
C H A P T E R 4

SQL

Exercises

4.1 Answer: Note: The participated relation relates drivers, cars, and accidents.
a. Find the total number of people who owned cars that were involved in ac-

cidents in 1989.
Note: this is not the same as the total number of accidents in 1989. We

must count people with several accidents only once.

select count (distinct name)
from accident, participated, person
where accident.report-number = participated.report-number
and participated.driver-id = person.driver-id
and date between date ’1989-00-00’ and date ’1989-12-31’

c. Add a new accident to the database; assume any values for required at-
tributes.

We assume the driver was “Jones,” although it could be someone else.
Also, we assume “Jones” owns one Toyota. First we must find the license of
the given car. Then the participated and accident relations must be updated
in order to both record the accident and tie it to the given car. We assume
values “Berkeley” for location, ’2001-09-01’ for date and date, 4007 for report-
number and 3000 for damage amount.

insert into accident
values (4007, ’2001-09-01’, ’Berkeley’)

insert into participated
select o.driver-id, c.license, 4007, 3000
from person p, owns o, car c
where p.name = ’Jones’ and p.driver-id = o.driver-id and

o.license = c.license and c.model = ’Toyota’

17

18 Chapter 4 SQL

d. Delete the Mazda belonging to “John Smith”.
Since model is not a key of the car relation, we can either assume that only

one of John Smith’s cars is a Mazda, or delete all of John Smith’s Mazdas
(the query is the same). Again assume name is a key for person.

delete car
where model = ’Mazda’ and license in

(select license
from person p, owns o
where p.name = ’John Smith’ and p.driver-id = o.driver-id)

Note: The owns, accident and participated records associated with the Mazda
still exist.

4.2 Answer:

b. Find the names and cities of residence of all employees who work for First
Bank Corporation.

select e.employee-name, city
from employee e, works w
where w.company-name = ’First Bank Corporation’ and

w.employee-name = e.employee-name

c. Find the names, street address, and cities of residence of all employees who
work for First Bank Corporation and earn more than $10,000.

select *
from employee
where employee-name in

(select employee-name
from works
where company-name = ’First Bank Corporation’ and salary ¿ 10000)

As in the solution to the previous query, we can use a join to solve this one
also.

If people may work for several companies (not possible with the given
schema, because employee-name is a primary key of works) the above solution
will only list those who earn more than $10,000 per annum from “First Bank
Corporation” alone.

f. Find all employees in the database who do not work for First Bank Corpo-
ration.
The following solution assumes that all people work for exactly one com-
pany.

select employee-name
from works
where company-name �= ’First Bank Corporation’

If one allows people to appear in the database (e.g. in employee) but not
appear in works, or if people may have jobs with more than one company,
the solution is slightly more complicated.

Exercises 19

select employee-name
from employee
where employee-name not in

(select employee-name
from works
where company-name = ’First Bank Corporation’)

g. Find all employees in the database who earn more than every employee of
Small Bank Corporation.

select employee-name
from works
where salary > all

(select salary
from works
where company-name = ’Small Bank Corporation’)

If people may work for several companies and we wish to consider the
total earnings of each person, the problem is more complex. It can be solved
by using a nested subquery, but we illustrate below how to solve it using
the with clause.

with emp-total-salary as
(select employee-name, sum(salary) as total-salary
from works
group by employee-name
)

select employee-name
from emp-total-salary
where total-salary > all

(select total-salary
from emp-total-salary, works
where works.company-name = ’Small Bank Corporation’ and

emp-total-salary.employee-name = works.employee-name
)

h. Assume that the companies may be located in several cities. Find all com-
panies located in every city in which Small Bank Corporation is located.

The simplest solution uses the contains comparison which was included
in the original System R Sequel language but is not present in the subse-
quent SQL versions.

