
CHAP T E R

7

Relational Database Design

Pra
ti
e Exer
ises

7.1 Suppose that we de
ompose the s
hema R = (A, B, C, D, E) into

(A, B, C)

(A, D, E).

Show that this de
omposition is a lossless de
omposition if the following set F

of fun
tional dependen
ies holds:

A� BC

CD� E

B � D

E � A

Answer:

A de
omposition ^R

1

, R

2

` is a lossless de
omposition if R

1

ã R

2

� R

1

or

R

1

ã R

2

� R

2

. Let R

1

= (A, B, C), R

2

= (A, D, E), and R

1

ã R

2

= A.

Sin
e A is a 
andidate key (see Pra
ti
e Exer
ise 7.6), R

1

ã R

2

� R

1

.

7.2 List all nontrivial fun
tional dependen
ies satis�ed by the relation of Figure

7.18.

A B C

a

1

b

1




1

a

1

b

1




2

a

2

b

1




1

a

2

b

1




3

Figure 7.17 Relation of Exer
ise 7.2.

53



54 Chapter 7 Relational Database Design

Answer:

The nontrivial fun
tional dependen
ies are: A � B and C � B, and a

dependen
y they logi
ally imply: AC � B. C does not fun
tionally determine

A be
ause the �rst and third tuples have the same C but di�erent A values. The

same tuples also show B does not fun
tionally determine A. Likewise, A does not

fun
tionally determine C be
ause the �rst two tuples have the same A value and

di�erent C values. The same tuples also show B does not fun
tionally determine

C. There are 19 trivial fun
tional dependen
ies of the form � � �, where

� Ó �.

7.3 Explain how fun
tional dependen
ies 
an be used to indi
ate the following:

�

A one-to-one relationship set exists between entity sets student and instru
-

tor.

�

Amany-to-one relationship set exists between entity sets student and instru
-

tor.

Answer:

Let Pk(r) denote the primary key attribute of relation r.

�

The fun
tional dependen
ies Pk(student) � Pk (instru
tor) and

Pk(instru
tor) � Pk(student) indi
ate a one-to-one relationship be-


ause any two tuples with the same value for student must have the same

value for instru
tor, and any two tuples agreeing on instru
tor must have

the same value for student.

�

The fun
tional dependen
y Pk(student)� Pk(instru
tor) indi
ates a many-

to-one relationship sin
e any student value whi
h is repeated will have the

same instru
tor value, but many student values may have the same instru
-

tor value.

7.4 UseArmstrong's axioms to prove the soundness of the union rule. (Hint: Use the

augmentation rule to show that, if �� �, then �� ��. Apply the augmentation

rule again, using �� 
, and then apply the transitivity rule.)

Answer:

To prove that:

if � � � and � � 
 then � � �


Following the hint, we derive:



Pra
ti
e Exer
ises 55

� � � given

�� � �� augmentation rule

� � �� union of identi
al sets

� � 
 given

�� � 
 � augmentation rule

� � �
 transitivity rule and set union 
ommutativity

7.5 Use Armstrong's axioms to prove the soundness of the pseudotransitivity rule.

Answer:

Proof using Armstrong's axioms of the pseudotransitivity rule:

if � � � and 
 � � Æ, then �
 � Æ.

� � � given

�
 � 
 � augmentation rule and set union 
ommutativity


 � � Æ given

�
 � Æ transitivity rule

7.6 Compute the 
losure of the following set F of fun
tional dependen
ies for rela-

tion s
hema R = (A, B, C, D, E).

A� BC

CD� E

B� D

E � A

List the 
andidate keys for R.

Answer:

Note: It is not reasonable to expe
t students to enumerate all of F

+

. Some short-

hand representation of the result should be a

eptable as long as the nontrivial

members of F

+

are found.

Starting with A � BC, we 
an 
on
lude: A � B and A � C.

