
CHAP T E R

7

Relational Database Design

Pratie Exerises

7.1 Suppose that we deompose the shema R = (A, B, C, D, E) into

(A, B, C)

(A, D, E).

Show that this deomposition is a lossless deomposition if the following set F

of funtional dependenies holds:

A� BC

CD� E

B � D

E � A

Answer:

A deomposition ^R

1

, R

2

` is a lossless deomposition if R

1

ã R

2

� R

1

or

R

1

ã R

2

� R

2

. Let R

1

= (A, B, C), R

2

= (A, D, E), and R

1

ã R

2

= A.

Sine A is a andidate key (see Pratie Exerise 7.6), R

1

ã R

2

� R

1

.

7.2 List all nontrivial funtional dependenies satis�ed by the relation of Figure

7.18.

A B C

a

1

b

1

1

a

1

b

1

2

a

2

b

1

1

a

2

b

1

3

Figure 7.17 Relation of Exerise 7.2.

53

54 Chapter 7 Relational Database Design

Answer:

The nontrivial funtional dependenies are: A � B and C � B, and a

dependeny they logially imply: AC � B. C does not funtionally determine

A beause the �rst and third tuples have the same C but di�erent A values. The

same tuples also show B does not funtionally determine A. Likewise, A does not

funtionally determine C beause the �rst two tuples have the same A value and

di�erent C values. The same tuples also show B does not funtionally determine

C. There are 19 trivial funtional dependenies of the form � � �, where

� Ó �.

7.3 Explain how funtional dependenies an be used to indiate the following:

�

A one-to-one relationship set exists between entity sets student and instru-

tor.

�

Amany-to-one relationship set exists between entity sets student and instru-

tor.

Answer:

Let Pk(r) denote the primary key attribute of relation r.

�

The funtional dependenies Pk(student) � Pk (instrutor) and

Pk(instrutor) � Pk(student) indiate a one-to-one relationship be-

ause any two tuples with the same value for student must have the same

value for instrutor, and any two tuples agreeing on instrutor must have

the same value for student.

�

The funtional dependeny Pk(student)� Pk(instrutor) indiates a many-

to-one relationship sine any student value whih is repeated will have the

same instrutor value, but many student values may have the same instru-

tor value.

7.4 UseArmstrong's axioms to prove the soundness of the union rule. (Hint: Use the

augmentation rule to show that, if �� �, then �� ��. Apply the augmentation

rule again, using �� , and then apply the transitivity rule.)

Answer:

To prove that:

if � � � and � � then � � �

Following the hint, we derive:

Pratie Exerises 55

� � � given

�� � �� augmentation rule

� � �� union of idential sets

� � given

�� � � augmentation rule

� � � transitivity rule and set union ommutativity

7.5 Use Armstrong's axioms to prove the soundness of the pseudotransitivity rule.

Answer:

Proof using Armstrong's axioms of the pseudotransitivity rule:

if � � � and � � Æ, then � � Æ.

� � � given

� � � augmentation rule and set union ommutativity

 � � Æ given

� � Æ transitivity rule

7.6 Compute the losure of the following set F of funtional dependenies for rela-

tion shema R = (A, B, C, D, E).

A� BC

CD� E

B� D

E � A

List the andidate keys for R.

Answer:

Note: It is not reasonable to expet students to enumerate all of F

+

. Some short-

hand representation of the result should be aeptable as long as the nontrivial

members of F

+

are found.

Starting with A � BC, we an onlude: A � B and A � C.

Sine A � B and B � D, A � D (deomposition,

transitive)

Sine A � CD and CD � E, A � E (union, deom-

position, transi-

tive)

Sine A � A, we have (re�exive)

A � ABCDE from the above steps (union)

Sine E � A, E � ABCDE (transitive)

Sine CD � E, CD � ABCDE (transitive)

Sine B � D and BC � CD, BC �

ABCDE

(augmentative,

transitive)

Also, C � C, D � D, BD � D, et.

56 Chapter 7 Relational Database Design

Therefore, any funtional dependeny with A, E, BC, or CD on the left-hand

side of the arrow is in F

+

, no matter whih other attributes appear in the FD.

Allow * to represent any set of attributes in R, then F

+

is BD � B, BD � D,

C � C, D � D, BD � BD, B � D, B � B, B � BD, and all FDs of the

form A <� �, BC <� �, CD <� �, E <� � where � is any subset of

^A, B, C, D, E`. The andidate keys are A, BC, CD, and E.

