
CHAP T E R

5

Advan
ed SQL

Pra
ti
e Exer
ises

5.1 Consider the following relations for a 
ompany database:

�

emp (ename, dname, salary)

�

mgr (ename, mname)

and the Java 
ode in Figure 5.20, whi
h uses the JDBC API. Assume that the

userid, password, ma
hine name, et
. are all okay. Des
ribe in 
on
ise English

what the Java program does. (That is, produ
e an English senten
e like �It �nds

the manager of the toy department,� not a line-by-line des
ription of what ea
h

Java statement does.)

Answer:

It prints out the manager of �dog,� that manager's manager, et
., until we rea
h

a manager who has no manager (presumably, the CEO, who most 
ertainly is a


at). Note: If you try to run this, use your own Ora
le ID and password.

5.2 Write a Java method using JDBC metadata features that takes a ResultSet as

an input parameter and prints out the result in tabular form, with appropriate

names as 
olumn headings.

Answer:

Please see ??

5.3 Suppose that we wish to �nd all 
ourses that must be taken before some given


ourse. That means �nding not only the prerequisites of that 
ourse, but prereq-

uisites of prerequisites, and so on. Write a 
omplete Java program using JDBC

that:

�

Takes a 
ourse id value from the keyboard.

�

Finds prerequisites of that 
ourse using an SQL query submitted via JDBC.

35



36 Chapter 5 Advan
ed SQL

import java.sql.*;

publi
 
lass Mystery {

publi
 stati
 void main(String[℄ args) {

try (

Conne
tion 
on=DriverManager.getConne
tion(

"jdb
:ora
le:thin:star/X�//edgar.
se.lehigh.edu:1521/XE");

q = "sele
t mname from mgr where ename = ?";

PreparedStatement stmt=
on.prepareStatement();

)

{

String q;

String empName = "dog";

boolean more;

ResultSet result;

do {

stmt.setString(1, empName);

result = stmt.exe
uteQuery(q);

more = result.next();

if (more) {

empName = result.getString("mname");

System.out.println (empName);

}

} while (more);

s.
lose();


on.
lose();

}


at
h(Ex
eption e){

e.printSta
kTra
e();

}

}

}

Figure 5.20 Java 
ode for Exer
ise 5.1 (using Ora
le JDBC).

�

For ea
h 
ourse returned, �nds its prerequisites and 
ontinues this pro
ess

iteratively until no new prerequisite 
ourses are found.

�

Prints out the result.

For this exer
ise, do not use a re
ursive SQL query, but rather use the iterative

approa
h des
ribed previously. A well-developed solution will be robust to the

error 
ase where a university has a

identally 
reated a 
y
le of prerequisites

(that is, for example, 
ourse A is a prerequisite for 
ourse B, 
ourse B is a pre-

requisite for 
ourse C, and 
ourse C is a prerequisite for 
ourse A).



Pra
ti
e Exer
ises 37

printTable(ResultSet result) throws SQLException {

metadata = result.getMetaData();

num cols = metadata.getColumnCount();

for(int i = 1; i <= num cols; i++) {

System.out.print(metadata.getColumnName(i) + ’\t’);

}

System.out.println();

while(result.next()) {

for(int i = 1; i <= num cols; i++) {

System.out.print(result.getString(i) + ’\t’

}

System.out.println();

} }

Figure 5.101 Java method using JDBC for Exer
ise 5.2.

Answer:

Please see ??

5.4 Des
ribe the 
ir
umstan
es in whi
h you would 
hoose to use embedded SQL

rather than SQL alone or only a general-purpose programming language.

Answer:

Writing queries in SQL is typi
ally mu
h easier than 
oding the same queries

in a general-purpose programming language. However, not all kinds of queries


an be written in SQL. Also, nonde
larative a
tions su
h as printing a report,

intera
ting with a user, or sending the results of a query to a graphi
al user inter-

fa
e 
annot be done from within SQL. Under 
ir
umstan
es in whi
h we want

the best of both worlds, we 
an 
hoose embedded SQL or dynami
 SQL, rather

than using SQL alone or using only a general-purpose programming language.

5.5 Show how to enfor
e the 
onstraint �an instru
tor 
annot tea
h two di�erent

se
tions in a semester in the same time slot.� using a trigger (remember that the


onstraint 
an be violated by 
hanges to the tea
hes relation as well as to the

se
tion relation).

Answer:

Please see ??

5.6 Consider the bank database of Figure 5.21. Let us de�ne a view bran
h 
ust as

follows:



38 Chapter 5 Advan
ed SQL

import java.sql.*;

import java.util.Scanner;

import java.util.Arrays;

public class AllCoursePrereqs {

public static void main(String[] args) {

try (

Connection con=DriverManager.getConnection

("jdbc:oracle:thin:@edgar0.cse.lehigh.edu:1521:cse241","star","pw");

Statement s=con.createStatement();

){

String q;

String c;

ResultSet result;

int maxCourse = 0;

q = "select count(*) as C from course";

result = s.executeQuery(q);

if (!result.next()) System.out.println ("Unexpected empty result.");

else maxCourse = Integer.parseInt(result.getString("C"));

int numCourse = 0, oldNumCourse = -1;

String[] prereqs = new String [maxCourse];

Scanner krb = new Scanner(System.in);

System.out.print("Input a course id (number): ");

String course = krb.next();

String courseString = "" + ’\’’ + course + ’\’’;

while (numCourse != oldNumCourse) {

for (int i = oldNumCourse + 1; i < numCourse; i++) {

courseString += ", " + ’\’’ + prereqs[i] + ’\’’ ;

