
CHAP T E R

3

Introdu
tion to SQL

Pra
ti
e Exer
ises

3.1 Write the following queries in SQL, using the university s
hema. (We suggest

you a
tually run these queries on a database, using the sample data that we

provide on the web site of the book, db-book.
om. Instru
tions for setting up

a database, and loading sample data, are provided on the above web site.)

a. Find the titles of
ourses in the Comp. S
i. department that have 3
redits.

b. Find the IDs of all students who were taught by an instru
tor named Ein-

stein; make sure there are no dupli
ates in the result.

. Find the highest salary of any instru
tor.

d. Find all instru
tors earning the highest salary (there may be more than

one with the same salary).

e. Find the enrollment of ea
h se
tion that was o�ered in Fall 2017.

f. Find the maximum enrollment, a
ross all se
tions, in Fall 2017.

g. Find the se
tions that had the maximum enrollment in Fall 2017.

Answer:

a. Find the titles of
ourses in the Comp. S
i. department that have 3
redits.

sele
t title

from
ourse

where dept name = 'Comp. S
i.' and
redits = 3

b. Find the IDs of all students who were taught by an instru
tor named Ein-

stein; make sure there are no dupli
ates in the result.

This query
an be answered in several di�erent ways. One way is as fol-

lows.

11

db-book.com

12 Chapter 3 Introdu
tion to SQL

sele
t distin
t takes.ID

from takes, instru
tor, tea
hes

where takes.
ourse id = tea
hes.
ourse id and

takes.se
 id = tea
hes.se
 id and

takes.semester = tea
hes.semester and

takes.year = tea
hes.year and

tea
hes.id = instru
tor.id and

instru
tor.name = 'Einstein'

. Find the highest salary of any instru
tor.

sele
t max(salary)

from instru
tor

d. Find all instru
tors earning the highest salary (there may be more than

one with the same salary).

sele
t ID, name

from instru
tor

where salary = (sele
t max(salary) from instru
tor)

e. Find the enrollment of ea
h se
tion that was o�ered in Fall 2017.

sele
t
ourse id, se
 id,

(sele
t
ount(ID)

from takes

where takes.year = se
tion.year

and takes.semester = se
tion.semester

and takes.
ourse id = se
tion.
ourse id

and takes.se
 id = se
tion.se
 id)

as enrollment

from se
tion

where semester = 'Fall'

and year = 2017

Note that if the result of the subquery is empty, the aggregate fun
tion

ount returns a value of 0.

One way of writing the query might appear to be:

Pra
ti
e Exer
ises 13

sele
t takes.
ourse id, takes.se
 id,
ount(ID)

from se
tion, takes

where takes.
ourse id = se
tion.
ourse id

and takes.se
 id = se
tion.se
 id

and takes.semester = se
tion.semester

and takes.year = se
tion.year

and takes.semester = 'Fall'

and takes.year = 2017

group by takes.
ourse id, takes.se
 id

But note that if a se
tion does not have any students taking it, it would

not appear in the result. One way of ensuring su
h a se
tion appears with

a
ount of 0 is to use the outer join operation,
overed in Chapter 4.

f. Find the maximum enrollment, a
ross all se
tions, in Fall 2017.

One way of writing this query is as follows:

sele
t max(enrollment)

from (sele
t
ount(ID) as enrollment

from se
tion, takes

where takes.year = se
tion.year

and takes.semester = se
tion.semester

and takes.
ourse id = se
tion.
ourse id

and takes.se
 id = se
tion.se
 id

and takes.semester = 'Fall'

and takes.year = 2017

group by takes.
ourse id, takes.se
 id)

As an alternative to using a nested subquery in the from
lause, it is pos-

sible to use a with
lause, as illustrated in the answer to the next part of

this question.

A subtle issue in the above query is that if no se
tion had any enroll-

ment, the answer would be empty, not 0. We
an use the alternative using

a subquery, from the previous part of this question, to ensure the
ount is

0 in this
ase.

g. Find the se
tions that had the maximum enrollment in Fall 2017.

The following answer uses a with
lause, simplifying the query.

