
CHAP T E R

23

Parallel and Distributed

Transation Proessing

Pratie Exerises

23.1 What are the key di�erenes between a loal-area network and a wide-area

network, that a�et the design of a distributed database?

Answer:

Data transfer is muh faster, and ommuniation lateny is muh lower on

a loal-area network (LAN) than on a wide-area network (WAN). Protools

that require multiple rounds of ommuniation maybe aeptable in a loal

area network, but distributed databases designed for wide-area networks try to

minimize the number of suh rounds of ommuniation.

Repliation to a loal node for reduing lateny is quite important in a wide-

area network, but less so in a loal area network.

Network link failure and network partition are also more likely in a wide-area

network than in a loal area network, where systems an be designed with

more redundany to deal with failures. Protools designed for wide-area net-

works should handle suh failures without reating any inonsistenies in the

database.

23.2 To build a highly available distributed system, you must know what kinds of

failures an our.

a. List possible types of failure in a distributed system.

b. Whih items in your list from part a are also appliable to a entralized

system?

Answer:

a. The types of failure that an our in a distributed system inlude

i. Site failure.

177

178 Chapter 23 Parallel and Distributed Transation Proessing

ii. Disk failure.

iii. Communiation failure, leading to disonnetion of one or more

sites from the network.

b. The �rst two failure types an also our on entralized systems.

23.3 Consider a failure that ours during 2PC for a transation. For eah possible

failure that you listed in Exerise 23.2a, explain how 2PC ensures transation

atomiity despite the failure.

Answer:

A proof that 2PC guarantees atomi ommits/aborts in spite of site and link

failures follows. The main idea is that after all sites reply with a <ready T>

message, only the oordinator of a transation an make a ommit or abort

deision. Any subsequent ommit or abort by a site an happen only after it

asertains the oordinator's deision, either diretly from the oordinator or

indiretly from some other site. Let us enumerate the ases for a site aborting,

and then for a site ommitting.

a. A site an abort a transation T (by writing an <abort T> log reord)

only under the following irumstanes:

i. It has not yet written a <ready T> log reord. In this ase, the oor-

dinator ould not have got, and will not get, a<ready T> or<ommit

T> message from this site. Therefore, only an abort deision an be

made by the oordinator.

ii. It has written the <ready T> log reord, but on inquiry it found out

that some other site has an <abort T> log reord. In this ase it is

orret for it to abort, beause that other site would have asertained

the oordinator's deision (either diretly or indiretly) before atu-

ally aborting.

iii. It is itself the oordinator. In this ase also no site ould have om-

mitted, or will ommit in the future, beause ommit deisions an

be made only by the oordinator.

b. A site an ommit a transation T (by writing a <ommit T> log reord)

only under the following irumstanes:

i. It has written the <ready T> log reord, and on inquiry it found out

that some other site has a <ommit T> log reord. In this ase it

is orret for it to ommit, beause that other site would have aser-

tained the oordinator's deision (either diretly or indiretly) before

atually ommitting.

Pratie Exerises 179

ii. It is itself the oordinator. In this ase no other partiipating site an

abort or would have aborted beause abort deisions are made only

by the oordinator.

23.4 Consider a distributed system with two sites, A and B. Can site A distinguish

among the following?

�

B goes down.

�

The link between A and B goes down.

�

B is extremely overloaded and response time is 100 times longer than nor-

mal.

What impliations does your answer have for reovery in distributed systems?

Answer:

Site A annot distinguish between the three ases until ommuniation has

resumed with site B. The ation whih it performs while B is inaessible must

be orret irrespetive of whih of these situations has atually ourred, and

it must be suh that B an re-integrate onsistently into the distributed system

one ommuniation is restored.

23.5 The persistent messaging sheme desribed in this hapter depends on time-

stamps. A drawbak is that they an disard reeived messages only if they are

too old, and may need to keep trak of a large number of reeived messages.

Suggest an alternative sheme based on sequene numbers instead of time-

stamps, that an disard messages more rapidly.

