CHAPTER 23

Parallel and Distributed
Transaction Processing

Practice Exercises

23.1

23.2

What are the key differences between a local-area network and a wide-area
network, that affect the design of a distributed database?

Answer:

Data transfer is much faster, and communication latency is much lower on
a local-area network (LAN) than on a wide-area network (WAN). Protocols
that require multiple rounds of communication maybe acceptable in a local
area network, but distributed databases designed for wide-area networks try to
minimize the number of such rounds of communication.

Replication to a local node for reducing latency is quite important in a wide-
area network, but less so in a local area network.

Network link failure and network partition are also more likely in a wide-area
network than in a local area network, where systems can be designed with
more redundancy to deal with failures. Protocols designed for wide-area net-
works should handle such failures without creating any inconsistencies in the
database.

To build a highly available distributed system, you must know what kinds of
failures can occur.

a. List possible types of failure in a distributed system.
b. Which items in your list from part a are also applicable to a centralized
system?

Answer:

a. The types of failure that can occur in a distributed system include
i. Site failure.

177

178

Chapter 23 Parallel and Distributed Transaction Processing

ii.

iii.

Disk failure.

Communication failure, leading to disconnection of one or more
sites from the network.

b. The first two failure types can also occur on centralized systems.

23.3 Consider a failure that occurs during 2PC for a transaction. For each possible
failure that you listed in Exercise 23.2a, explain how 2PC ensures transaction
atomicity despite the failure.

Answer:

A proof that 2PC guarantees atomic commits/aborts in spite of site and link
failures follows. The main idea is that after all sites reply with a <ready 7>
message, only the coordinator of a transaction can make a commit or abort
decision. Any subsequent commit or abort by a site can happen only after it
ascertains the coordinator’s decision, either directly from the coordinator or
indirectly from some other site. Let us enumerate the cases for a site aborting,
and then for a site committing.

a. A site can abort a transaction 7 (by writing an <abort 7> log record)
only under the following circumstances:

ii.

iii.

It has not yet written a <ready 7> log record. In this case, the coor-
dinator could not have got, and will not get, a <ready 7> or <commit
T> message from this site. Therefore, only an abort decision can be
made by the coordinator.

It has written the <ready 7> log record, but on inquiry it found out
that some other site has an <abort 7> log record. In this case it is
correct for it to abort, because that other site would have ascertained
the coordinator’s decision (either directly or indirectly) before actu-
ally aborting.

It is itself the coordinator. In this case also no site could have com-
mitted, or will commit in the future, because commit decisions can
be made only by the coordinator.

b. A site can commit a transaction 7 (by writing a <commit 7> log record)
only under the following circumstances:

It has written the <ready 7> log record, and on inquiry it found out
that some other site has a <commit 7> log record. In this case it
is correct for it to commit, because that other site would have ascer-
tained the coordinator’s decision (either directly or indirectly) before
actually committing.

234

23.5

Practice Exercises 179

ii. Itisitself the coordinator. In this case no other participating site can
abort or would have aborted because abort decisions are made only
by the coordinator.

Consider a distributed system with two sites, 4 and B. Can site 4 distinguish
among the following?

° B goes down.
® The link between 4 and B goes down.

® Bis extremely overloaded and response time is 100 times longer than nor-
mal.

What implications does your answer have for recovery in distributed systems?

Answer:

Site A cannot distinguish between the three cases until communication has
resumed with site B. The action which it performs while B is inaccessible must
be correct irrespective of which of these situations has actually occurred, and
it must be such that B can re-integrate consistently into the distributed system
once communication is restored.

The persistent messaging scheme described in this chapter depends on time-
stamps. A drawback is that they can discard received messages only if they are
too old, and may need to keep track of a large number of received messages.
Suggest an alternative scheme based on sequence numbers instead of time-
stamps, that can discard messages more rapidly.

Answer:

We can have a scheme based on sequence numbers similar to the scheme based
on timestamps. We tag each message with a sequence number that is unique
for the (sending site, receiving site) pair. The number is increased by 1 for each
new message sent from the sending site to the receiving site.

The receiving site stores and acknowledges a received message only if it has re-
ceived all lower-numbered messages also; the message is stored in the received-
messages relation.

The sending site retransmits a message until it has received an ack from the
receiving site containing the sequence number of the transmitted message or a
higher sequence number. Once the acknowledgment is received, it can delete
the message from its send queue.

The receiving site discards all messages it receives that have a lower sequence
number than the latest stored message from the sending site. The receiving
site discards from received-messages all but the (number of the) most recent
message from each sending site (message can be discarded only after being
processed locally).

180

Chapter 23 Parallel and Distributed Transaction Processing

23.6

23.7

23.8

Note that this scheme requires a fixed (and small) overhead at the receiving
site for each sending site, regardless of the number of messages received. In
contrast, the timestamp scheme requires extra space for every message. The
timestamp scheme would have lower storage overhead if the number of mes-
sages received within the timeout interval is small compared to the number of
sites, whereas the sequence number scheme would have lower overhead other-
wise.

