
A P P E N D I X A

Network Model

In the relational model, the data and the relationships among data are represented
by a collection of tables. The network model differs from the relational model in that
data are represented by collections of records, and relationships among data are rep-
resented by links.

A.1 Basic Concepts
A network database consists of a collection of records connected to one another
through links. A record is in many respects similar to an entity in the E-R model.
Each record is a collection of fields (attributes), each of which contains only one data
value. A link is an association between precisely two records. Thus, a link can be
viewed as a restricted (binary) form of relationship in the sense of the E-R model.

As an illustration, consider a database representing a customer-account relationship
in a banking system. There are two record types, customer and account. As we saw
earlier, we can define the customer record type, using Pascal-like notation:

type customer = record
customer name: string;
customer street: string;
customer city: string;

end

The account record type can be defined as

type account = record
account number: string;
balance: integer;

end

1

2 Appendix A Network Model

Johnson Alma Palo Alto

Turner Putnam Stamford

Hayes Main Harrison A-102 400

A-101 500

A-201 900

A-305 350

Figure A.1 Sample database.

The sample database in Figure A.1 shows that Hayes has account A-102, Johnson has
accounts A-101 and A-201, and Turner has account A-305.

A.2 Data-Structure Diagrams
A data-structure diagram is a schema representing the design of a network database.
Such a diagram consists of two basic components:

1. Boxes, which correspond to record types

2. Lines, which correspond to links

A data-structure diagram serves the same purpose as an E-R diagram; namely, it spec-
ifies the overall logical structure of the database. So that you will understand how
such diagrams are structured, we shall show how to transform E-R diagrams into
their corresponding data-structure diagrams.

A.2.1 Binary Relationship
Consider the E-R diagram of Figure A.2a, consisting of two entity sets, customer and
account, related through a binary, many-to-many relationship depositor, with no
descriptive attributes. This diagram specifies that a customer may have several
accounts, and that an account may belong to several different customers. The cor-
responding data-structure diagram appears in Figure A.2b. The record type
customer corresponds to the entity set customer. It includes three fields—customer-
name, customer street, and customer city—as defined in Section A.1. Similarly, account
is the record type corresponding to the entity set account. It includes the two fields
account number and balance. Finally, the relationship depositor has been replaced with
the link depositor.

The relationship depositor is many to many. If the relationship depositor were one to
many from customer to account, then the link depositor would have an arrow pointing
to customer record type (Figure A.3a). Similarly, if the relationship depositor were one
to one, then the link depositor would have two arrows: one pointing to account record
type and one pointing to customer record type (Figure A.3b). Since, in the E-R diagram

A.2 Data-Structure Diagrams 3

customer_street

customer_name customer_city

customer

account_number balance

accountdepositor

(a) E-R diagram

(b) Data structure diagram

customer_name

customer account

account_number
depositor

customer_street customer_city balance

Figure A.2 E-R diagram and its corresponding data-structure diagram.

of Figure A.2a, the depositor relationship is many to many, we draw no arrows on the
link depositor in Figure A.2b.

A database corresponding to the described schema may thus contain a number
of customer records linked to a number of account records. A sample database corre-
sponding to the data-structure diagram of Figure A.2 appears in Figure A.4. Since
the relationship is many to many, we show that Johnson has accounts A-101 and A-
201 and that account A-201 is owned by both Johnson and Smith. A sample database
corresponding to the data-structure diagram of Figure A.3a is depicted in Figure A.1.
Since the relationship is one to many from customer to account, a customer may have
more than one account, as Johnson does—she owns both A-101 and A-201. An ac-
count, however, cannot belong to more than one customer, and the database observes
this restriction. Finally, a sample database corresponding to the data-structure dia-
gram of Figure A.3b is shown in Figure A.5. Since the relationship is one to one, an

(a)

customer_name customer_street customer_city

customer account

account_number balance

(b)

customer_name customer_street customer_city

customer account

account_number balance

Figure A.3 Two data-structure diagrams.

4 Appendix A Network Model

 Hayes Main Harrison

 Johnson Alma Palo Alto

 Smith North Rye

A-102 400

A-101 500

A-201 900

A-215 700

Figure A.4 Sample database corresponding to diagram of Figure A.2b.

account can be owned by precisely one customer, and a customer can have only one
account; the sample database follows those rules.

If a relationship includes descriptive attributes, the transformation from an E-R
diagram to a data-structure diagram is more complicated. A link cannot contain any
data value, so a new record type needs to be created and links need to be established.

