and the entire database is repli
ated at the remote ba
kup site. The remote

ba
kup site is kept syn
hronized with the updates at the primary site by send-

ing all log re
ords. Whenever the primary site fails, the remote ba
kup site

takes over pro
essing.

The distributed systems o�er greater availability by having multiple
opies of

the data at di�erent sites, whereas the remote ba
kup systems o�er lesser avail-

ability at lower
ost and exe
ution overhead. Di�erent data items may be repli-

ated at di�erent nodes.

In a distributed system, transa
tion
ode
an run at all the sites, whereas in a

remote ba
kup system it runs only at the primary site. The distributed system

transa
tions needs to follow two-phase
ommit or other
onsensus proto
ols

to keep the data in
onsistent state, whereas a remote ba
kup system does not

follow two-phase
ommit and avoids related overhead.

23.7 Give an example where lazy repli
ation
an lead to an in
onsistent database

state even when updates get an ex
lusive lo
k on the primary (master)
opy if

data were read from a node other than the master.

Answer:

Consider the balan
e in an a

ount, repli
ated at N sites. Let the
urrent bal-

an
e be $100 �
onsistent a
ross all sites. Consider two transa
tions T

1

and

T

2

ea
h depositing $10 in the a

ount. Thus the balan
e would be $120 after

both these transa
tions are exe
uted. Let the transa
tions exe
ute in sequen
e:

T

1

�rst and then T

2

. Suppose the
opy of the balan
e at one of the sites, say

s, is not
onsistent � due to lazy repli
ation strategy � with the primary
opy

after transa
tion T

1

is exe
uted, and let transa
tion T

2

read this
opy of the

balan
e. One
an see that the balan
e at the primary site would be $110 at the

end.

23.8 Consider the following deadlo
k-dete
tion algorithm. When transa
tion T

i

, at

site S

1

, requests a resour
e from T

j

, at site S

3

, a request message with time-

stamp n is sent. The edge (T

i

,T

j

, n) is inserted in the lo
al wait-for graph of

Pra
ti
e Exer
ises 181

S

1

. The edge (T

i

,T

j

, n) is inserted in the lo
al wait-for graph of S

3

only if T

j

has re
eived the request message and
annot immediately grant the requested

resour
e. A request from T

i

to T

j

in the same site is handled in the usual man-

ner; no timestamps are asso
iated with the edge (T

i

,T

j

). A
entral
oordinator

invokes the dete
tion algorithm by sending an initiating message to ea
h site

in the system.

On re
eiving this message, a site sends its lo
al wait-for graph to the
o-

ordinator. Note that su
h a graph
ontains all the lo
al information that the

site has about the state of the real graph. The wait-for graph re�e
ts an instan-

taneous state of the site, but it is not syn
hronized with respe
t to any other

site.

When the
ontroller has re
eived a reply from ea
h site, it
onstru
ts a

graph as follows:

�

The graph
ontains a vertex for every transa
tion in the system.

�

The graph has an edge (T

i

,T

j

) if and only if:

°

There is an edge (T

i

,T

j

) in one of the wait-for graphs.

°

An edge (T

i

,T

j

, n) (for some n) appears in more than one wait-for

graph.

Show that, if there is a
y
le in the
onstru
ted graph, then the system is in a

deadlo
k state, and that, if there is no
y
le in the
onstru
ted graph, then the

system was not in a deadlo
k state when the exe
ution of the algorithm began.

Answer:

Let us say a
y
le T

i

� T

j

� 5 � T

m

� T

i

exists in the graph built by

the
ontroller. The edges in the graph will either be lo
al edgem (T

k

,T

l

) or

distributed edges of the form (T

k

,T

l

, n). Ea
h lo
al edge (T

k

,T

l

) de�nitely

implies that T

k

is waiting for T

l

. Sin
e a distributed edge (T

k

,T

l

, n) is inserted

into the graph only if T

k

's request has rea
hed T

l

and T

l

annot immediately

release the lo
k, T

k

is indeed waiting for T

l

. Therefore every edge in the
y
le

indeed represents a transa
tion waiting for another. For a detailed proof that

this implies a deadlo
k, refer to Stuart et al. [1984℄.