Sin
e A � B and B � D, A � D (de
omposition,

transitive)

Sin
e A � CD and CD � E, A � E (union, de
om-

position, transi-

tive)

Sin
e A � A, we have (re�exive)

A � ABCDE from the above steps (union)

Sin
e E � A, E � ABCDE (transitive)

Sin
e CD � E, CD � ABCDE (transitive)

Sin
e B � D and BC � CD, BC �

ABCDE

(augmentative,

transitive)

Also, C � C, D � D, BD � D, et
.



56 Chapter 7 Relational Database Design

Therefore, any fun
tional dependen
y with A, E, BC, or CD on the left-hand

side of the arrow is in F

+

, no matter whi
h other attributes appear in the FD.

Allow * to represent any set of attributes in R, then F

+

is BD � B, BD � D,

C � C, D � D, BD � BD, B � D, B � B, B � BD, and all FDs of the

form A <� �, BC <� �, CD <� �, E <� � where � is any subset of

^A, B, C, D, E`. The 
andidate keys are A, BC, CD, and E.

7.7 Using the fun
tional dependen
ies of Exer
ise 7.6, 
ompute the 
anoni
al


over F




.

Answer:

The given set of FDs F is:-

A� BC

CD� E

B� D

E� A

The left side of ea
h FD in F is unique. Also, none of the attributes in the left

side or right side of any of the FDs is extraneous. Therefore the 
anoni
al 
over

F




is equal to F .

7.8 Consider the algorithm in Figure 7.19 to 
ompute �

+

. Show that this algorithm

is more e	
ient than the one presented in Figure 7.8 (Se
tion 7.4.2) and that it


omputes �

+


orre
tly.

Answer:

The algorithm is 
orre
t be
ause:

�

If A is added to result then there is a proof that � � A. To see this, observe

that � � � trivially, so � is 
orre
tly part of result. If A Ì � is added to

result, there must be some FD � � 
 su
h that A Ë 
 and � is already a

subset of result. (Otherwise fd
ount would be nonzero and the if 
ondition

would be false.) A full proof 
an be given by indu
tion on the depth of

re
ursion for an exe
ution of addin, but su
h a proof 
an be expe
ted only

from students with a good mathemati
al ba
kground.

�

If A Ë �

+

, then A is eventually added to result. We prove this by indu
tion

on the length of the proof of � � A using Armstrong's axioms. First observe

that if pro
edure addin is 
alled with some argument �, all the attributes in

� will be added to result. Also if a parti
ular FD's fd
ount be
omes 0, all

the attributes in its tail will de�nitely be added to result. The base 
ase of

the proof, A Ë � Ù A Ë �

+

, is obviously true be
ause the �rst 
all to

addin has the argument �. The indu
tive hypothesis is that if � � A 
an

be proved in n steps or less, then A Ë result: If there is a proof in n + 1



Pra
ti
e Exer
ises 57

result := ç;

/* fd
ount is an array whose ith element 
ontains the number

of attributes on the left side of the ith FD that are

not yet known to be in �

+

*/

for i := 1 to ðF ð do

begin

let � � 
 denote the ith FD;

fd
ount [i℄ := ð�ð;

end

/* appears is an array with one entry for ea
h attribute. The

entry for attribute A is a list of integers. Ea
h integer

i on the list indi
ates that A appears on the left side

of the ith FD */

for ea
h attribute A do

begin

appears [A℄ := NIL;

for i := 1 to ðF ð do

begin

let � � 
 denote the ith FD;

if A Ë � then add i to appears [A℄;

end

end

addin (�);

return (result);

pro
edure addin (�);

for ea
h attribute A in � do

begin

if A Ì result then

begin

result := result ä ^A`;

for ea
h element i of appears[A℄ do

begin

fd
ount [i℄ := fd
ount [i℄ * 1;

if fd
ount [i℄ := 0 then

begin

let � � 
 denote the ith FD;

addin (
);

end

end

end

end

Figure 7.18 An algorithm to 
ompute �

+

.



58 Chapter 7 Relational Database Design

steps that � � A, then the last step was an appli
ation of either re�exivity,

augmentation, or transitivity on a fa
t � � � proved in n or fewer steps.

