CHAPTER

Intermediate SQL

Practice Exercises

4.1 Consider the following SQL query that seeks to find a list of titles of all courses
taught in Spring 2017 along with the name of the instructor.

select name, title
from instructor natural join teaches natural join section natural join course
where semester = 'Spring' and year = 2017

What is wrong with this query?

Answer:

Although the query is syntactically correct, it does not compute the expected
answer because dept_name is an attribute of both course and instructor. As a
result of the natural join, results are shown only when an instructor teaches a
course in her or his own department.

4.2 Write the following queries in SQL:

a. Display a list of all instructors, showing each instructor’s ID and the num-
ber of sections taught. Make sure to show the number of sections as 0 for
instructors who have not taught any section. Your query should use an
outer join, and should not use subqueries.

b. Write the same query as in part a, but using a scalar subquery and not
using outer join.

c. Display the list of all course sections offered in Spring 2018, along with
the ID and name of each instructor teaching the section. If a section has
more than one instructor, that section should appear as many times in
the result as it has instructors. If a section does not have any instructor,
it should still appear in the result with the instructor name set to “—".

25

26

Chapter 4 Intermediate SQL

Display the list of all departments, with the total number of instructors
in each department, without using subqueries. Make sure to show depart-
ments that have no instructors, and list those departments with an instruc-
tor count of zero.

Answer:

a.

Display a list of all instructors, showing each instructor’s ID and the num-
ber of sections taught. Make sure to show the number of sections as 0 for
instructors who have not taught any section. Your query should use an
outer join, and should not use subqueries.

select /D, count(sec_id) as Number_of_sections
from instructor natural left outer join reaches
group by /D

The above query should not be written using count(*) since that would
count null values also. It could be written using any attribute from reaches
which does not occur in instructor, which would be correct although it
may be confusing to the reader. (Attributes that occur in instructor would
not be null even if the instructor has not taught any section.)

Write the same query as above, but using a scalar subquery, and not using
outerjoin.

select 1D,
(select count(*) as Number_of_sections
from teaches T where Tid = 1.id)

from instructor I

Display the list of all course sections offered in Spring 2018, along with
the ID and name of each instructor teaching the section. If a section has
more than one instructor, that section should appear as many times in
the result as it has instructors. If a section does not have any instructor,
it should still appear in the result with the instructor name set to “—".

select course_id, sec_id, ID,
decode(name, null,’—’, name) as name
from (section natural left outer join reaches)
natural left outer join instructor
where semester="Spring’ and year= 2018

The query may also be written using the coalesce operator, by replacing
decode(..) with coalesce(name, ’—’). A more complex version of the query
can be written using union of join result with another query that uses a
subquery to find courses that do not match; refer to Exercise 4.3.

Exercises 27

d. Display the list of all departments, with the total number of instructors
in each department, without using subqueries. Make sure to show depart-
ments that have no instructors, and list those departments with an instruc-
tor count of zero.

select dept name, count(ID)
from department natural left outer join instructor
group by dept_name

4.3 Outer join expressions can be computed in SQL without using the SQL outer
join operation. To illustrate this fact, show how to rewrite each of the following
SQL queries without using the outer join expression.

a. select * from student natural left outer join takes

b. select * from student natural full outer join rakes

Answer:

a. select * from student natural left outer join rakes
can be rewritten as:

select * from student natural join rakes
union
select ID, name, dept_name, tot_cred, null, null, null, null, null
from student S1 where not exists
(select ID from takes T1 where T'l.id = S1.id)

b. select * from student natural full outer join zakes
can be rewritten as:

(select * from student natural join fakes)
union
(select ID, name, dept_name, tot_cred, null, null, null, null, null
from student S1
where not exists
(select ID from takes T1 where T'Lid = S1.id))
union
(select ID, null, null, null, course_id, sec_id, semester, year, grade
from rakes T1
where not exists
(select ID from student S1 whereT'Lid = S1.id))

4.4 Suppose we have three relations r(4, B), s(B, C), and #(B, D), with all attributes
declared as not null.

a. Give instances of relations r, s, and ¢ such that in the result of
(r natural left outer join s) natural left outer join ¢
attribute C has a null value but attribute D has a non-null value.

28

Chapter 4 Intermediate SQL

4.5

b. Are there instances of , 5, and 7 such that the result of
r natural left outer join (s natural left outer join 7)
has a null value for C but a non-null value for D? Explain why or why not.