7.7 Using the funtional dependenies of Exerise 7.6, ompute the anonial

over F

.

Answer:

The given set of FDs F is:-

A� BC

CD� E

B� D

E� A

The left side of eah FD in F is unique. Also, none of the attributes in the left

side or right side of any of the FDs is extraneous. Therefore the anonial over

F

is equal to F .

7.8 Consider the algorithm in Figure 7.19 to ompute �

+

. Show that this algorithm

is more e	ient than the one presented in Figure 7.8 (Setion 7.4.2) and that it

omputes �

+

orretly.

Answer:

The algorithm is orret beause:

�

If A is added to result then there is a proof that � � A. To see this, observe

that � � � trivially, so � is orretly part of result. If A Ì � is added to

result, there must be some FD � � suh that A Ë and � is already a

subset of result. (Otherwise fdount would be nonzero and the if ondition

would be false.) A full proof an be given by indution on the depth of

reursion for an exeution of addin, but suh a proof an be expeted only

from students with a good mathematial bakground.

�

If A Ë �

+

, then A is eventually added to result. We prove this by indution

on the length of the proof of � � A using Armstrong's axioms. First observe

that if proedure addin is alled with some argument �, all the attributes in

� will be added to result. Also if a partiular FD's fdount beomes 0, all

the attributes in its tail will de�nitely be added to result. The base ase of

the proof, A Ë � Ù A Ë �

+

, is obviously true beause the �rst all to

addin has the argument �. The indutive hypothesis is that if � � A an

be proved in n steps or less, then A Ë result: If there is a proof in n + 1

Pratie Exerises 57

result := ç;

/* fdount is an array whose ith element ontains the number

of attributes on the left side of the ith FD that are

not yet known to be in �

+

*/

for i := 1 to ðF ð do

begin

let � � denote the ith FD;

fdount [i℄ := ð�ð;

end

/* appears is an array with one entry for eah attribute. The

entry for attribute A is a list of integers. Eah integer

i on the list indiates that A appears on the left side

of the ith FD */

for eah attribute A do

begin

appears [A℄ := NIL;

for i := 1 to ðF ð do

begin

let � � denote the ith FD;

if A Ë � then add i to appears [A℄;

end

end

addin (�);

return (result);

proedure addin (�);

for eah attribute A in � do

begin

if A Ì result then

begin

result := result ä ^A`;

for eah element i of appears[A℄ do

begin

fdount [i℄ := fdount [i℄ * 1;

if fdount [i℄ := 0 then

begin

let � � denote the ith FD;

addin ();

end

end

end

end

Figure 7.18 An algorithm to ompute �

+

.

58 Chapter 7 Relational Database Design

steps that � � A, then the last step was an appliation of either re�exivity,

augmentation, or transitivity on a fat � � � proved in n or fewer steps.

If re�exivity or augmentation was used in the (n + 1)

st

step, A must have

been in result by the end of the n

th

step itself. Otherwise, by the indutive

hypothesis, � Ó result. Therefore, the dependeny used in proving � � ,

A Ë , will have fdount set to 0 by the end of the n

th

step. Hene A will

be added to result.

To see that this algorithm is more e	ient than the one presented in the hap-

ter, note that we san eah FD one in the main program. The resulting array

appears has size proportional to the size of the given FDs. The reursive alls

to addin result in proessing linear in the size of appears. Hene the algorithm

has time omplexity whih is linear in the size of the given FDs. On the other

hand, the algorithm given in the text has quadrati time omplexity, as it may

perform the loop as many times as the number of FDs, in eah loop sanning

all of them one.

7.9 Given the database shema R(A,B,C), and a relation r on the shema R, write

an SQL query to test whether the funtional dependeny B � C holds on re-

lation r. Also write an SQL assertion that enfores the funtional dependeny.

Assume that no null values are present. (Although part of the SQL standard,

suh assertions are not supported by any database implementation urrently.)

Answer:

a. The query is given below. Its result is non-empty if and only if B � C

does not hold on r.

selet B

from r

group by B

having ount(distint C) > 1

b.

reate assertion b to hek

(not exists

(selet B

from r

group by B

having ount(distint C) > 1

)

)

Pratie Exerises 59

7.10 Our disussion of lossless deomposition impliitly assumed that attributes on

the left-hand side of a funtional dependeny annot take on null values. What

ould go wrong on deomposition, if this property is violated?