}

oldNumCourse = numCourse;

q = "select prereq_id from prereq where course_id in ("

+ courseString + ")";

result = s.executeQuery(q);

while (result.next()) {

c = result.getString("prereq_id");

boolean found = false;

for (int i = 0; i < numCourse; i++)

found |= prereqs[i].equals(c);

if (!found) prereqs[numCourse++] = c;

}

courseString = "" + ’\’’ + prereqs[oldNumCourse] + ’\’’;

}

Arrays.sort(prereqs,0,numCourse);

System.out.print("The courses that must be taken prior to "

+ course + " are: ");

for (int i = 0; i < numCourse; i++)

System.out.print ((i==0?" ":", ") + prereqs[i]);

System.out.println();

} catch(Exception e){e.printStackTrace();

} }

Figure 5.102 Complete Java program using JDBC for Exer
ise 5.3.



Pra
ti
e Exer
ises 39


reate trigger onese
 before insert on se
tion

referen
ing new row as nrow

for ea
h row

when (nrow.time slot id in (

sele
t time slot id

from tea
hes natural join se
tion

where ID in (

sele
t ID

from tea
hes natural join se
tion

where se
 id = nrow.se
 id and 
ourse id = nrow.
ourse id and

semester = nrow.semester and year = nrow.year

)))

begin

rollba
k

end;


reate trigger onetea
h before insert on tea
hes

referen
ing new row as nrow

for ea
h row

when (exists (

sele
t time slot id

from tea
hes natural join se
tion

where ID = nrow.ID

interse
t

sele
t time slot id

from se
tion

where se
 id = nrow.se
 id and 
ourse id = nrow.
ourse id and

semester = nrow.semester and year = nrow.year

))

begin

rollba
k

end;

Figure 5.103 Trigger 
ode for Exer
ise 5.5.


reate view bran
h 
ust as

sele
t bran
h name, 
ustomer name

from depositor, a

ount

where depositor.a

ount number = a

ount.a

ount number



40 Chapter 5 Advan
ed SQL

bran
h (bran
h name, bran
h 
ity, assets)


ustomer (
ustomer name, 
ustomer street, 
ust omer 
ity)

loan (loan number, bran
h name, amount)

borrower (
ustomer name, loan number)

a

ount (a

ount number, bran
h name, balan
e )

depositor (
ustomer name, a

ount number)

Figure 5.21 Banking database for Exer
ise 5.6.

Suppose that the view is materialized; that is, the view is 
omputed and stored.

Write triggers to maintain the view, that is, to keep it up-to-date on insertions

to depositor or a

ount. It is not ne
essary to handle deletions or updates. Note

that, for simpli
ity, we have not required the elimination of dupli
ates.

Answer:

Please see ??

5.7 Consider the bank database of Figure 5.21. Write an SQL trigger to 
arry out

the following a
tion: On delete of an a

ount, for ea
h 
ustomer-owner of the


reate trigger insert into bran
h 
ust via depositor

after insert on depositor

referen
ing new row as inserted

for ea
h row

insert into bran
h 
ust

sele
t bran
h name, inserted.
ustomer name

from a

ount

where inserted.a

ount number = a

ount.a

ount number


reate trigger insert into bran
h 
ust via a

ount

after insert on a

ount

referen
ing new row as inserted

for ea
h statement

insert into bran
h 
ust

sele
t inserted.bran
h name, 
ustomer name

from depositor

where depositor.a

ount number = inserted.a

ount number

Figure 5.22 Trigger 
ode for Exer
ise 5.6.



Pra
ti
e Exer
ises 41

a

ount, 
he
k if the owner has any remaining a

ounts, and if she does not,

delete her from the depositor relation.

Answer:


reate trigger 
he
k-delete-trigger after delete on a

ount

referen
ing old row as orow

for ea
h row

delete from depositor

where depositor.
ustomer name not in

( sele
t 
ustomer name from depositor

where a

ount number <> orow.a

ount number )

end

5.8 Given a relation S(student, subje
t,marks), write a query to �nd the top 10 stu-

dents by total marks, by using SQL ranking. In
lude all students tied for the �nal

spot in the ranking, even if that results in more than 10 total students.

Answer:

sele
t *

from (

sele
t student, total, rank() over (order by (total) des
) as t rank

from (

sele
t student, sum(marks) as total

from S group by student

)

)

where t rank <= 10

5.9 Given a relation nyse(year, month, day, shares traded, dollar volume) with trad-

ing data from the New York Sto
k Ex
hange, list ea
h trading day in order of

number of shares traded, and show ea
h day's rank.

Answer:

sele
t year, month, day, shares traded,

rank() over (order by shares traded des
 ) as mostshares

from nyse

5.10 Using the relation from Exer
ise 5.9, write an SQL query to generate a report

showing the number of shares traded, number of trades, and total dollar volume

broken down by year, ea
h month of ea
h year, and ea
h trading day.

Answer:



42 Chapter 5 Advan
ed SQL

sele
t year, month, day, sum(shares traded) as shares,

sum(num trades) as trades, sum(dollar volume) as total volume

from nyse

group by rollup (year, month, day)

5.11 Show how to express group by 
ube(a, b, 
, d) using rollup; your answer should

have only one group by 
lause.

Answer:

groupby rollup(a), rollup(b), rollup(
 ), rollup(d)


	Intermediate SQL
	Exercises