Answer:

a. Consider r = (a, b), s = (bl,cl), t = (b,d). The second expression would
give (a, b, null, d).

b. Since s natural left outer join 7 is computed first, the absence of nulls is
both s and ¢ implies that each tuple of the result can have D null, but C
can never be null.

Testing SQL queries: To test if a query specified in English has been correctly
written in SQL, the SQL query is typically executed on multiple test databases,
and a human checks if the SQL query result on each test database matches the
intention of the specification in English.

a. In Section 4.1.1 we saw an example of an erroneous SQL query which was
intended to find which courses had been taught by each instructor; the
query computed the natural join of instructor, teaches, and course, and as
a result it unintentionally equated the dept_name attribute of instructor and
course. Give an example of a dataset that would help catch this particular
error.

b. When creating test databases, it is important to create tuples in referenced
relations that do not have any matching tuple in the referencing relation
for each foreign key. Explain why, using an example query on the univer-
sity database.

c. When creating test databases, it is important to create tuples with null
values for foreign-key attributes, provided the attribute is nullable (SQL
allows foreign-key attributes to take on null values, as long as they are not
part of the primary key and have not been declared as not null). Explain
why, using an example query on the university database.

Hint: Use the queries from Exercise 4.2.

Answer:

a. Consider the case where a professor in the Physics department teaches
an Elec. Eng. course. Even though there is a valid corresponding entry in
teaches, it is lost in the natural join of instructor, teaches and course, since
the instructor’s department name does not match the department name
of the course. A dataset corresponding to the same is:

Exercises 29

instructor = {('12345',Gauss’, "Physics’, 10000)}
teaches = {('12345', "EE321’, 1, Spring’, 2017)}
course = {CEE321’, "Magnetism’, 'Elec. Eng.’, 6)}

b. The query in question 4.2(a) is a good example for this. Instructors who
have not taught a single course should have number of sections as 0 in
the query result. (Many other similar examples are possible.)

c. Consider the query
select * from reaches natural join instructor,

In this query, we would lose some sections if feaches.ID is allowed to be
null and such tuples exist. If, just because reaches.ID is a foreign key to
instructor, we did not create such a tuple, the error in the above query
would not be detected.

4.6 Show how to define the view student_grades (ID, GPA) giving the grade-point
average of each student, based on the query in Exercise 3.2; recall that we used
a relation grade_points(grade, points) to get the numeric points associated with
a letter grade. Make sure your view definition correctly handles the case of null
values for the grade attribute of the fakes relation.

Answer:
We should not add credits for courses with a null grade; further, to correctly
handle the case where a student has not completed any course, we should make
sure we don’t divide by zero, and should instead return a null value.

We break the query into a subquery that finds sum of credits and sum of
credit-grade-points, taking null grades into account The outer query divides the
above to get the average, taking care of divide by zero.

create view student_grades(ID, GPA) as

select ID, credit_points | decode(credit_sum, 0, null, credit_sum)

from ((select /D, sum(decode(grade, null, 0, credits)) as credit_sum,
sum(decode(grade, null, 0, credits*points)) as credit_points
from(takes natural join course) natural left outer join grade_points
group by /D)

union

select ID, null, null

from student

where D not in (select /D from takes))

The view defined above takes care of null grades by considering the credit points
to be 0 and not adding the corresponding credits in credit_sum.

30 Chapter 4 Intermediate SQL

employee (ID, person_name, street, city)
works (ID, company_name, salary)
company (company_name, city)
manages (ID, manager_id)

Figure 4.12 Employee database.

The query above ensures that a student who has not taken any course with
non-null credits, and has credit_sum = 0 gets a GPA of null. This avoids the
division by zero, which would otherwise have resulted.

In systems that do note support decode, an alternative is the case construct.
Using case, the solution would be written as follows:

create view student grades(ID, GPA) as
select /D, credit_points | (case when credit_sum = 0 then null
else credit_sum end)
from ((select /D, sum (case when grade is null then 0
else credits end) as credit_sum,
sum (case when grade is null then 0
else credits*points end) as credit_points
from(takes natural join course) natural left outer join grade_points
group by /D)
union
select 1D, null, null
from student
where D not in (select /D from rakes))

An alternative way of writing the above query would be to use student natural
left outer join gpa, in order to consider students who have not taken any course.

4.7 Consider the employee database of Figure 4.12. Give an SQL DDL definition
of this database. Identify referential-integrity constraints that should hold, and
include them in the DDL definition.

Answer:
Plese see ??.

Note that alternative data types are possible. Other choices for not null at-
tributes may be acceptable.

4.8 As discussed in Section 4.4.8, we expect the constraint “an instructor cannot
teach sections in two different classrooms in a semester in the same time slot”
to hold.