If re�exivity or augmentation was used in the (n + 1)

st

step, A must have

been in result by the end of the n

th

step itself. Otherwise, by the indu
tive

hypothesis, � Ó result. Therefore, the dependen
y used in proving � � 
,

A Ë 
, will have fd
ount set to 0 by the end of the n

th

step. Hen
e A will

be added to result.

To see that this algorithm is more e	
ient than the one presented in the 
hap-

ter, note that we s
an ea
h FD on
e in the main program. The resulting array

appears has size proportional to the size of the given FDs. The re
ursive 
alls

to addin result in pro
essing linear in the size of appears. Hen
e the algorithm

has time 
omplexity whi
h is linear in the size of the given FDs. On the other

hand, the algorithm given in the text has quadrati
 time 
omplexity, as it may

perform the loop as many times as the number of FDs, in ea
h loop s
anning

all of them on
e.

7.9 Given the database s
hema R(A,B,C), and a relation r on the s
hema R, write

an SQL query to test whether the fun
tional dependen
y B � C holds on re-

lation r. Also write an SQL assertion that enfor
es the fun
tional dependen
y.

Assume that no null values are present. (Although part of the SQL standard,

su
h assertions are not supported by any database implementation 
urrently.)

Answer:

a. The query is given below. Its result is non-empty if and only if B � C

does not hold on r.

sele
t B

from r

group by B

having 
ount(distin
t C) > 1

b.


reate assertion b to 
 
he
k

(not exists

(sele
t B

from r

group by B

having 
ount(distin
t C) > 1

)

)



Pra
ti
e Exer
ises 59

7.10 Our dis
ussion of lossless de
omposition impli
itly assumed that attributes on

the left-hand side of a fun
tional dependen
y 
annot take on null values. What


ould go wrong on de
omposition, if this property is violated?

Answer:

The natural join operator is de�ned in terms of the Cartesian produ
t and the

sele
tion operator. The sele
tion operator gives unknown for any query on a null

value. Thus, the natural join ex
ludes all tuples with null values on the 
ommon

attributes from the �nal result. Thus, the de
omposition would be lossy (in a

manner di�erent from the usual 
ase of lossy de
omposition), if null values

o

ur in the left-hand side of the fun
tional dependen
y used to de
ompose the

relation. (Null values in attributes that o

ur only in the right-hand side of the

fun
tional dependen
y do not 
ause any problems.)

7.11 In the BCNF de
omposition algorithm, suppose you use a fun
tional depen-

den
y � � � to de
ompose a relation s
hema r(�, �, 
) into r

1

(�, �) and r

2

(�, 
).

a. What primary and foreign-key 
onstraint do you expe
t to hold on the

de
omposed relations?

b. Give an example of an in
onsisten
y that 
an arise due to an erroneous

update, if the foreign-key 
onstraint were not enfor
ed on the de
omposed

relations above.


. When a relation s
hema is de
omposed into 3NF using the algorithm in

Se
tion 7.5.2, what primary and foreign-key dependen
ies would you ex-

pe
t to hold on the de
omposed s
hema?

Answer:

a. � should be a primary key for r

1

, and � should be the foreign key from r

2

,

referen
ing r

1

.

b. If the foreign key 
onstraint is not enfor
ed, then a deletion of a tuple from

r

1

would not have a 
orresponding deletion from the referen
ing tuples in

r

2

. Instead of deleting a tuple from r, this would amount to simply setting

the value of � to null in some tuples.


. For every s
hema r

i

(��) added to the de
omposition be
ause of a fun
-

tional dependen
y � � �, � should be made the primary key. Also, a


andidate key 
 for the original relation is lo
ated in some newly 
reated

relation r

k

and is a primary key for that relation.

Foreign-key 
onstraints are 
reated as follows: for ea
h relation r

i


reated

above, if the primary key attributes of r

i

also o

ur in any other relation

r

j

, then a foreign-key 
onstraint is 
reated from those attributes in r

j

, ref-

eren
ing (the primary key of) r

i

.