Answer:

The natural join operator is de�ned in terms of the Cartesian produt and the

seletion operator. The seletion operator gives unknown for any query on a null

value. Thus, the natural join exludes all tuples with null values on the ommon

attributes from the �nal result. Thus, the deomposition would be lossy (in a

manner di�erent from the usual ase of lossy deomposition), if null values

our in the left-hand side of the funtional dependeny used to deompose the

relation. (Null values in attributes that our only in the right-hand side of the

funtional dependeny do not ause any problems.)

7.11 In the BCNF deomposition algorithm, suppose you use a funtional depen-

deny � � � to deompose a relation shema r(�, �,) into r

1

(�, �) and r

2

(�,).

a. What primary and foreign-key onstraint do you expet to hold on the

deomposed relations?

b. Give an example of an inonsisteny that an arise due to an erroneous

update, if the foreign-key onstraint were not enfored on the deomposed

relations above.

. When a relation shema is deomposed into 3NF using the algorithm in

Setion 7.5.2, what primary and foreign-key dependenies would you ex-

pet to hold on the deomposed shema?

Answer:

a. � should be a primary key for r

1

, and � should be the foreign key from r

2

,

referening r

1

.

b. If the foreign key onstraint is not enfored, then a deletion of a tuple from

r

1

would not have a orresponding deletion from the referening tuples in

r

2

. Instead of deleting a tuple from r, this would amount to simply setting

the value of � to null in some tuples.

. For every shema r

i

(��) added to the deomposition beause of a fun-

tional dependeny � � �, � should be made the primary key. Also, a

andidate key for the original relation is loated in some newly reated

relation r

k

and is a primary key for that relation.

Foreign-key onstraints are reated as follows: for eah relation r

i

reated

above, if the primary key attributes of r

i

also our in any other relation

r

j

, then a foreign-key onstraint is reated from those attributes in r

j

, ref-

erening (the primary key of) r

i

.

60 Chapter 7 Relational Database Design

7.12 Let R

1

, R

2

,§ ,R

n

be a deomposition of shema U. Let u(U) be a relation, and

let r

i

= �

R

I

(u). Show that

u Ó r

1

Æ r

2

Æ 5 Æ r

n

Answer:

Consider some tuple t in u.

Note that r

i

= �

R

i

(u) implies that t[R

i

℄ Ë r

i

, 1 f i f n. Thus,

t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄ Ë r

1

Æ r

2

Æ § Æ r

n

By the de�nition of natural join,

t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄ = �

�

(�

�

(t[R

1

℄ � t[R

2

℄ � § � t[R

n

℄))

where the ondition � is satis�ed if values of attributes with the same name

in a tuple are equal and where � = U . The Cartesian produt of single tuples

generates one tuple. The seletion proess is satis�ed beause all attributes with

the same name must have the same value sine they are projetions from the

same tuple. Finally, the projetion lause removes dupliate attribute names.

By the de�nition of deomposition, U = R

1

ä R

2

ä § ä R

n

, whih means

that all attributes of t are in t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄. That is, t is equal to

the result of this join.

Sine t is any arbitrary tuple in u,

u Ó r

1

Æ r

2

Æ § Æ r

n

7.13 Show that the deomposition in Exerise 7.1 is not a dependeny-preserving

deomposition.

Answer:

Therer are several funtional dependenies that are not preserved. We disuss

one example here. The dependeny B � D is not preserved. F

1

, the restrition

of F to (A, B, C) is A � ABC, A � AB, A � AC, A � BC, A � B,

A � C, A � A, B � B, C � C, AB � AC, AB � ABC, AB � BC,

AB � AB, AB � A, AB � B, AB � C, AC (same as AB), BC (same as AB),

ABC (same as AB). F

2

, the restrition of F to (C, D, E) is A � ADE, A � AD,

A � AE, A � DE, A � A, A � D, A � E, D � D, E (same as A), AD,

AE, DE, ADE (same as A). (F

1

ä F

2

)

+

is easily seen not to ontain B � D

sine the only FD in F

1

ä F

2

with B as the left side is B � B, a trivial FD.