14 Chapter 3 Introdu
tion to SQL

with se
 enrollment as (

sele
t takes.
ourse id, takes.se
 id,
ount(ID) as enrollment

from se
tion, takes

where takes.year = se
tion.year

and takes.semester = se
tion.semester

and takes.
ourse id = se
tion.
ourse id

and takes.se
 id = se
tion.se
 id

and takes.semester = 'Fall'

and takes.year = 2017

group by takes.
ourse id, takes.se
 id)

sele
t
ourse id, se
 id

from se
 enrollment

where enrollment = (sele
t max(enrollment) from se
 enrollment)

It is also possible to write the query without the with
lause, but the sub-

query to �nd enrollment would get repeated twi
e in the query.

While not in
orre
t to add distin
t in the
ount, it is not ne
essary in light

of the primary key
onstraint on takes.

3.2 Suppose you are given a relation grade points(grade, points) that provides a
on-

version from letter grades in the takes relation to numeri
 s
ores; for example,

an �A� grade
ould be spe
i�ed to
orrespond to 4 points, an �A*� to 3.7 points,

a �B+� to 3.3 points, a �B� to 3 points, and so on. The grade points earned by a

student for a
ourse o�ering (se
tion) is de�ned as the number of
redits for the

ourse multiplied by the numeri
 points for the grade that the student re
eived.

Given the pre
eding relation, and our university s
hema, write ea
h of the

following queries in SQL. You may assume for simpli
ity that no takes tuple has

the null value for grade.

a. Find the total grade points earned by the student with ID �12345�, a
ross

all
ourses taken by the student.

b. Find the grade point average (GPA) for the above student, that is, the total

grade points divided by the total
redits for the asso
iated
ourses.

. Find the ID and the grade-point average of ea
h student.

d. Now re
onsider your answers to the earlier parts of this exer
ise under

the assumption that some grades might be null. Explain whether your

solutions still work and, if not, provide versions that handle nulls properly.

Answer:

a. Find the total grade-points earned by the student with ID �12345�, a
ross

all
ourses taken by the student.

Pra
ti
e Exer
ises 15

sele
t sum(
redits * points)

from takes,
ourse, grade points

where takes.grade = grade points.grade

and takes.
ourse id =
ourse.
ourse id

and ID = �12345�

In the above query, a student who has not taken any
ourse would not

have any tuples, whereas we would expe
t to get 0 as the answer. One way

of �xing this problem is to use the outer join operation, whi
h we study

later in Chapter 4. Another way to ensure that we get 0 as the answer is

via the following query:

(sele
t sum(
redits * points)

from takes,
ourse, grade points

where takes.grade = grade points.grade

and takes.
ourse id =
ourse.
ourse id

and ID= �12345�)

union

(sele
t 0

from student

where ID = �12345� and

not exists (sele
t * from takes where ID = �12345�))

b. Find the grade point average (GPA) for the above student, that is, the total

grade-points divided by the total
redits for the asso
iated
ourses.

sele
t sum(
redits * points)/sum(
redits) as GPA

from takes,
ourse, grade points

where takes.grade = grade points.grade

and takes.
ourse id =
ourse.
ourse id

and ID= �12345�

As before, a student who has not taken any
ourse would not appear in

the above result; we
an ensure that su
h a student appears in the result by

using themodi�ed query from the previous part of this question. However,

an additional issue in this
ase is that the sum of
redits would also be 0,

resulting in a divide-by-zero
ondition. In fa
t, the only meaningful way

of de�ning the GPA in this
ase is to de�ne it as null. We
an ensure that

su
h a student appears in the result with a nullGPA by adding the following

union
lause to the above query.

union

(sele
t null as GPA

from student

where ID = �12345� and

not exists (sele
t * from takes where ID = �12345�))

16 Chapter 3 Introdu
tion to SQL

. Find the ID and the grade-point average of ea
h student.

sele
t ID, sum(
redits * points)/sum(
redits) as GPA

from takes,
ourse, grade points

where takes.grade = grade points.grade

and takes.
ourse id =
ourse.
ourse id

group by ID

Again, to handle students who have not taken any
ourse, we would have

to add the following union
lause:

union

(sele
t ID, null as GPA

from student

where not exists (sele
t * from takes where takes.ID = student.ID))

d. Now re
onsider your answers to the earlier parts of this exer
ise under

the assumption that some grades might be null. Explain whether your

solutions still work and, if not, provide versions that handle nulls properly.