60 Chapter 7 Relational Database Design

7.12 Let R

1

, R

2

,§ ,R

n

be a de
omposition of s
hema U. Let u(U) be a relation, and

let r

i

= �

R

I

(u). Show that

u Ó r

1

Æ r

2

Æ 5 Æ r

n

Answer:

Consider some tuple t in u.

Note that r

i

= �

R

i

(u) implies that t[R

i

℄ Ë r

i

, 1 f i f n. Thus,

t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄ Ë r

1

Æ r

2

Æ § Æ r

n

By the de�nition of natural join,

t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄ = �

�

(�

�

(t[R

1

℄ � t[R

2

℄ � § � t[R

n

℄))

where the 
ondition � is satis�ed if values of attributes with the same name

in a tuple are equal and where � = U . The Cartesian produ
t of single tuples

generates one tuple. The sele
tion pro
ess is satis�ed be
ause all attributes with

the same name must have the same value sin
e they are proje
tions from the

same tuple. Finally, the proje
tion 
lause removes dupli
ate attribute names.

By the de�nition of de
omposition, U = R

1

ä R

2

ä § ä R

n

, whi
h means

that all attributes of t are in t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄. That is, t is equal to

the result of this join.

Sin
e t is any arbitrary tuple in u,

u Ó r

1

Æ r

2

Æ § Æ r

n

7.13 Show that the de
omposition in Exer
ise 7.1 is not a dependen
y-preserving

de
omposition.

Answer:

Therer are several fun
tional dependen
ies that are not preserved. We dis
uss

one example here. The dependen
y B � D is not preserved. F

1

, the restri
tion

of F to (A, B, C) is A � ABC, A � AB, A � AC, A � BC, A � B,

A � C, A � A, B � B, C � C, AB � AC, AB � ABC, AB � BC,

AB � AB, AB � A, AB � B, AB � C, AC (same as AB), BC (same as AB),

ABC (same as AB). F

2

, the restri
tion of F to (C, D, E) is A � ADE, A � AD,

A � AE, A � DE, A � A, A � D, A � E, D � D, E (same as A), AD,

AE, DE, ADE (same as A). (F

1

ä F

2

)

+

is easily seen not to 
ontain B � D

sin
e the only FD in F

1

ä F

2

with B as the left side is B � B, a trivial FD.

Thus B � D is not preserved.

A simpler argument is as follows: F

1


ontains no dependen
ies with D on

the right side of the arrow. F

2


ontains no dependen
ies with B on the left side

of the arrow. Therefore for B � D to be preserved there must be a fun
tional

dependen
y B � � in F

+

1

and � � D in F

+

2

(so B � D would follow by



Pra
ti
e Exer
ises 61

transitivity). Sin
e the interse
tion of the two s
hemes is A, � = A. Observe that

B � A is not in F

+

1

sin
e B

+

= BD.

7.14 Show that there 
an be more than one 
anoni
al 
over for a given set of fun
-

tional dependen
ies, using the following set of dependen
ies:

X � YZ, Y � XZ, and Z � XY .

Answer: Consider the �rst fun
tional dependen
y. We 
an verify that Z is

extraneous in X � YZ and delete it. Subsequently, we 
an similarly 
he
k that

X is extraneous in Y � XZ and delete it, and that Y is extraneous in Z � XY

and delete it, resulting in a 
anoni
al 
over X � Y , Y � Z,Z � X .

However, we 
an also verify that Y is extraneous in X � YZ and delete it.

Subsequently, we 
an similarly 
he
k that Z is extraneous in Y � XZ and delete

it, and that X is extraneous in Z � XY and delete it, resulting in a 
anoni
al


over X � Z, Y � X ,Z � Y .

7.15 The algorithm to generate a 
anoni
al 
over only removes one extraneous at-

tribute at a time. Use the fun
tional dependen
ies from Exer
ise 7.14 to show

what 
an go wrong if two attributes inferred to be extraneous are deleted at

on
e.

