CHAPTER

Introduction to SQL

Practice Exercises

3.1 Write the following queries in SQL, using the university schema. (We suggest
you actually run these queries on a database, using the sample data that we
provide on the web site of the book, db-book.com. Instructions for setting up
a database, and loading sample data, are provided on the above web site.)

a. Find the titles of courses in the Comp. Sci. department that have 3 credits.

b. Find the IDs of all students who were taught by an instructor named Ein-
stein; make sure there are no duplicates in the result.

c. Find the highest salary of any instructor.

d. Find all instructors earning the highest salary (there may be more than
one with the same salary).

e. Find the enrollment of each section that was offered in Fall 2017.
f. Find the maximum enrollment, across all sections, in Fall 2017.

g. Find the sections that had the maximum enrollment in Fall 2017.

Answer:
a. Findthe titles of courses in the Comp. Sci. department that have 3 credits.

select ritle
from course
where dept_name =’Comp. Sci.’ and credits = 3

b. Find the IDs of all students who were taught by an instructor named Ein-
stein; make sure there are no duplicates in the result.
This query can be answered in several different ways. One way is as fol-
lows.

11

db-book.com

12

Chapter 3 Introduction to SQL

select distinct rakes.ID

from takes, instructor, teaches

where takes.course_id = teaches.course_id and
takes.sec_id = teaches.sec_id and
takes.semester = teaches.semester and
takes.year = teaches.year and
teaches.id = instructor.id and
instructor.name = Einstein’

Find the highest salary of any instructor.

select max(salary)
from instructor

Find all instructors earning the highest salary (there may be more than
one with the same salary).

select ID, name
from instructor
where salary = (select max(salary) from instructor)

Find the enrollment of each section that was offered in Fall 2017.

select course_id, sec_id,
(select count(/D)
from takes
where rakes.year = section.year
and fakes.semester = section.semester
and fakes.course_id = section.course_id
and rakes.sec_id = section.sec_id)
as enrollment
from section
where semester = Fall’
and year=2017

Note that if the result of the subquery is empty, the aggregate function
count returns a value of 0.
One way of writing the query might appear to be:

Practice Exercises 13

select rtakes.course_id, takes.sec_id, count(/D)
from section, takes
where takes.course_id = section.course_id
and rakes.sec_id = section.sec_id
and fakes.semester = section.semester
and fakes.year = section.year
and takes.semester = "Fall’
and rakes.year = 2017
group by takes.course_id, takes.sec_id

But note that if a section does not have any students taking it, it would
not appear in the result. One way of ensuring such a section appears with
a count of 0 is to use the outer join operation, covered in Chapter 4.

Find the maximum enrollment, across all sections, in Fall 2017.
One way of writing this query is as follows:

select max(enrollment)
from (select count(/D) as enrollment
from section, takes
where takes.year = section.year
and rakes.semester = section.semester
and takes.course_id = section.course_id
and rakes.sec_id = section.sec_id
and takes.semester = "Fall’
and takes.year = 2017
group by takes.course_id, takes.sec_id)

As an alternative to using a nested subquery in the from clause, it is pos-
sible to use a with clause, as illustrated in the answer to the next part of
this question.

A subtle issue in the above query is that if no section had any enroll-
ment, the answer would be empty, not 0. We can use the alternative using
a subquery, from the previous part of this question, to ensure the count is
0 in this case.

Find the sections that had the maximum enrollment in Fall 2017.
The following answer uses a with clause, simplifying the query.

14

Chapter 3 Introduction to SQL

with sec_enrollment as (
select takes.course_id, takes.sec_id, count(/D) as enrollment
from section, takes
where takes.year = section.year
and fakes.semester = section.semester
and fakes.course_id = section.course_id
and rakes.sec_id = section.sec_id
and takes.semester = "Fall’
and rakes.year = 2017
group by takes.course_id, takes.sec_id)
select course_id, sec_id
from sec_enrollment
where enrollment = (select max(enrollment) from sec_enrollment)

It is also possible to write the query without the with clause, but the sub-
query to find enrollment would get repeated twice in the query.

While not incorrect to add distinct in the count, it is not necessary in light
of the primary key constraint on takes.