Explain the difference between data replication in a distributed system and the
maintenance of a remote backup site.

Answer:

In remote backup systems, all transactions are performed at the primary site
and the entire database is replicated at the remote backup site. The remote
backup site is kept synchronized with the updates at the primary site by send-
ing all log records. Whenever the primary site fails, the remote backup site
takes over processing.

The distributed systems offer greater availability by having multiple copies of
the data at different sites, whereas the remote backup systems offer lesser avail-
ability at lower cost and execution overhead. Different data items may be repli-
cated at different nodes.

In a distributed system, transaction code can run at all the sites, whereas in a
remote backup system it runs only at the primary site. The distributed system
transactions needs to follow two-phase commit or other consensus protocols
to keep the data in consistent state, whereas a remote backup system does not
follow two-phase commit and avoids related overhead.

Give an example where lazy replication can lead to an inconsistent database
state even when updates get an exclusive lock on the primary (master) copy if
data were read from a node other than the master.

Answer:

Consider the balance in an account, replicated at N sites. Let the current bal-
ance be $100 - consistent across all sites. Consider two transactions 7 and
T, each depositing $10 in the account. Thus the balance would be $120 after
both these transactions are executed. Let the transactions execute in sequence:
T, first and then 7,. Suppose the copy of the balance at one of the sites, say
s, is not consistent - due to lazy replication strategy - with the primary copy
after transaction 7 is executed, and let transaction 7, read this copy of the
balance. One can see that the balance at the primary site would be $110 at the
end.

Consider the following deadlock-detection algorithm. When transaction 7}, at
site S, requests a resource from 7} at site S, a request message with time-
stamp # is sent. The edge (7}, T}, n) is inserted in the local wait-for graph of

Practice Exercises 181

S. The edge (T}, T;, n) is inserted in the local wait-for graph of S; only if 7;
has received the request message and cannot immediately grant the requested
resource. A request from 7; to 7; in the same site is handled in the usual man-
ner; no timestamps are associated with the edge (7, 7;). A central coordinator
invokes the detection algorithm by sending an initiating message to each site
in the system.

On receiving this message, a site sends its local wait-for graph to the co-
ordinator. Note that such a graph contains all the local information that the
site has about the state of the real graph. The wait-for graph reflects an instan-
taneous state of the site, but it is not synchronized with respect to any other
site.

When the controller has received a reply from each site, it constructs a
graph as follows:

* The graph contains a vertex for every transaction in the system.
* The graph has an edge (7}, 7}) if and only if:
° There is an edge (7}, 7;) in one of the wait-for graphs.

° An edge (7}, T;,n) (for some n) appears in more than one wait-for
graph.

Show that, if there is a cycle in the constructed graph, then the system is in a
deadlock state, and that, if there is no cycle in the constructed graph, then the
system was not in a deadlock state when the execution of the algorithm began.

Answer:

Let us say a cycle 7, — 7} — -+ =» T — T, exists in the graph built by
the controller. The edges in the graph will either be local edgem (7}, 7;) or
distributed edges of the form (7}, 7;, n). Each local edge (T}, T;) definitely
implies that 7}, is waiting for 7,. Since a distributed edge (7}, T}, n) is inserted
into the graph only if 7}’s request has reached 7; and 7, cannot immediately
release the lock, T}, is indeed waiting for 7. Therefore every edge in the cycle
indeed represents a transaction waiting for another. For a detailed proof that
this implies a deadlock, refer to Stuart et al. [1984].

We now prove the converse implication. As soon as it is discovered that 7, is
waiting for 7:

a. Alocal edge (7}, T}) is added if both are on the same site.

b. Theedge (7}, T}, n)is added in both the sites, if 7, and 7, are on different
sites.

Therefore, if the algorithm were able to collect all the local wait-for graphs at
the same instant, it would definitely discover a cycle in the constructed graph,
in case there is a circular wait at that instant. If there is a circular wait at the
instant when the algorithm began execution, none of the edges participating in

182

Chapter 23 Parallel and Distributed Transaction Processing

23.9

23.10

that cycle can disappear until the algorithm finishes. Therefore, even though
the algorithm cannot collect all the local graphs at the same instant, any cycle
which existed just before it started will be detected.

Consider the chain-replication protocol, described in Section 23.4.3.2, which
is a variant of the primary-copy protocol.

a. Iflockingis used for concurrency control, what is the earliest point when
a process can release an exclusive lock after updating a data item?

b. While each data item could have its own chain, give two reasons it would
be preferable to have a chain defined at a higher level, such as for each
partition or tablet.

c. How can consensus protocols be used to ensure that the chain is
uniquely determined at any point in time?

Answer:

a. The lock can be released only after the update has been recorded at the
tail of the chain, since further reads will read the tail. Two phase locking
may also have to be respected.

b. The overhead of recording chains per data item would be high. Even
more so, in case of failures, chains have to be updated, which would
have an even greater overhead if done per item.

c. All nodes in the chain have to agree on the chain membership and or-

der. Consensus can be used to ensure that updates to the chain are done
in a fault-tolerant manner. A fault-tolerant coordination service such as
ZooKeeper or Chubby could be used to ensure this consensus, by updat-
ing metadata that is replicated using consensus; the coordination service
hides the details of consensus, and allows storage and update of (a lim-
ited amount of) metadata.