Answer: In X � YZ, one 
an infer that Y is extraneous, and so is Z. But

deleting both will result in a set of dependen
ies from whi
h X � YZ 
an no

longer be inferred. Deleting Y results in Z no longer being extraneous, and delet-

ing Z results in Y no longer being extraneous. The 
anoni
al 
over algorithm

only deletes one attribute at a time, avoiding the problem that 
ould o

ur if

two attributes are deleted at the same time.

7.16 Show that it is possible to ensure that a dependen
y-preserving de
omposition

into 3NF is a lossless de
omposition by guaranteeing that at least one s
hema


ontains a 
andidate key for the s
hema being de
omposed. (Hint: Show that

the join of all the proje
tions onto the s
hemas of the de
omposition 
annot

have more tuples than the original relation.)

Answer:

Let F be a set of fun
tional dependen
ies that hold on a s
hema R. Let � =

^R

1

,R

2

,§ ,R

n

` be a dependen
y-preserving 3NF de
omposition of R. Let X be

a 
andidate key for R.

Consider a legal instan
e r ofR. Let j = �

X

(r) Æ �

R

1

(r) Æ �

R

2

(r)§ Æ �

R

n

(r).

We want to prove that r = j.

We 
laim that if t

1

and t

2

are two tuples in j su
h that t

1

[X ℄ = t

2

[X ℄, then

t

1

= t

2

. To prove this 
laim, we use the following indu
tive argument:

Let F

¨

= F

1

ä F

2

ä§ ä F

n

, where ea
h F

i

is the restri
tion of F to the s
hema

R

i

in �. Consider the use of the algorithm given in Figure 7.8 to 
ompute the



62 Chapter 7 Relational Database Design


losure of X under F

¨

. We use indu
tion on the number of times that the for

loop in this algorithm is exe
uted.

�

Basis: In the �rst step of the algorithm, result is assigned to X , and hen
e

given that t

1

[X ℄ = t

2

[X ℄, we know that t

1

[result℄ = t

2

[result℄ is true.

�

Indu
tion Step: Let t

1

[result℄ = t

2

[result℄ be true at the end of the k th

exe
ution of the for loop.

Suppose the fun
tional dependen
y 
onsidered in the k+1 th exe
ution

of the for loop is � � 
, and that � Ó result. � Ó result implies that

t

1

[�℄ = t

2

[�℄ is true. The fa
ts that � � 
 holds for some attribute set

R

i

in � and that t

1

[R

i

℄ and t

2

[R

i

℄ are in �

R

i

(r) imply that t

1

[
℄ = t

2

[
℄ is

also true. Sin
e 
 is now added to result by the algorithm, we know that

t

1

[result℄ = t

2

[result℄ is true at the end of the k + 1 th exe
ution of the for

loop.

Sin
e � is dependen
y-preserving and X is a key for R, all attributes in R are in

result when the algorithm terminates. Thus, t

1

[R℄ = t

2

[R℄ is true, that is, t

1

= t

2

� as 
laimed earlier.

Our 
laim implies that the size of �

X

(j) is equal to the size of j. Note also

that �

X

(j) = �

X

(r) = r (sin
e X is a key for R). Thus we have proved that the

size of j equals that of r. Using the result of Exer
ise 7.12, we know that r Ó j.

Hen
e we 
on
lude that r = j.

Note that sin
e X is trivially in 3NF, � ä ^X` is a dependen
y-preserving

lossless de
omposition into 3NF.

7.17 Give an example of a relation s
hema R

¨

and set F

¨

of fun
tional dependen-


ies su
h that there are at least three distin
t lossless de
ompositions of R

¨

into

BCNF.

Answer:

Given the relation R

¨

= (A, B, C, D) the set of fun
tional dependen
ies F

¨

=

A � B, C � D, B � C allows three distin
t BCNF de
ompositions.