20 Chapter 4 SQL

select T.company-name
from company T
where (select R.city

from company R
where R.company-name = T.company-name)

contains
(select S.city
from company S
where S.company-name = ’Small Bank Corporation’)

Below is a solution using standard SQL.

select S.company-name
from company S
where not exists ((select city

from company
where company-name = ’Small Bank Corporation’)

except
(select city
from company T
where S.company-name = T.company-name))

j. Find the company that has the most employees.

select company-name
from works
group by company-name
having count (distinct employee-name) >= all

(select count (distinct employee-name)
from works
group by company-name)

l. Find those companies whose employees earn a higher salary, on average,
than the average salary at First Bank Corporation.

select company-name
from works
group by company-name
having avg (salary) > (select avg (salary)

from works
where company-name = ’First Bank Corporation’)

4.3 Answer:

d. Give all managers of First Bank Corporation a 10-percent raise unless the
salary becomes greater than $100,000; in such cases, give only a 3-percent
raise.

The SQL-92 case statement allows a concise solution:-

Exercises 21

update works T
set T.salary = T.salary ∗

(case
when (T.salary ∗ 1.1 > 100000) then 1.03
else 1.1

)
where T.employee-name in (select manager-name

from manages) and
T.company-name = ’First Bank Corporation’

If the case statement is not available, the update can be performed as
follows.

update works T
set T.salary = T.salary * 1.03
where T.employee-name in (select manager-name

from manages)
and T.salary * 1.1 > 100000
and T.company-name = ’First Bank Corporation’

update works T
set T.salary = T.salary * 1.1
where T.employee-name in (select manager-name

from manages)
and T.salary * 1.1 <= 100000
and T.company-name = ’First Bank Corporation’

4.6 Answer:

a. {< a > | ∃ b (< a, b > ∈ r ∧ b = 17)}
select distinct A
from r
where B = 17

b. {< a, b, c > | < a, b > ∈ r ∧ < a, c > ∈ s)}
select distinct r.A, r.B, s.C
from r, s
where r.A = s.A

c. {< a > | ∃ c (< a, c > ∈ s ∧ ∃ b1, b2 (< a, b1 > ∈ r ∧ < c, b2 > ∈ r ∧ b1 >
b2))}

select distinct s.A
from s, r e, r m
where s.A = e.A and s.C = m.A and e.B > m.B

4.9 Answer: The query selects those values of p.a1 that are equal to some value of
r1.a1 or r2.a1 if and only if both r1 and r2 are non-empty. If one or both of r1 and
r2 are empty, the cartesian product of p, r1 and r2 is empty, hence the result of

22 Chapter 4 SQL

the query is empty. Of course if p itself is empty, the result is as expected, i.e.
empty.

4.11 Answer: We use the case operation provided by SQL-92:

a. To display the grade for each student:

select student-id,
(case

when score < 40 then ’F’,
when score < 60 then ’C’,
when score < 80 then ’B’,
else ’A’

end) as grade
from marks

b. To find the number of students with each grade we use the following query, where
grades is the result of the query given as the solution to part 0.a.

select grade, count(student-id)
from grades
group by grade

4.13 Answer:

select coalesce(a.name, b.name) as name,
coalesce(a.address, b.address) as address,
a.title,
b.salary

from a full outer join b on a.name = b.name and
a.address = b.address

4.15 Answer:

a. check condition for the works table:-
check((employee-name, company-name) in

(select e.employee-name, c.company-name
from employee e, company c
where e.city = c.city

)
)

b. check condition for the works table:-

Exercises 23

check(
salary < all

(select manager-salary
from (select manager-name, manages.employee-name as emp-name,

salary as manager-salary
from works, manages
where works.employee-name = manages.manager-name)

where employee-name = emp-name
)

)
The solution is slightly complicated because of the fact that inside the se-
lect expression’s scope, the outer works relation into which the insertion is
being performed is inaccessible. Hence the renaming of the employee-name
attribute to emp-name. Under these circumstances, it is more natural to use
assertions, which are introduced in Chapter 6.

4.16 Answer: Writing queries in SQL is typically much easier than coding the same
queries in a general-purpose programming language. However not all kinds of
queries can be written in SQL. Also nondeclarative actions such as printing a
report, interacting with a user, or sending the results of a query to a graphical
user interface cannot be done from within SQL. Under circumstances in which
we want the best of both worlds, we can choose embedded SQL or dynamic
SQL, rather than using SQL alone or using only a general-purpose programming
language.

Embedded SQL has the advantage of programs being less complicated since it
avoids the clutter of the ODBC or JDBC function calls, but requires a specialized
preprocessor.