The queries listed above all in
lude a test of equality on grade between

grade points and takes. Thus, for any takes tuple with a null grade, that

student's
ourse would be eliminated from the rest of the
omputation

of the result. As a result, the
redits of su
h
ourses would be eliminated

also, and thus the queries would return the
orre
t answer even if some

grades are null.

3.3 Write the following inserts, deletes, or updates in SQL, using the university

s
hema.

a. In
rease the salary of ea
h instru
tor in the Comp. S
i. department by

10%.

b. Delete all
ourses that have never been o�ered (i.e., do not o

ur in the

se
tion relation).

. Insert every student whose tot
red attribute is greater than 100 as an in-

stru
tor in the same department, with a salary of $10,000.

Answer:

a. In
rease the salary of ea
h instru
tor in the Comp. S
i. department by

10%.

update instru
tor

set salary = salary * 1.10

where dept name = �Comp. S
i.�

b. Delete all
ourses that have never been o�ered (that is, do not o

ur in

the se
tion relation).

Pra
ti
e Exer
ises 17

person (driver id, name, address)

ar (li
ense plate, model, year)

a

ident (report number, year, lo
ation)

owns (driver id, li
ense plate)

parti
ipated (report number, li
ense plate, driver id, damage amount)

Figure 3.17 Insuran
e database

delete from
ourse

where
ourse id not in

(sele
t
ourse id from se
tion)

. Insert every student whose tot
red attribute is greater than 100 as an in-

stru
tor in the same department, with a salary of $10,000.

insert into instru
tor

sele
t ID, name, dept name, 10000

from student

where tot
red > 100

3.4 Consider the insuran
e database of Figure 3.17, where the primary keys are

underlined. Constru
t the following SQL queries for this relational database.

a. Find the total number of people who owned
ars that were involved in

a

idents in 2017.

b. Delete all year-2010
ars belonging to the person whose ID is �12345�.

Answer:

a. Find the total number of people who owned
ars that were involved in

a

idents in 2017.

Note: This is not the same as the total number of a

idents in 2017. We

must
ount people with several a

idents only on
e. Furthermore, note

that the question asks for owners, and it might be that the owner of the

ar was not the driver a
tually involved in the a

ident.

sele
t
ount (distin
t person.driver id)

from a

ident, parti
ipated, person, owns

where a

ident.report number = parti
ipated.report number

and owns.driver id = person.driver id

and owns.li
ense plate = parti
ipated.li
ense plate

and year = 2017

18 Chapter 3 Introdu
tion to SQL

b. Delete all year-2010
ars belonging to the person whose ID is �12345�.

delete
ar

where year = 2010 and li
ense plate in

(sele
t li
ense plate

from owns o

where o.driver id = �12345�)

Note: The owns, a

ident and parti
ipated re
ords asso
iated with the

deleted
ars still exist.

3.5 Suppose that we have a relation marks(ID, s
ore) and we wish to assign grades

to students based on the s
ore as follows: grade F if s
ore < 40, grade C if 40

f s
ore < 60, grade B if 60 f s
ore < 80, and grade A if 80 f s
ore. Write SQL

queries to do the following:

a. Display the grade for ea
h student, based on the marks relation.

b. Find the number of students with ea
h grade.

Answer:

a. Display the grade for ea
h student, based on the marks relation.

sele
t ID,

ase

when s
ore < 40 then 'F'

when s
ore < 60 then 'C'

when s
ore < 80 then 'B'

else 'A'

end

from marks

b. Find the number of students with ea
h grade.