R

1

= ^(A, B), (C, D), (B, C)`

is in BCNF as is

R

2

= ^(A, B), (C, D), (A, C)`

R

3

= ^(B, C), (A, D), (A, B)`

7.18 Let a prime attribute be one that appears in at least one 
andidate key. Let � and

� be sets of attributes su
h that � � � holds, but �� � does not hold. Let A be



Pra
ti
e Exer
ises 63

an attribute that is not in �, is not in �, and for whi
h � � A holds. We say that

A is transitively dependent on �. We 
an restate the de�nition of 3NF as follows:

A relation s
hema R is in 3NF with respe
t to a set F of fun
tional dependen
ies

if there are no nonprime attributes A in R for whi
h A is transitively dependent

on a key for R. Show that this new de�nition is equivalent to the original one.

Answer:

Suppose R is in 3NF a

ording to the textbook de�nition. We show that it is in

3NF a

ording to the de�nition in the exer
ise. Let A be a nonprime attribute

in R that is transitively dependent on a key � for R. Then there exists � Ó R

su
h that � � A, � � �, A Ì �, A Ì �, and � � � does not hold. But

then � � A violates the textbook de�nition of 3NF sin
e

�

A Ì � implies � � A is nontrivial

�

Sin
e � � � does not hold, � is not a superkey

�

A is not any 
andidate key, sin
e A is nonprime

Now we show that if R is in 3NF a

ording to the exer
ise de�nition, it is in

3NF a

ording to the textbook de�nition. Suppose R is not in 3NF a

ording

to the the textbook de�nition. Then there is an FD � � � that fails all three


onditions. Thus

�

� � � is nontrivial.

�

� is not a superkey for R.

�

Some A in � * � is not in any 
andidate key.

This implies that A is nonprime and � � A. Let 
 be a 
andidate key for R.

Then 
 � �, � � 
 does not hold (sin
e � is not a superkey), A Ì �, and

A Ì 
 (sin
e A is nonprime). Thus A is transitively dependent on 
, violating

the exer
ise de�nition.

7.19 A fun
tional dependen
y � � � is 
alled a partial dependen
y if there is a

proper subset 
 of � su
h that 
� �; we say that � is partially dependent on �. A

relation s
hema R is in se
ond normal form (2NF) if ea
h attribute A in Rmeets

one of the following 
riteria:

�

It appears in a 
andidate key.

�

It is not partially dependent on a 
andidate key.

Show that every 3NF s
hema is in 2NF. (Hint: Show that every partial depen-

den
y is a transitive dependen
y.)

Answer:

Referring to the de�nitions in Exer
ise 7.18, a relation s
hema R is said to be in

3NF if there is no nonprime attribute A in R for whi
h A is transitively dependent

on a key for R.



64 Chapter 7 Relational Database Design

We 
an also rewrite the de�nition of 2NF given here as:

�A relation s
hema R is in 2NF if no nonprime attribute A is partially dependent

on any 
andidate key for R.�

To prove that every 3NF s
hema is in 2NF, it su	
es to show that if a non-

prime attribute A is partially dependent on a 
andidate key �, then A is also

transitively dependent on the key �.

Let A be a nonprime attribute in R. Let � be a 
andidate key for R. Suppose

A is partially dependent on �.

�

From the de�nition of a partial dependen
y, we know that for some proper

subset � of �, �� A.

�

Sin
e � Ï �, � � �. Also, �� � does not hold, sin
e � is a 
andidate key.

�

Finally, sin
e A is nonprime, it 
annot be in either � or �.

Thus we 
on
lude that � � A is a transitive dependen
y. Hen
e we have proved

that every 3NF s
hema is also in 2NF.

7.20 Give an example of a relation s
hema R and a set of dependen
ies su
h that R

is in BCNF but is not in 4NF.

Answer:

There are, of 
ourse, an in�nite number of su
h examples. We show the simplest

one here.

Let R be the s
hema (A, B, C) with the only nontrivial dependen
y being A��

B


	Database Design using the E-R Model
	Exercises