3.2 Suppose you are given a relation grade_points(grade, points) that provides a con-
version from letter grades in the fakes relation to numeric scores; for example,
an “A” grade could be specified to correspond to 4 points, an “A—"to 3.7 points,
a “B+” to 3.3 points, a “B” to 3 points, and so on. The grade points earned by a
student for a course offering (section) is defined as the number of credits for the
course multiplied by the numeric points for the grade that the student received.

Given the preceding relation, and our university schema, write each of the

following queries in SQL. You may assume for simplicity that no takes tuple has
the null value for grade.

a. Find the total grade points earned by the student with ID '12345', across
all courses taken by the student.

b. Find the grade point average (GPA) for the above student, that is, the total
grade points divided by the total credits for the associated courses.

c. Find the ID and the grade-point average of each student.

d. Now reconsider your answers to the earlier parts of this exercise under
the assumption that some grades might be null. Explain whether your
solutions still work and, if not, provide versions that handle nulls properly.

Answer:
a. Find the total grade-points earned by the student with ID '12345', across

all courses taken by the student.

Practice Exercises 15

select sum(credits * points)

from takes, course, grade_points

where takes.grade = grade_points.grade
and fakes.course_id = course.course_id
and /D = '12345'

In the above query, a student who has not taken any course would not
have any tuples, whereas we would expect to get 0 as the answer. One way
of fixing this problem is to use the outer join operation, which we study
later in Chapter 4. Another way to ensure that we get O as the answer is
via the following query:

(select sum(credits * points)
from takes, course, grade_points
where takes.grade = grade_points.grade
and fakes.course_id = course.course_id
and /D="12345")
union
(select 0O
from student
where ID="'12345" and
not exists (select * from zakes where ID = '12345"))

Find the grade point average (GPA) for the above student, that is, the total
grade-points divided by the total credits for the associated courses.

select sum(credits * points)/sum(credits) as GPA
from takes, course, grade_points
where takes.grade = grade_points.grade
and fakes.course_id = course.course_id
and /D= "'12345'

As before, a student who has not taken any course would not appear in
the above result; we can ensure that such a student appears in the result by
using the modified query from the previous part of this question. However,
an additional issue in this case is that the sum of credits would also be 0,
resulting in a divide-by-zero condition. In fact, the only meaningful way
of defining the GPA in this case is to define it as #u//. We can ensure that
such a student appears in the result with a null GP4 by adding the following
union clause to the above query.

union
(select null as GPA
from student
where ID ="'12345" and
not exists (select * from fakes where ID = '12345"))

16 Chapter 3 Introduction to SQL

c. Find the ID and the grade-point average of each student.

select 1D, sum(credits * points)/sum(credits) as GPA
from takes, course, grade_points
where takes.grade = grade_points.grade
and fakes.course_id = course.course_id
group by /D

Again, to handle students who have not taken any course, we would have
to add the following union clause:

union

(select ID, null as GPA

from student

where not exists (select * from takes where takes.ID = student.ID))

d. Now reconsider your answers to the earlier parts of this exercise under
the assumption that some grades might be null. Explain whether your
solutions still work and, if not, provide versions that handle nulls properly.
The queries listed above all include a test of equality on grade between
grade_points and takes. Thus, for any takes tuple with a null grade, that
student’s course would be eliminated from the rest of the computation
of the result. As a result, the credits of such courses would be eliminated
also, and thus the queries would return the correct answer even if some
grades are null.

3.3 Write the following inserts, deletes, or updates in SQL, using the university
schema.

a. Increase the salary of each instructor in the Comp. Sci. department by
10%.

b. Delete all courses that have never been offered (i.e., do not occur in the
section relation).

c. Insert every student whose fot_cred attribute is greater than 100 as an in-
structor in the same department, with a salary of $10,000.

Answer:

a. Increase the salary of each instructor in the Comp. Sci. department by
10%.

update instructor
set salary = salary * 1.10
where dept_name ='Comp. Sci.'

b. Delete all courses that have never been offered (that is, do not occur in
the section relation).

Practice Exercises 17

person (driver_id, name, address)

car (license_plate, model, year)

accident (report_-number, year, location)

owns (driver_id, license_plate)

participated (report_number, license_plate, driver_id, damage_amount)

Figure 3.17 Insurance database

delete from course
where course_id not in
(select course_id from section)

c. Insert every student whose fof_cred attribute is greater than 100 as an in-
structor in the same department, with a salary of $10,000.

insert into instructor

select /D, name, dept_name, 10000
from student

where fot_cred > 100

3.4 Consider the insurance database of Figure 3.17, where the primary keys are
underlined. Construct the following SQL queries for this relational database.

a. Find the total number of people who owned cars that were involved in
accidents in 2017.

b. Delete all year-2010 cars belonging to the person whose ID is '12345".