We now prove the
onverse impli
ation. As soon as it is dis
overed that T

k

is

waiting for T

l

:

a. A lo
al edge (T

k

,T

l

) is added if both are on the same site.

b. The edge (T

k

,T

l

, n) is added in both the sites, if T

k

and T

l

are on di�erent

sites.

Therefore, if the algorithm were able to
olle
t all the lo
al wait-for graphs at

the same instant, it would de�nitely dis
over a
y
le in the
onstru
ted graph,

in
ase there is a
ir
ular wait at that instant. If there is a
ir
ular wait at the

instant when the algorithm began exe
ution, none of the edges parti
ipating in

182 Chapter 23 Parallel and Distributed Transa
tion Pro
essing

that
y
le
an disappear until the algorithm �nishes. Therefore, even though

the algorithm
annot
olle
t all the lo
al graphs at the same instant, any
y
le

whi
h existed just before it started will be dete
ted.

23.9 Consider the
hain-repli
ation proto
ol, des
ribed in Se
tion 23.4.3.2, whi
h

is a variant of the primary-
opy proto
ol.

a. If lo
king is used for
on
urren
y
ontrol, what is the earliest point when

a pro
ess
an release an ex
lusive lo
k after updating a data item?

b. While ea
h data item
ould have its own
hain, give two reasons it would

be preferable to have a
hain de�ned at a higher level, su
h as for ea
h

partition or tablet.

. How
an
onsensus proto
ols be used to ensure that the
hain is

uniquely determined at any point in time?

Answer:

a. The lo
k
an be released only after the update has been re
orded at the

tail of the
hain, sin
e further reads will read the tail. Two phase lo
king

may also have to be respe
ted.

b. The overhead of re
ording
hains per data item would be high. Even

more so, in
ase of failures,
hains have to be updated, whi
h would

have an even greater overhead if done per item.

. All nodes in the
hain have to agree on the
hain membership and or-

der. Consensus
an be used to ensure that updates to the
hain are done

in a fault-tolerant manner. A fault-tolerant
oordination servi
e su
h as

ZooKeeper or Chubby
ould be used to ensure this
onsensus, by updat-

ing metadata that is repli
ated using
onsensus; the
oordination servi
e

hides the details of
onsensus, and allows storage and update of (a lim-

ited amount of) metadata.

23.10 If the primary
opy s
heme is used for repli
ation, and the primary gets dis-

onne
ted from the rest of the system, a new node may get ele
ted as primary.

But the old primary may not realize it has got dis
onne
ted, and may get re-

onne
ted subsequently without realizing that there is a new primary.

a. What problems
an arise if the old primary does not realize that a new

one has taken over?

b. How
an leases be used to avoid these problems?

. Would su
h a situation, where a parti
ipant node gets dis
onne
ted and

then re
onne
ted without realizing it was dis
onne
ted,
ause any prob-

lem with the majority or quorum proto
ols?

Pra
ti
e Exer
ises 183

Answer:

a. The old primary may re
eive read requests and reply to them, serving

old data that is missing subsequent updates.

b. Leases
an be used so that at the end of the lease, the primary knows

that it if it did not su

essfuly renew the lease, it should stop serving

requests. If it is dis
onne
ted, it would be unable to renew the lease.

. This situation would not
ause a problem with the majority proto
ol

sin
e the write set (or write quorum) and the read set (read quorum)

must have at least one node in
ommon, whi
h would serve the latest

value.

23.11 Consider a federated database system in whi
h it is guaranteed that at most

one global transa
tion is a
tive at any time, and every lo
al site ensures lo
al

serializability.

a. Suggest ways in whi
h the federated database system
an ensure that

there is at most one a
tive global transa
tion at any time.

b. Show by example that it is possible for a nonserializable global s
hedule

to result despite the assumptions.