Pra
ti
e Exer
ises 19

with grades as

(

sele
t ID,

ase

when s
ore < 40 then 'F'

when s
ore < 60 then 'C'

when s
ore < 80 then 'B'

else 'A'

end as grade

from marks

)

sele
t grade,
ount(ID)

from grades

group by grade

As an alternative, the with
lause
an be removed, and instead the de�ni-

tion of grades
an be made a subquery of the main query.

3.6 The SQL like operator is
ase sensitive (in most systems), but the lower() fun
-

tion on strings
an be used to perform
ase-insensitive mat
hing. To show how,

write a query that �nds departments whose names
ontain the string �s
i� as a

substring, regardless of the
ase.

Answer:

sele
t dept name

from department

where lower(dept name) like '%s
i%'

3.7 Consider the SQL query

sele
t p.a1

from p, r1, r2

where p.a1 = r1.a1 or p.a1 = r2.a1

Under what
onditions does the pre
eding query sele
t values of p:a1 that are

either in r1 or in r2? Examine
arefully the
ases where either r1 or r2 may be

empty.

Answer:

The query sele
ts those values of p.a1 that are equal to some value of r1.a1 or

r2.a1 if and only if both r1 and r2 are non-empty. If one or both of r1 and r2 are

empty, the Cartesian produ
t of p, r1 and r2 is empty, hen
e the result of the

query is empty. If p itself is empty, the result is empty.

3.8 Consider the bank database of Figure 3.18, where the primary keys are under-

lined. Constru
t the following SQL queries for this relational database.

20 Chapter 3 Introdu
tion to SQL

bran
h(bran
h name, bran
h
ity, assets)

ustomer (ID,
ustomer name,
ustomer street,
ustomer
ity)

loan (loan number, bran
h name, amount)

borrower (ID, loan number)

a

ount (a

ount number, bran
h name, balan
e)

depositor (ID, a

ount number)

Figure 3.18 Banking database.

a. Find the ID of ea
h
ustomer of the bank who has an a

ount but not a

loan.

b. Find the ID of ea
h
ustomer who lives on the same street and in the same

ity as
ustomer �12345�.

. Find the name of ea
h bran
h that has at least one
ustomer who has an

a

ount in the bank and who lives in �Harrison�.

Answer:

a. Find the ID of ea
h
ustomer of the bank who has an a

ount but not a

loan.

(sele
t ID

from depositor)

ex
ept

(sele
t ID

from borrower)

b. Find the ID of ea
h
ustomer who lives on the same street and in the same

ity as
ustomer �12345�.

sele
t F.ID

from
ustomer as F,
ustomer as S

where F.
ustomer street = S.
ustomer street

and F.
ustomer
ity = S.
ustomer
ity

and S.
ustomer id = �12345�

. Find the name of ea
h bran
h that has at least one
ustomer who has an

a

ount in the bank and who lives in �Harrison�.

Pra
ti
e Exer
ises 21

sele
t distin
t bran
h name

from a

ount, depositor,
ustomer

where
ustomer.id = depositor.id

and depositor.a

ount number = a

ount.a

ount number

and
ustomer
ity = 'Harrison'

3.9 Consider the relational database of Figure 3.19, where the primary keys are

underlined. Give an expression in SQL for ea
h of the following queries.

a. Find the ID, name, and
ity of residen
e of ea
h employee who works for

�First Bank Corporation�.

b. Find the ID, name, and
ity of residen
e of ea
h employee who works for

�First Bank Corporation� and earns more than $10000.

. Find the ID of ea
h employee who does not work for �First Bank Corpo-

ration�.

d. Find the ID of ea
h employee who earns more than every employee of

�Small Bank Corporation�.

e. Assume that
ompanies may be lo
ated in several
ities. Find the name

of ea
h
ompany that is lo
ated in every
ity in whi
h �Small Bank Cor-

poration� is lo
ated.

f. Find the name of the
ompany that has the most employees (or
ompa-

nies, in the
ase where there is a tie for the most).

g. Find the name of ea
h
ompany whose employees earn a higher salary,

on average, than the average salary at �First Bank Corporation�.

Answer:

a. Find the ID, name, and
ity of residen
e of ea
h employee who works for

�First Bank Corporation�.

employee (ID, person name, street,
ity)

works (ID,
ompany name, salary)

ompany (
ompany name,
ity)

manages (ID, manager id)

Figure 3.19 Employee database.