Answer:

We an have a sheme based on sequene numbers similar to the sheme based

on timestamps. We tag eah message with a sequene number that is unique

for the (sending site, reeiving site) pair. The number is inreased by 1 for eah

new message sent from the sending site to the reeiving site.

The reeiving site stores and aknowledges a reeived message only if it has re-

eived all lower-numbered messages also; the message is stored in the reeived-

messages relation.

The sending site retransmits a message until it has reeived an ak from the

reeiving site ontaining the sequene number of the transmitted message or a

higher sequene number. One the aknowledgment is reeived, it an delete

the message from its send queue.

The reeiving site disards all messages it reeives that have a lower sequene

number than the latest stored message from the sending site. The reeiving

site disards from reeived-messages all but the (number of the) most reent

message from eah sending site (message an be disarded only after being

proessed loally).

180 Chapter 23 Parallel and Distributed Transation Proessing

Note that this sheme requires a �xed (and small) overhead at the reeiving

site for eah sending site, regardless of the number of messages reeived. In

ontrast, the timestamp sheme requires extra spae for every message. The

timestamp sheme would have lower storage overhead if the number of mes-

sages reeived within the timeout interval is small ompared to the number of

sites, whereas the sequene number sheme would have lower overhead other-

wise.

23.6 Explain the di�erene between data repliation in a distributed system and the

maintenane of a remote bakup site.

Answer:

In remote bakup systems, all transations are performed at the primary site

and the entire database is repliated at the remote bakup site. The remote

bakup site is kept synhronized with the updates at the primary site by send-

ing all log reords. Whenever the primary site fails, the remote bakup site

takes over proessing.

The distributed systems o�er greater availability by having multiple opies of

the data at di�erent sites, whereas the remote bakup systems o�er lesser avail-

ability at lower ost and exeution overhead. Di�erent data items may be repli-

ated at di�erent nodes.

In a distributed system, transation ode an run at all the sites, whereas in a

remote bakup system it runs only at the primary site. The distributed system

transations needs to follow two-phase ommit or other onsensus protools

to keep the data in onsistent state, whereas a remote bakup system does not

follow two-phase ommit and avoids related overhead.

23.7 Give an example where lazy repliation an lead to an inonsistent database

state even when updates get an exlusive lok on the primary (master) opy if

data were read from a node other than the master.

Answer:

Consider the balane in an aount, repliated at N sites. Let the urrent bal-

ane be $100 � onsistent aross all sites. Consider two transations T

1

and

T

2

eah depositing $10 in the aount. Thus the balane would be $120 after

both these transations are exeuted. Let the transations exeute in sequene:

T

1

�rst and then T

2

. Suppose the opy of the balane at one of the sites, say

s, is not onsistent � due to lazy repliation strategy � with the primary opy

after transation T

1

is exeuted, and let transation T

2

read this opy of the

balane. One an see that the balane at the primary site would be $110 at the

end.

23.8 Consider the following deadlok-detetion algorithm. When transation T

i

, at

site S

1

, requests a resoure from T

j

, at site S

3

, a request message with time-

stamp n is sent. The edge (T

i

,T

j

, n) is inserted in the loal wait-for graph of

Pratie Exerises 181

S

1

. The edge (T

i

,T

j

, n) is inserted in the loal wait-for graph of S

3

only if T

j

has reeived the request message and annot immediately grant the requested

resoure. A request from T

i

to T

j

in the same site is handled in the usual man-

ner; no timestamps are assoiated with the edge (T

i

,T

j

). A entral oordinator

invokes the detetion algorithm by sending an initiating message to eah site

in the system.

On reeiving this message, a site sends its loal wait-for graph to the o-

ordinator. Note that suh a graph ontains all the loal information that the

site has about the state of the real graph. The wait-for graph re�ets an instan-

taneous state of the site, but it is not synhronized with respet to any other

site.

When the ontroller has reeived a reply from eah site, it onstruts a

graph as follows:

�

The graph ontains a vertex for every transation in the system.

�

The graph has an edge (T

i

,T

j

) if and only if:

°

There is an edge (T

i

,T

j

) in one of the wait-for graphs.