Answer:

a. We
an have a spe
ial data item at some site on whi
h a lo
k will have

to be obtained before starting a global transa
tion. The lo
k should be

released after the transa
tion
ompletes. This ensures the single a
tive

global transa
tion requirement. To redu
e dependen
y on that parti
-

ular site being up, we
an generalize the solution by having an ele
tion

s
heme to
hoose one of the
urrently up sites to be the
oordinator and

requiring that the lo
k be requested on the data item whi
h resides on

the
urrently ele
ted
oordinator.

b. The following s
hedule involves two sites and four transa
tions. T

1

and

T

2

are lo
al transa
tions, running at site 1 and site 2 respe
tively. T

G1

and T

G2

are global transa
tions running at both sites. X

1

, Y

1

are data

items at site 1, and X

2

, Y

2

are at site 2.

184 Chapter 23 Parallel and Distributed Transa
tion Pro
essing

T1 T2 TG1 TG2

write(Y)

 read(Y)

 write(X)

 read(X)

 write(Y)

 read(Y)

 write(X)

read(X)

1

2

2

2

2

1

1

1

In this s
hedule, T

G2

starts only after T

G1

�nishes.Within ea
h site, there

is lo
al serializability. In site 1, T

G2

� T

1

� T

G1

is a serializability

order. In site 2, T

G1

� T

2

� T

G2

is a serializability order. Yet the global

s
hedule s
hedule is nonserializable.

23.12 Consider a federated database system in whi
h every lo
al site ensures lo
al

serializability, and all global transa
tions are read only.

a. Show by example that nonserializable exe
utions may result in su
h a

system.

b. Show how you
ould use a ti
ket s
heme to ensure global serializability.

Answer:

a. The same system as in the answer to Exer
ise 23.11 is assumed, ex
ept

that now both the global transa
tions are read-only. Consider the follow-

ing s
hedule:

T1 T2 TG1 TG2

 read(X)

write(X)

 read(X)

 read(X)

 write(X)

 read(X)

1

1

2

2

2

1

Though there is lo
al serializability in both sites, the global s
hedule is

not serializable.

b. Sin
e lo
al serializability is guaranteed, any
y
le in the systemwide

pre
eden
e graph must involve at least two di�erent sites and two dif-

ferent global transa
tions. The ti
ket s
heme ensures that whenever two

Pra
ti
e Exer
ises 185

global transa
tions a

ess data at a site, they
on�i
t on a data item (the

ti
ket) at that site. The global transa
tion manager
ontrols ti
ket a

ess

in su
h a manner that the global transa
tions exe
ute with the same se-

rializability order in all the sites. Thus the
han
e of their parti
ipating

in a
y
le in the systemwide pre
eden
e graph is eliminated.

23.13 Suppose you have a large relation r(A,B,C) and a materialized view

v =

A

sum(B)

(r). View maintenan
e
an be performed as part of ea
h trans-

a
tion that updates r, on a parallel/distributed storage system that supports

transa
tions a
ross multiple nodes. Suppose the system uses two-phase
om-

mit along with a
onsensus proto
ol su
h as Paxos, a
ross geographi
ally dis-

tributed data
enters.

a. Explain why it is not a good idea to perform view maintenan
e as part of

the update transa
tion, if some values of attribute A are �hot� at
ertain

points in time, that is, many updates pertain to those values of A.

b. Explain how operation lo
king (if supported)
ould solve this problem.

. Explain the tradeo�s of using asyn
hronous view maintenan
e in this

ontext.

Answer:

This is a very bad idea from the viewpoint of throughput. Most transa
tions

would now update a few aggregate re
ords, and updates would get serialized

on the lo
k. The problem that due to Paxos delays plus 2PC delays,
ommit

pro
essing will take a long time (hundreds of millise
onds) and there would

be very high
ontention on the lo
k. Transa
tion throughput would de
rease

to tens of transa
tions per se
ond, even if transa
tions do not
on�i
t on any

other items.

If the storage system supported operation lo
king, that
ould be an alterna-

tive to improve
on
urren
y, sin
e view maintenan
e
an be done using opera-

tion lo
ks that do not
on�i
t with ea
h other. Transa
tion throughput would

be greatly in
reased.

Asyn
hronous view maintenan
e would avoid the bottlene
k and lead to

mu
h better throughput, but at the risk of reads of the view seeing stale data.

	Parallel and Distributed Query Processing
	Exercises