22 Chapter 3 Introdu
tion to SQL

sele
t e.ID, e.person name,
ity

from employee as e, works as w

where w.
ompany name = �First Bank Corporation� and

w.ID = e.ID

b. Find the ID, name, and
ity of residen
e of ea
h employee who works for

�First Bank Corporation� and earns more than $10000.

sele
t *

from employee

where ID in

(sele
t ID

from works

where
ompany name = �First Bank Corporation� and salary > 10000)

This
ould be written also in the style of the answer to part a.

. Find the ID of ea
h employee who does not work for �First Bank Corpo-

ration�.

sele
t ID

from works

where
ompany name <> �First Bank Corporation�

If one allows people to appear in employee without appearing also in

works, the solution is slightly more
ompli
ated. An outer join as dis-

ussed in Chapter 4
ould be used as well.

sele
t ID

from employee

where ID not in

(sele
t ID

from works

where
ompany name = �First Bank Corporation�)

d. Find the ID of ea
h employee who earns more than every employee of

�Small Bank Corporation�.

sele
t ID

from works

where salary > all

(sele
t salary

from works

where
ompany name = �Small Bank Corporation�)

If peoplemay work for several
ompanies and wewish to
onsider the total

earnings of ea
h person, the problem is more
omplex. But note that the

Pra
ti
e Exer
ises 23

fa
t that ID is the primary key for works implies that this
annot be the

ase.

e. Assume that
ompanies may be lo
ated in several
ities. Find the name

of ea
h
ompany that is lo
ated in every
ity in whi
h �Small Bank Cor-

poration� is lo
ated.

sele
t S.
ompany name

from
ompany as S

where not exists ((sele
t
ity

from
ompany

where
ompany name = �Small Bank Corporation�)

ex
ept

(sele
t
ity

from
ompany as T

where S.
ompany name = T.
ompany name))

f. Find the name of the
ompany that has the most employees (or
ompa-

nies, in the
ase where there is a tie for the most).

sele
t
ompany name

from works

group by
ompany name

having
ount (distin
t ID) >= all

(sele
t
ount (distin
t ID)

from works

group by
ompany name)

g. Find the name of ea
h
ompany whose employees earn a higher salary,

on average, than the average salary at �First Bank Corporation�.

sele
t
ompany name

from works

group by
ompany name

having avg (salary) > (sele
t avg (salary)

from works

where
ompany name = �First Bank Corporation�)

3.10 Consider the relational database of Figure 3.19. Give an expression in SQL for

ea
h of the following:

a. Modify the database so that the employee whose ID is �12345� now lives

in �Newtown�.

b. Give ea
h manager of �First Bank Corporation� a 10 per
ent raise unless

the salary be
omes greater than $100000; in su
h
ases, give only a 3

per
ent raise.

24 Chapter 3 Introdu
tion to SQL

Answer:

a. Modify the database so that the employee whose ID is �12345� now lives

in �Newtown�.

update employee

set
ity = �Newtown�

where ID = �12345�

b. Give ea
h manager of �First Bank Corporation� a 10 per
ent raise unless

the salary be
omes greater than $100000; in su
h
ases, give only a 3

per
ent raise.

update works T

set T.salary = T.salary * 1.03

where T .ID in (sele
t manager id

from manages)

and T.salary * 1.1 > 100000

and T.
ompany name = �First Bank Corporation�

update works T

set T.salary = T.salary * 1.1

where T .ID in (sele
t manager id

from manages)

and T.salary * 1.1 <= 100000

and T.
ompany name = �First Bank Corporation�

The above updates would give di�erent results if exe
uted in the opposite

order. We give below a safer solution using the
ase statement.

update works T

set T.salary = T.salary <

(
ase

when (T.salary < 1:1 > 100000) then 1.03

else 1.1

end)

where T.ID in (sele
t manager id

from manages) and

T.
ompany name = �First Bank Corporation�

	Introduction to the Relational Model
	Exercises