Answer:

a. Find the total number of people who owned cars that were involved in
accidents in 2017.
Note: This is not the same as the total number of accidents in 2017. We
must count people with several accidents only once. Furthermore, note
that the question asks for owners, and it might be that the owner of the
car was not the driver actually involved in the accident.

select count (distinct person.driver_id)
from accident, participated, person, owns
where accident.report_number = participated.report_-number

and owns.driver_id = person.driver_id
and owns.license_plate = participated.license_plate
and year = 2017

18 Chapter 3 Introduction to SQL

b. Delete all year-2010 cars belonging to the person whose ID is '12345".

delete car

where year = 2010 and /icense_plate in
(select license_plate
from owns o
where o.driver_id = '12345")

Note: The owns, accident and participated records associated with the
deleted cars still exist.

3.5 Suppose that we have a relation marks(ID, score) and we wish to assign grades
to students based on the score as follows: grade F if score < 40, grade C if 40
< score < 60, grade B if 60 < score < 80, and grade A4 if 80 < score. Write SQL
queries to do the following:

a. Display the grade for each student, based on the marks relation.

b. Find the number of students with each grade.

Answer:

a. Display the grade for each student, based on the marks relation.

select /D,
case
when score < 40 then 'F’
when score < 60 then 'C’
when score < 80 then 'B’
else 'A’
end
from marks

b. Find the number of students with each grade.

3.6

3.7

3.8

Practice Exercises 19

with grades as
(
select /D,
case
when score < 40 then 'F’
when score < 60 then 'C’
when score < 80 then ‘B’
else ‘A’
end as grade
from marks
)
select grade, count(ID)
from grades
group by grade

As an alternative, the with clause can be removed, and instead the defini-
tion of grades can be made a subquery of the main query.

The SQL like operator is case sensitive (in most systems), but the lower() func-
tion on strings can be used to perform case-insensitive matching. To show how,
write a query that finds departments whose names contain the string “sci” as a
substring, regardless of the case.

Answer:

select dept_name
from department
where lower(dept_name) like *%sci%’

Consider the SQL query

select p.al
from p, 1, r2
where p.al = rl.al or p.al = r2.al

Under what conditions does the preceding query select values of p.al that are
either in r1 or in r2? Examine carefully the cases where either 71 or 72 may be
empty.

Answer:

The query selects those values of p.a/ that are equal to some value of r/.al or
r2.al if and only if both r/ and r2 are non-empty. If one or both of r/ and r2 are
empty, the Cartesian product of p, r/ and r2 is empty, hence the result of the
query is empty. If p itself is empty, the result is empty.

Consider the bank database of Figure 3.18, where the primary keys are under-
lined. Construct the following SQL queries for this relational database.

20 Chapter 3 Introduction to SQL

branch(branch_name, branch_city, assets)

customer (ID, customer_name, customer-street, customer-city)
loan (loan_number, branch_name, amount)

borrower (ID, loan_number)

account (account_number, branch_name, balance)

depositor (ID, account_number)

Figure 3.18 Banking database.

a. Find the ID of each customer of the bank who has an account but not a
loan.

b. Find the ID of each customer who lives on the same street and in the same
city as customer '12345".

c. Find the name of each branch that has at least one customer who has an
account in the bank and who lives in “Harrison”.

Answer:

a. Find the ID of each customer of the bank who has an account but not a
loan.

(select ID

from depositor)
except

(select ID

from borrower)

b. Find the ID of each customer who lives on the same street and in the same
city as customer '12345".

select FID

from customer as F, customer as S

where F.customer_street = S.customer_street
and F.customer_city = S.customer_city
and S.customer_id ="12345'

c. Find the name of each branch that has at least one customer who has an
account in the bank and who lives in “Harrison”.