If the primary copy scheme is used for replication, and the primary gets dis-
connected from the rest of the system, a new node may get elected as primary.
But the old primary may not realize it has got disconnected, and may get re-
connected subsequently without realizing that there is a new primary.

a.

What problems can arise if the old primary does not realize that a new
one has taken over?

How can leases be used to avoid these problems?

Would such a situation, where a participant node gets disconnected and
then reconnected without realizing it was disconnected, cause any prob-
lem with the majority or quorum protocols?

Practice Exercises 183

Answer:

a. The old primary may receive read requests and reply to them, serving
old data that is missing subsequent updates.

b. Leases can be used so that at the end of the lease, the primary knows
that it if it did not successfuly renew the lease, it should stop serving
requests. If it is disconnected, it would be unable to renew the lease.

c. This situation would not cause a problem with the majority protocol
since the write set (or write quorum) and the read set (read quorum)
must have at least one node in common, which would serve the latest
value.

23.11 Consider a federated database system in which it is guaranteed that at most
one global transaction is active at any time, and every local site ensures local
serializability.

a. Suggest ways in which the federated database system can ensure that
there is at most one active global transaction at any time.

b. Show by example that it is possible for a nonserializable global schedule
to result despite the assumptions.

Answer:

a. We can have a special data item at some site on which a lock will have
to be obtained before starting a global transaction. The lock should be
released after the transaction completes. This ensures the single active
global transaction requirement. To reduce dependency on that partic-
ular site being up, we can generalize the solution by having an election
scheme to choose one of the currently up sites to be the coordinator and
requiring that the lock be requested on the data item which resides on
the currently elected coordinator.

b. The following schedule involves two sites and four transactions. 7 and
T, are local transactions, running at site 1 and site 2 respectively. 7,
and T}, are global transactions running at both sites. X, Y| are data
items at site 1, and X,, Y, are at site 2.

184 Chapter 23 Parallel and Distributed Transaction Processing

Tl T2 TGl TGZ
write(Y])
read(Y,)
write(X)
read(X,)
write(Y,)
read(Y,)
write(X)
read(X)

In this schedule, T, starts only after 7;; finishes. Within each site, there
is local serializability. In site 1, 7;, — T, — T, is a serializability
order. Insite 2, T;; = T, — T, is a serializability order. Yet the global
schedule schedule is nonserializable.

23.12 Consider a federated database system in which every local site ensures local
serializability, and all global transactions are read only.

a. Show by example that nonserializable executions may result in such a
system.

b. Show how you could use a ticket scheme to ensure global serializability.

Answer:

a. The same system as in the answer to Exercise 23.11 is assumed, except
that now both the global transactions are read-only. Consider the follow-
ing schedule:

T, 1 T. 2 TGI T G2
read(X)
write(X;)
read(X)
read(X,)
write(X,)
read(X,)

Though there is local serializability in both sites, the global schedule is
not serializable.

b. Since local serializability is guaranteed, any cycle in the systemwide
precedence graph must involve at least two different sites and two dif-
ferent global transactions. The ticket scheme ensures that whenever two

Practice Exercises 185

global transactions access data at a site, they conflict on a data item (the
ticket) at that site. The global transaction manager controls ticket access
in such a manner that the global transactions execute with the same se-
rializability order in all the sites. Thus the chance of their participating
in a cycle in the systemwide precedence graph is eliminated.

23.13 Suppose you have a large relation r(4,B,C) and a materialized view
V= 4Yamp)(r)- View maintenance can be performed as part of each trans-
action that updates r, on a parallel/distributed storage system that supports
transactions across multiple nodes. Suppose the system uses two-phase com-
mit along with a consensus protocol such as Paxos, across geographically dis-
tributed data centers.

a. Explain why it is not a good idea to perform view maintenance as part of
the update transaction, if some values of attribute 4 are “hot” at certain
points in time, that is, many updates pertain to those values of A.

b. Explain how operation locking (if supported) could solve this problem.

c. Explain the tradeoffs of using asynchronous view maintenance in this
context.

Answer:

This is a very bad idea from the viewpoint of throughput. Most transactions
would now update a few aggregate records, and updates would get serialized
on the lock. The problem that due to Paxos delays plus 2PC delays, commit
processing will take a long time (hundreds of milliseconds) and there would
be very high contention on the lock. Transaction throughput would decrease
to tens of transactions per second, even if transactions do not conflict on any
other items.

If the storage system supported operation locking, that could be an alterna-
tive to improve concurrency, since view maintenance can be done using opera-
tion locks that do not conflict with each other. Transaction throughput would
be greatly increased.

Asynchronous view maintenance would avoid the bottleneck and lead to
much better throughput, but at the risk of reads of the view seeing stale data.

	Parallel and Distributed Query Processing
	Exercises