Exercises 31

create table employee

(ID numeric(6,0),
person_name char(20),
Street char(30),
city char(30),
primary key (/D))

create table works
(ID numeric(6,0),
company_name char(15),
salary integer,
primary key (/D),
foreign key (/D) references employee,
foreign key (company_name) references company)

create table company
(company_name char(15),
city char(30),
primary key (company_name))

create table manages

(ID numeric(6,0),
manager_iid numeric(6,0),
primary key (/D),

foreign key (/D) references employee,
foreign key (manager.iid) references employee(ID))

Figure 4.101 Figure for Exercise 4.7.

a. Write an SQL query that returns all (instructor, section) combinations that
violate this constraint.

b. Write an SQL assertion to enforce this constraint (as discussed in Sec-
tion 4.4.8, current generation database systems do not support such as-
sertions, although they are part of the SQL standard).

Answer:

32

Chapter 4 Intermediate SQL

4.9

4.10

a. Query:

select D, name, sec_id, semester, year, time_slot_id,
count(distinct building, room_number)

from instructor natural join feaches natural join section

group by (ID, name, sec_id, semester, year, time_slot_id)

having count(building, room_number) > 1

Note that the distinct keyword is required above. This is to allow two dif-
ferent sections to run concurrently in the same time slot and are taught
by the same instructor without being reported as a constraint violation.

b. Query:

create assertion check not exists
(select ID, name, sec_id, semester, year, time_slot_id,
count(distinct building, room_number)
from instructor natural join teaches natural join section
group by (ID, name, sec_id, semester, year, time_slot_id)
having count(building, room_number) > 1)

SQL allows a foreign-key dependency to refer to the same relation, as in the
following example:

create table manager
(employee_ID char(20),
manager_ID char(20),
primary key employee_ID,
foreign key (imanager_ID) references manager(employee_ID)
on delete cascade)

Here, employee_ID is a key to the table manager, meaning that each employee
has at most one manager. The foreign-key clause requires that every manager
also be an employee. Explain exactly what happens when a tuple in the relation
manager is deleted.

Answer:

The tuples of all employees of the manager, at all levels, get deleted as well! This
happens in a series of steps. The initial deletion will trigger deletion of all the
tuples corresponding to direct employees of the manager. These deletions will
in turn cause deletions of second-level employee tuples, and so on, till all direct
and indirect employee tuples are deleted.

Given the relations a(name, address, title) and b(name, address, salary), show
how to express « natural full outer join b using the full outer-join operation with
an on condition rather than using the natural join syntax. This can be done using
the coalesce operation. Make sure that the result relation does not contain two

4.11

4.12

4.13

Exercises 33

copies of the attributes name and address and that the solution is correct even
if some tuples in ¢ and b have null values for attributes name or address.

Answer:

select coalesce(a.name, b.name) as name,
coalesce(a.address, b.address) as address,
a.title,
b.salary
from ¢ full outer join b on a.name = b.name and
a.address = b.address

Operating systems usually offer only two types of authorization control for data
files: read access and write access. Why do database systems offer so many kinds
of authorization?

Answer: There are many reasons—we list a few here. One might wish to allow
a user only to append new information without altering old information. One
might wish to allow a user to access a relation but not change its schema. One
might wish to limit access to aspects of the database that are not technically
data access but instead impact resource utilization, such as creating an index.

Suppose a user wants to grant select access on a relation to another user. Why
should the user include (or not include) the clause granted by current role in the
grant statement?

Answer: Both cases give the same authorization at the time the statement
is executed, but the long-term effects differ. If the grant is done based on the
role, then the grant remains in effect even if the user who performed the grant
leaves and that user’s account is terminated. Whether that is a good or bad idea
depends on the specific situation, but usually granting through a role is more
consistent with a well-run enterprise.

Consider a view v whose definition references only relation r.

° If a user is granted select authorization on v, does that user need to have
select authorization on r as well? Why or why not?

* If a user is granted update authorization on v, does that user need to have
update authorization on r as well? Why or why not?

* Give an example of an insert operation on a view v to add a tuple ¢ that is
not visible in the result of select * from v. Explain your answer.

Answer:

* No. This allows a user to be granted access to only part of relation r.

34 Chapter 4 Intermediate SQL

Yes. A valid update issued using view v must update r for the update to be
stored in the database.

Any tuple ¢ compatible with the schema for v but not satisfying the where

clause in the definition of view v is a valid example. One such example
appears in Section 4.2.4.

	Introduction to SQL
	Exercises