Practice Exercises 21

select distinct branch_name

from account, depositor, customer

where customer.id = depositor.id
and depositor.account_number = account.account_number
and customer_city = "Harrison’

3.9 Consider the relational database of Figure 3.19, where the primary keys are
underlined. Give an expression in SQL for each of the following queries.

a. Find the ID, name, and city of residence of each employee who works for
“First Bank Corporation”.

b. Find the ID, name, and city of residence of each employee who works for
“First Bank Corporation” and earns more than $10000.

c. Find the ID of each employee who does not work for “First Bank Corpo-
ration”.

d. Find the ID of each employee who earns more than every employee of
“Small Bank Corporation”.

e. Assume that companies may be located in several cities. Find the name
of each company that is located in every city in which “Small Bank Cor-
poration” is located.

f. Find the name of the company that has the most employees (or compa-
nies, in the case where there is a tie for the most).

g. Find the name of each company whose employees earn a higher salary,
on average, than the average salary at “First Bank Corporation”.

Answer:
a. Find the ID, name, and city of residence of each employee who works for

“First Bank Corporation”.

employee (ID, person_name, street, city)
works (ID, company_name, salary)
company (company_name, city)
manages (ID, manager-id)

Figure 3.19 Employee database.

22 Chapter 3 Introduction to SQL

select e.ID, e.person_name, city

from employee as e, works as w

where w.company_name = 'First Bank Corporation' and
w.iD =e.lD

b. Find the ID, name, and city of residence of each employee who works for
“First Bank Corporation” and earns more than $10000.

select *
from employee
where D in
(select /D
from works
where company_name = 'First Bank Corporation' and salary > 10000)

This could be written also in the style of the answer to part a.

c. Find the ID of each employee who does not work for “First Bank Corpo-
ration”.

select 7D
from works
where company_name <> 'First Bank Corporation'

If one allows people to appear in employee without appearing also in
works, the solution is slightly more complicated. An outer join as dis-
cussed in Chapter 4 could be used as well.

select /D
from employee
where /D not in
(select ID
from works
where company_name = "First Bank Corporation")

d. Find the ID of each employee who earns more than every employee of
“Small Bank Corporation”.

select /D
from works
where salary > all
(select salary
from works
where company_name = 'Small Bank Corporation')

If people may work for several companies and we wish to consider the rotal
earnings of each person, the problem is more complex. But note that the

Practice Exercises 23

fact that ID is the primary key for works implies that this cannot be the
case.

e. Assume that companies may be located in several cities. Find the name
of each company that is located in every city in which “Small Bank Cor-
poration” is located.

select S.company_name
from company as S
where not exists ((select city
from company
where company_name = 'Small Bank Corporation")
except
(select city
from company as T
where S.company_name = T.company_name))

f. Find the name of the company that has the most employees (or compa-
nies, in the case where there is a tie for the most).

select company_name

from works

group by company_name

having count (distinct /D) >= all
(select count (distinct /D)
from works
group by company_name)

g. Find the name of each company whose employees earn a higher salary,
on average, than the average salary at “First Bank Corporation”.

select company_name
from works
group by company_name
having avg (salary) > (select avg (salary)
from works
where company_name = "First Bank Corporation")

3.10 Consider the relational database of Figure 3.19. Give an expression in SQL for
each of the following:

a. Modify the database so that the employee whose ID is '12345' now lives
in “Newtown”.

b. Give each manager of “First Bank Corporation” a 10 percent raise unless
the salary becomes greater than $100000; in such cases, give only a 3
percent raise.

24 Chapter 3 Introduction to SQL

Answer:

a. Modify the database so that the employee whose ID is '12345' now lives
in “Newtown”.

update employee
set city = 'Newtown'
where ID = '12345'

b. Give each manager of “First Bank Corporation” a 10 percent raise unless
the salary becomes greater than $100000; in such cases, give only a 3
percent raise.

update works T
set T'salary = T'salary * 1.03
where 7.ID in (select manager_id
from manages)
and T'salary * 1.1 > 100000
and T.company_name = 'First Bank Corporation'

update works T
set T'salary = T'salary * 1.1
where 7'.ID in (select manager_id
from manages)
and T'salary * 1.1 <= 100000
and T.company_name = 'First Bank Corporation'

The above updates would give different results if executed in the opposite
order. We give below a safer solution using the case statement.

update works T
set T.salary = T.salary =
(case
when (Zsalary + 1.1 > 100000) then 1.03
else 1.1
end)
where 7./D in (select manager_id
from manages) and
T.company_name = "First Bank Corporation'

	Introduction to the Relational Model
	Exercises

