CHAPTER

Advanced SQL

Practice Exercises

5.1

5.2

5.3

Consider the following relations for a company database:

° emp (ename, dname, salary)

* mgr (ename, mname)

and the Java code in Figure 5.20, which uses the JDBC API. Assume that the
userid, password, machine name, etc. are all okay. Describe in concise English
what the Java program does. (That is, produce an English sentence like “It finds
the manager of the toy department,” not a line-by-line description of what each
Java statement does.)

Answer:

It prints out the manager of “dog,” that manager’s manager, etc., until we reach
a manager who has no manager (presumably, the CEO, who most certainly is a
cat). Note: If you try to run this, use your own Oracle ID and password.

Write a Java method using JDBC metadata features that takes a ResultSet as
an input parameter and prints out the result in tabular form, with appropriate
names as column headings.

Answer:
Please see ??

Suppose that we wish to find all courses that must be taken before some given
course. That means finding not only the prerequisites of that course, but prereg-
uisites of prerequisites, and so on. Write a complete Java program using JDBC
that:

* Takes a course_id value from the keyboard.
* Finds prerequisites of that course using an SQL query submitted via JDBC.

35

36 Chapter 5 Advanced SQL

import java.sql.*;
public class Mystery {
public static void main(Stringl1 args) {
try (
Connection con=DriverManager.getConnection(
“jdbc:oracle:thin:star/X@//edgar.cse.lehigh.edu:1521/XE");

g = "select mname from mgr where ename = ?”;
PreparedStatement stmt=con.prepareStatement();

{
String q;
String empName = “dog”;
boolean more;
ResultSet result;
do {
stmt.setString(1, empName);
result = stmt.executeQuery(q);
more = result.next();
if (more) {
empName = result.getString(*"mname”);
System.out.printin (empName);
}
} while (more);
s.close();
con.close();
}

catch(Exception e){
e.printStackTrace();

}

Figure 5.20 Java code for Exercise 5.1 (using Oracle JDBC).

* For each course returned, finds its prerequisites and continues this process
iteratively until no new prerequisite courses are found.

* Prints out the result.

For this exercise, do not use a recursive SQL query, but rather use the iterative
approach described previously. A well-developed solution will be robust to the
error case where a university has accidentally created a cycle of prerequisites
(that is, for example, course A4 is a prerequisite for course B, course B is a pre-
requisite for course C, and course C is a prerequisite for course 4).

Practice Exercises 37

printTable (ResultSet result) throws SQLException {
metadata = result.getMetaData();
num_cols = metadata.getColumnCount();
for(int i = 1; i <= num_cols; i++) {

System.out.print (metadata.getColumnName (i) + ’\t’);

System.out.println();
while (result.next()) {

for(int i = 1; i <= num_cols; i++) {
System.out.print(result.getString(i) + ’\t’

}

System.out.println();

3

5.4

5.5

5.6

Figure 5.101 Java method using JDBC for Exercise 5.2.

Answer:
Please see ??

Describe the circumstances in which you would choose to use embedded SQL
rather than SQL alone or only a general-purpose programming language.

Answer:

Writing queries in SQL is typically much easier than coding the same queries
in a general-purpose programming language. However, not all kinds of queries
can be written in SQL. Also, nondeclarative actions such as printing a report,
interacting with a user, or sending the results of a query to a graphical user inter-
face cannot be done from within SQL. Under circumstances in which we want
the best of both worlds, we can choose embedded SQL or dynamic SQL, rather
than using SQL alone or using only a general-purpose programming language.

Show how to enforce the constraint “an instructor cannot teach two different
sections in a semester in the same time slot.” using a trigger (remember that the
constraint can be violated by changes to the feaches relation as well as to the
section relation).

Answer:
Please see ??

Consider the bank database of Figure 5.21. Let us define a view branch_cust as
follows:

38 Chapter 5 Advanced SQL

import java.sql.*;
import java.util.Scanner;
import java.util.Arrays;
public class AllCoursePrereqs {
public static void main(String[] args) {
try (
Connection con=DriverManager.getConnection
("jdbc:oracle:thin:QedgarO.cse.lehigh.edu:1521:cse241","star","pu") ;
Statement s=con.createStatement();
)
String q;
String c;
ResultSet result;
int maxCourse = 0;
q = "select count(*) as C from course";
result = s.executeQuery(q);
if (!result.next()) System.out.println ("Unexpected empty result.");
else maxCourse = Integer.parselnt(result.getString("C"));
int numCourse = 0, oldNumCourse = -1;
String[] preregqs = new String [maxCourse];
Scanner krb = new Scanner(System.in);