°

An edge (T

i

,T

j

, n) (for some n) appears in more than one wait-for

graph.

Show that, if there is a yle in the onstruted graph, then the system is in a

deadlok state, and that, if there is no yle in the onstruted graph, then the

system was not in a deadlok state when the exeution of the algorithm began.

Answer:

Let us say a yle T

i

� T

j

� 5 � T

m

� T

i

exists in the graph built by

the ontroller. The edges in the graph will either be loal edgem (T

k

,T

l

) or

distributed edges of the form (T

k

,T

l

, n). Eah loal edge (T

k

,T

l

) de�nitely

implies that T

k

is waiting for T

l

. Sine a distributed edge (T

k

,T

l

, n) is inserted

into the graph only if T

k

's request has reahed T

l

and T

l

annot immediately

release the lok, T

k

is indeed waiting for T

l

. Therefore every edge in the yle

indeed represents a transation waiting for another. For a detailed proof that

this implies a deadlok, refer to Stuart et al. [1984℄.

We now prove the onverse impliation. As soon as it is disovered that T

k

is

waiting for T

l

:

a. A loal edge (T

k

,T

l

) is added if both are on the same site.

b. The edge (T

k

,T

l

, n) is added in both the sites, if T

k

and T

l

are on di�erent

sites.

Therefore, if the algorithm were able to ollet all the loal wait-for graphs at

the same instant, it would de�nitely disover a yle in the onstruted graph,

in ase there is a irular wait at that instant. If there is a irular wait at the

instant when the algorithm began exeution, none of the edges partiipating in

182 Chapter 23 Parallel and Distributed Transation Proessing

that yle an disappear until the algorithm �nishes. Therefore, even though

the algorithm annot ollet all the loal graphs at the same instant, any yle

whih existed just before it started will be deteted.

23.9 Consider the hain-repliation protool, desribed in Setion 23.4.3.2, whih

is a variant of the primary-opy protool.

a. If loking is used for onurreny ontrol, what is the earliest point when

a proess an release an exlusive lok after updating a data item?

b. While eah data item ould have its own hain, give two reasons it would

be preferable to have a hain de�ned at a higher level, suh as for eah

partition or tablet.

. How an onsensus protools be used to ensure that the hain is

uniquely determined at any point in time?

Answer:

a. The lok an be released only after the update has been reorded at the

tail of the hain, sine further reads will read the tail. Two phase loking

may also have to be respeted.

b. The overhead of reording hains per data item would be high. Even

more so, in ase of failures, hains have to be updated, whih would

have an even greater overhead if done per item.

. All nodes in the hain have to agree on the hain membership and or-

der. Consensus an be used to ensure that updates to the hain are done

in a fault-tolerant manner. A fault-tolerant oordination servie suh as

ZooKeeper or Chubby ould be used to ensure this onsensus, by updat-

ing metadata that is repliated using onsensus; the oordination servie

hides the details of onsensus, and allows storage and update of (a lim-

ited amount of) metadata.

23.10 If the primary opy sheme is used for repliation, and the primary gets dis-

onneted from the rest of the system, a new node may get eleted as primary.

But the old primary may not realize it has got disonneted, and may get re-

onneted subsequently without realizing that there is a new primary.

a. What problems an arise if the old primary does not realize that a new

one has taken over?

b. How an leases be used to avoid these problems?

. Would suh a situation, where a partiipant node gets disonneted and

then reonneted without realizing it was disonneted, ause any prob-

lem with the majority or quorum protools?

Pratie Exerises 183

Answer:

a. The old primary may reeive read requests and reply to them, serving

old data that is missing subsequent updates.

b. Leases an be used so that at the end of the lease, the primary knows

that it if it did not suessfuly renew the lease, it should stop serving

requests. If it is disonneted, it would be unable to renew the lease.

. This situation would not ause a problem with the majority protool

sine the write set (or write quorum) and the read set (read quorum)

must have at least one node in ommon, whih would serve the latest

value.