Thus B � D is not preserved.

A simpler argument is as follows: F

1

ontains no dependenies with D on

the right side of the arrow. F

2

ontains no dependenies with B on the left side

of the arrow. Therefore for B � D to be preserved there must be a funtional

dependeny B � � in F

+

1

and � � D in F

+

2

(so B � D would follow by

Pratie Exerises 61

transitivity). Sine the intersetion of the two shemes is A, � = A. Observe that

B � A is not in F

+

1

sine B

+

= BD.

7.14 Show that there an be more than one anonial over for a given set of fun-

tional dependenies, using the following set of dependenies:

X � YZ, Y � XZ, and Z � XY .

Answer: Consider the �rst funtional dependeny. We an verify that Z is

extraneous in X � YZ and delete it. Subsequently, we an similarly hek that

X is extraneous in Y � XZ and delete it, and that Y is extraneous in Z � XY

and delete it, resulting in a anonial over X � Y , Y � Z,Z � X .

However, we an also verify that Y is extraneous in X � YZ and delete it.

Subsequently, we an similarly hek that Z is extraneous in Y � XZ and delete

it, and that X is extraneous in Z � XY and delete it, resulting in a anonial

over X � Z, Y � X ,Z � Y .

7.15 The algorithm to generate a anonial over only removes one extraneous at-

tribute at a time. Use the funtional dependenies from Exerise 7.14 to show

what an go wrong if two attributes inferred to be extraneous are deleted at

one.

Answer: In X � YZ, one an infer that Y is extraneous, and so is Z. But

deleting both will result in a set of dependenies from whih X � YZ an no

longer be inferred. Deleting Y results in Z no longer being extraneous, and delet-

ing Z results in Y no longer being extraneous. The anonial over algorithm

only deletes one attribute at a time, avoiding the problem that ould our if

two attributes are deleted at the same time.

7.16 Show that it is possible to ensure that a dependeny-preserving deomposition

into 3NF is a lossless deomposition by guaranteeing that at least one shema

ontains a andidate key for the shema being deomposed. (Hint: Show that

the join of all the projetions onto the shemas of the deomposition annot

have more tuples than the original relation.)

Answer:

Let F be a set of funtional dependenies that hold on a shema R. Let � =

^R

1

,R

2

,§ ,R

n

` be a dependeny-preserving 3NF deomposition of R. Let X be

a andidate key for R.

Consider a legal instane r ofR. Let j = �

X

(r) Æ �

R

1

(r) Æ �

R

2

(r)§ Æ �

R

n

(r).

We want to prove that r = j.

We laim that if t

1

and t

2

are two tuples in j suh that t

1

[X ℄ = t

2

[X ℄, then

t

1

= t

2

. To prove this laim, we use the following indutive argument:

Let F

¨

= F

1

ä F

2

ä§ ä F

n

, where eah F

i

is the restrition of F to the shema

R

i

in �. Consider the use of the algorithm given in Figure 7.8 to ompute the

62 Chapter 7 Relational Database Design

losure of X under F

¨

. We use indution on the number of times that the for

loop in this algorithm is exeuted.

�

Basis: In the �rst step of the algorithm, result is assigned to X , and hene

given that t

1

[X ℄ = t

2

[X ℄, we know that t

1

[result℄ = t

2

[result℄ is true.

�

Indution Step: Let t

1

[result℄ = t

2

[result℄ be true at the end of the k th

exeution of the for loop.

Suppose the funtional dependeny onsidered in the k+1 th exeution

of the for loop is � � , and that � Ó result. � Ó result implies that

t

1

[�℄ = t

2

[�℄ is true. The fats that � � holds for some attribute set

R

i

in � and that t

1

[R

i

℄ and t

2

[R

i

℄ are in �

R

i

(r) imply that t

1

[℄ = t

2

[℄ is

also true. Sine is now added to result by the algorithm, we know that

t

1

[result℄ = t

2

[result℄ is true at the end of the k + 1 th exeution of the for

loop.

Sine � is dependeny-preserving and X is a key for R, all attributes in R are in

result when the algorithm terminates. Thus, t

1

[R℄ = t

2

[R℄ is true, that is, t

1

= t

2

� as laimed earlier.