System.out.print ("Input a course id (number): ");
String course = krb.next();
String courseString = "" + ’\’’ + course + ’\’’;
while (numCourse != oldNumCourse) {
for (int i = oldNumCourse + 1; i < numCourse; i++) {
courseString += ", " + ’\’’ + preregs[i] + ’\’’
}
oldNumCourse = numCourse;
q = "select prereq_id from prereq where course_id in ("

+ courseString + ")";
result = s.executeQuery(q);
while (result.next()) {
¢ = result.getString("prereq_id");
boolean found = false;
for (int i = 0; i < numCourse; i++)

found |= prereqgs[i].equals(c);
if (!found) preregs[numCourse++] = c;
}
courseString = "" + ’\’’ + prereqgs[oldNumCourse] + ’\’’;

}
Arrays.sort(prereqs,0,numCourse) ;
System.out.print ("The courses that must be taken prior to "
+ course + " are: ");
for (int i = 0; i < numCourse; i++)
System.out.print ((i==07" ":", ") + prereqs[i]);
System.out.println();
} catch(Exception e){e.printStackTrace();

3
Figure 5.102 Complete Java program using JDBC for Exercise 5.3.

Practice Exercises

39

create trigger onesec before insert on section
referencing new row as nrow
for each row
when (nrow.time_slot_id in (
select time_slot_id
from teaches natural join section
where D in (
select /D
from teaches natural join section
where sec_id = nrow.sec_id and course_id = nrow.course_id and
semester = nrow.semester and year = nrow.year
)))
begin
rollback
end;

create trigger oneteach before insert on teaches
referencing new row as nrow
for each row
when (exists (
select time_slot_id
from reaches natural join section
where /D = nrow.ID
intersect
select time_slot_id
from section
where sec_id = nrow.sec_id and course_id = nrow.course_id and
semester = nrow.semester and year = nrow.year
)
begin
rollback
end;

Figure 5.103 Trigger code for Exercise 5.5.

create view branch_cust as
select branch_name, customer_name
from depositor, account
where depositor.account_number = account.account_number

40

Chapter 5 Advanced SQL

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, cust omer_city)
loan (loan_number, branch_name, amount)

borrower (customer_name, loan_number)

account (account_number, branch_name, balance)
depositor (customer_name, account_number)

5.7

Figure 5.21 Banking database for Exercise 5.6.

Suppose that the view is materialized; that is, the view is computed and stored.
Write triggers to maintain the view, that is, to keep it up-to-date on insertions
to depositor or account. It is not necessary to handle deletions or updates. Note
that, for simplicity, we have not required the elimination of duplicates.

Answer:
Please see ??

Consider the bank database of Figure 5.21. Write an SQL trigger to carry out
the following action: On delete of an account, for each customer-owner of the

create trigger insert_into_branch_cust_via_depositor
after insert on depositor
referencing new row as inserted
for each row
insert into branch_cust
select branch_name, inserted.customer_name
from account
where inserted.account_number = account.account_number

create trigger insert_into_branch_cust_via_account
after insert on account
referencing new row as inserted
for each statement
insert into branch_cust
select inserted.branch_name, customer_name
from depositor
where depositor.account_number = inserted.account_ number

Figure 5.22 Trigger code for Exercise 5.6.

5.8

5.9

5.10

Practice Exercises 41

account, check if the owner has any remaining accounts, and if she does not,
delete her from the depositor relation.

Answer:

create trigger check-delete-trigger after delete on account
referencing old row as orow
for each row
delete from depositor
where depositor.customer_name not in

(select customer_name from depositor

where account_number <> orow.account_number)
end

Given a relation S(student, subject, marks), write a query to find the top 10 stu-
dents by total marks, by using SQL ranking. Include all students tied for the final
spot in the ranking, even if that results in more than 10 total students.

Answer:

select *
from (
select student, total, rank() over (order by (total) desc) as t_rank
from (
select student, sum(marks) as total
from S group by student

)
)

where t_rank <= 10

Given a relation nyse(year, month, day, shares_traded, dollar_volume) with trad-
ing data from the New York Stock Exchange, list each trading day in order of
number of shares traded, and show each day’s rank.

Answer:

select year, month, day, shares_traded,
rank() over (order by shares_traded desc) as mostshares
from nyse

Using the relation from Exercise 5.9, write an SQL query to generate a report
showing the number of shares traded, number of trades, and total dollar volume
broken down by year, each month of each year, and each trading day.

Answer:

42 Chapter 5 Advanced SQL

select year, month, day, sum(shares_traded) as shares,
sum(num-_trades) as trades, sum(dollar_volume) as total_volume

from nyse

group by rollup (vear, month, day)

5.11 Show how to express group by cube(a, b, ¢, d) using rollup; your answer should
have only one group by clause.

Answer:

groupby rollup(a), rollup(b), rollup(c), rollup(d)

	Intermediate SQL
	Exercises