23.11 Consider a federated database system in whih it is guaranteed that at most

one global transation is ative at any time, and every loal site ensures loal

serializability.

a. Suggest ways in whih the federated database system an ensure that

there is at most one ative global transation at any time.

b. Show by example that it is possible for a nonserializable global shedule

to result despite the assumptions.

Answer:

a. We an have a speial data item at some site on whih a lok will have

to be obtained before starting a global transation. The lok should be

released after the transation ompletes. This ensures the single ative

global transation requirement. To redue dependeny on that parti-

ular site being up, we an generalize the solution by having an eletion

sheme to hoose one of the urrently up sites to be the oordinator and

requiring that the lok be requested on the data item whih resides on

the urrently eleted oordinator.

b. The following shedule involves two sites and four transations. T

1

and

T

2

are loal transations, running at site 1 and site 2 respetively. T

G1

and T

G2

are global transations running at both sites. X

1

, Y

1

are data

items at site 1, and X

2

, Y

2

are at site 2.

184 Chapter 23 Parallel and Distributed Transation Proessing

T1 T2 TG1 TG2

write(Y)

 read(Y)

 write(X)

 read(X)

 write(Y)

 read(Y)

 write(X)

read(X)

1

2

2

2

2

1

1

1

In this shedule, T

G2

starts only after T

G1

�nishes.Within eah site, there

is loal serializability. In site 1, T

G2

� T

1

� T

G1

is a serializability

order. In site 2, T

G1

� T

2

� T

G2

is a serializability order. Yet the global

shedule shedule is nonserializable.

23.12 Consider a federated database system in whih every loal site ensures loal

serializability, and all global transations are read only.

a. Show by example that nonserializable exeutions may result in suh a

system.

b. Show how you ould use a tiket sheme to ensure global serializability.

Answer:

a. The same system as in the answer to Exerise 23.11 is assumed, exept

that now both the global transations are read-only. Consider the follow-

ing shedule:

T1 T2 TG1 TG2

 read(X)

write(X)

 read(X)

 read(X)

 write(X)

 read(X)

1

1

2

2

2

1

Though there is loal serializability in both sites, the global shedule is

not serializable.

b. Sine loal serializability is guaranteed, any yle in the systemwide

preedene graph must involve at least two di�erent sites and two dif-

ferent global transations. The tiket sheme ensures that whenever two

Pratie Exerises 185

global transations aess data at a site, they on�it on a data item (the

tiket) at that site. The global transation manager ontrols tiket aess

in suh a manner that the global transations exeute with the same se-

rializability order in all the sites. Thus the hane of their partiipating

in a yle in the systemwide preedene graph is eliminated.

23.13 Suppose you have a large relation r(A,B,C) and a materialized view

v =

A

sum(B)

(r). View maintenane an be performed as part of eah trans-

ation that updates r, on a parallel/distributed storage system that supports

transations aross multiple nodes. Suppose the system uses two-phase om-

mit along with a onsensus protool suh as Paxos, aross geographially dis-

tributed data enters.

a. Explain why it is not a good idea to perform view maintenane as part of

the update transation, if some values of attribute A are �hot� at ertain

points in time, that is, many updates pertain to those values of A.

b. Explain how operation loking (if supported) ould solve this problem.

. Explain the tradeo�s of using asynhronous view maintenane in this

ontext.

Answer:

This is a very bad idea from the viewpoint of throughput. Most transations

would now update a few aggregate reords, and updates would get serialized

on the lok. The problem that due to Paxos delays plus 2PC delays, ommit

proessing will take a long time (hundreds of milliseonds) and there would

be very high ontention on the lok. Transation throughput would derease

to tens of transations per seond, even if transations do not on�it on any

other items.

If the storage system supported operation loking, that ould be an alterna-

tive to improve onurreny, sine view maintenane an be done using opera-

tion loks that do not on�it with eah other. Transation throughput would

be greatly inreased.

Asynhronous view maintenane would avoid the bottlenek and lead to

muh better throughput, but at the risk of reads of the view seeing stale data.

	Parallel and Distributed Query Processing
	Exercises