Our laim implies that the size of �

X

(j) is equal to the size of j. Note also

that �

X

(j) = �

X

(r) = r (sine X is a key for R). Thus we have proved that the

size of j equals that of r. Using the result of Exerise 7.12, we know that r Ó j.

Hene we onlude that r = j.

Note that sine X is trivially in 3NF, � ä ^X` is a dependeny-preserving

lossless deomposition into 3NF.

7.17 Give an example of a relation shema R

¨

and set F

¨

of funtional dependen-

ies suh that there are at least three distint lossless deompositions of R

¨

into

BCNF.

Answer:

Given the relation R

¨

= (A, B, C, D) the set of funtional dependenies F

¨

=

A � B, C � D, B � C allows three distint BCNF deompositions.

R

1

= ^(A, B), (C, D), (B, C)`

is in BCNF as is

R

2

= ^(A, B), (C, D), (A, C)`

R

3

= ^(B, C), (A, D), (A, B)`

7.18 Let a prime attribute be one that appears in at least one andidate key. Let � and

� be sets of attributes suh that � � � holds, but �� � does not hold. Let A be

Pratie Exerises 63

an attribute that is not in �, is not in �, and for whih � � A holds. We say that

A is transitively dependent on �. We an restate the de�nition of 3NF as follows:

A relation shema R is in 3NF with respet to a set F of funtional dependenies

if there are no nonprime attributes A in R for whih A is transitively dependent

on a key for R. Show that this new de�nition is equivalent to the original one.

Answer:

Suppose R is in 3NF aording to the textbook de�nition. We show that it is in

3NF aording to the de�nition in the exerise. Let A be a nonprime attribute

in R that is transitively dependent on a key � for R. Then there exists � Ó R

suh that � � A, � � �, A Ì �, A Ì �, and � � � does not hold. But

then � � A violates the textbook de�nition of 3NF sine

�

A Ì � implies � � A is nontrivial

�

Sine � � � does not hold, � is not a superkey

�

A is not any andidate key, sine A is nonprime

Now we show that if R is in 3NF aording to the exerise de�nition, it is in

3NF aording to the textbook de�nition. Suppose R is not in 3NF aording

to the the textbook de�nition. Then there is an FD � � � that fails all three

onditions. Thus

�

� � � is nontrivial.

�

� is not a superkey for R.

�

Some A in � * � is not in any andidate key.

This implies that A is nonprime and � � A. Let be a andidate key for R.

Then � �, � � does not hold (sine � is not a superkey), A Ì �, and

A Ì (sine A is nonprime). Thus A is transitively dependent on , violating

the exerise de�nition.

7.19 A funtional dependeny � � � is alled a partial dependeny if there is a

proper subset of � suh that � �; we say that � is partially dependent on �. A

relation shema R is in seond normal form (2NF) if eah attribute A in Rmeets

one of the following riteria:

�

It appears in a andidate key.

�

It is not partially dependent on a andidate key.

Show that every 3NF shema is in 2NF. (Hint: Show that every partial depen-

deny is a transitive dependeny.)

Answer:

Referring to the de�nitions in Exerise 7.18, a relation shema R is said to be in

3NF if there is no nonprime attribute A in R for whih A is transitively dependent

on a key for R.

64 Chapter 7 Relational Database Design

We an also rewrite the de�nition of 2NF given here as:

�A relation shema R is in 2NF if no nonprime attribute A is partially dependent

on any andidate key for R.�

To prove that every 3NF shema is in 2NF, it su	es to show that if a non-

prime attribute A is partially dependent on a andidate key �, then A is also

transitively dependent on the key �.

Let A be a nonprime attribute in R. Let � be a andidate key for R. Suppose

A is partially dependent on �.

�

From the de�nition of a partial dependeny, we know that for some proper

subset � of �, �� A.

�

Sine � Ï �, � � �. Also, �� � does not hold, sine � is a andidate key.

�

Finally, sine A is nonprime, it annot be in either � or �.

Thus we onlude that � � A is a transitive dependeny. Hene we have proved

that every 3NF shema is also in 2NF.

7.20 Give an example of a relation shema R and a set of dependenies suh that R

is in BCNF but is not in 4NF.

Answer:

There are, of ourse, an in�nite number of suh examples. We show the simplest

one here.

Let R be the shema (A, B, C) with the only nontrivial dependeny being A��

B

	Database Design using the E-R Model
	Exercises