Consider the E-R diagram of Figure A.2a. Suppose that we add the attribute ac-
cess date to the relationship depositor, to denote the most recent time that a customer
accessed the account. This newly derived E-R diagram appears in Figure A.6a. To
transform this diagram to a data-structure diagram, we must

1. Replace entities customer and account with record types customer and account,
respectively.

2. Create a new record type access date with a single field to represent the date.

3. Create the following many-to-one links:
• customer date from the access date record type to the customer record type
• account date from the access date record type to the account record type

The resulting data-structure diagram appears in Figure A.6b.

 Hayes Main Harrison

 Lindsay Park Pittsfield

 Turner Putnam Stamford

A-102 400

A-222 700

A-305 350

Figure A.5 Sample database corresponding to diagram of Figure A.3b.

A.2 Data-Structure Diagrams 5

customer_street

customer_name customer_city

customer

account_number

access_date

balance

accountdepositor

(a) E-R diagram

(b) Network diagram

customer_name customer_street customer_city

customer account

access_date

customer_date account_date

access-date

account_number balance

Figure A.6 E-R diagram and its corresponding network diagram.

An instance of a database corresponding to the described schema appears in Fig-
ure A.7. It shows that:

• Account A-201 is held by Johnson alone, and was last accessed by her on 17
June.

 Hayes Main Harrison

 Johnson Alma Palo Alto

 Turner Putnam Stamford

10 June 1996

24 May 1996

17 June 1996

28 May 1996

A-102 400

A-201 900

A-305 350

Figure A.7 Sample database corresponding to diagram of Figure A.6b.

6 Appendix A Network Model

• Account A-305 is held by Turner alone, and was last accessed by him on 28
May.

• Account A-102 is held by both Hayes and Johnson. Hayes accessed it last on
10 June, and Johnson accessed it last on 24 May.

A.2.2 General Relationships
Consider the E-R diagram of Figure A.8a, which consists of three entity sets—account,
customer, and branch—related through the general relationship CAB with no descrip-
tive attribute.

Since a link can connect precisely two different record types, we need to connect
these three record types through a new record type that is linked to each of them
directly.

To transform the E-R diagram of Figure A.8a to a network data-structure diagram,
we need to do the following:

customer_street

customer_name customer_city

customer

branch

account_number balance

account

branch_city

branch_name assets

CAB

(a) E-R diagram

(b) Data structure diagram

customer_name customer_street customer_city

customer

CustRlnk BrnchRlnk

Rlink

AcctRlnk
account

account_number balance
branch

branch_name branch_city assets

Figure A.8 E-R diagram and its corresponding data-structure diagram.

A.3 The DBTG CODASYL Model 7

1. Replace entity sets account, customer, and branch with record types account,
customer, and branch, respectively.

2. Create a new record type Rlink that may either have no fields or have a single
field containing a unique identifier. The system supplies this identifier, and
the application program does not use it directly. This new type of record is
sometimes referred to as a dummy (or link or junction) record type.

3. Create the following many-to-one links:
• CustRlnk from Rlink record type to customer record type
• AcctRlnk from Rlink record type to account record type
• BrncRlnk from Rlink record type to branch record type

The resulting data-structure diagram appears in Figure A.8b.
A sample database corresponding to the described schema appears in Figure A.9.

It shows that Hayes has account A-102 in the Perryridge branch, Johnson has ac-
counts A-101 and A-201 in the Downtown and Perryridge branches, respectively,
and Turner has account A-305 in the Round Hill branch.

We can extend this technique in a straightforward manner to deal with relation-
ships that span more than three entity sets. We create a many-to-one link from the
Rlink record to the record types corresponding to each entity set involved in the re-
lationship. We can also extend the technique to deal with a general relationship that
has descriptive attributes. We need to add one field to the dummy record type for
each descriptive attribute.

A.3 The DBTG CODASYL Model
The first database-standard specification, called the CODASYL DBTG 1971 report, was
written in the late 1960s by the Database Task Group. Since then, a number of changes

 Hayes Main Harrison

 Johnson Alma Palo Alto

 Turner Putnam Stamford

 Perryridge Horseneck 1700000

 Downtown Brooklyn 9000000

 Round Hill Horseneck 8000000

2

3

4

A-102 400 A-101 500 A-201 900 A-305 350

1

Figure A.9 Sample database corresponding to diagram of Figure A.8b.

8 Appendix A Network Model

(a)

customer_name customer_street customer_city

customer account

account_number balance

(b)

customer_name customer_street customer-city

customer account

account_number balance

access_date

access_date

Figure A.10 Two data-structure diagrams.

have been proposed many of which are reflected in our discussion concerning the
DBTG model.

A.3.1 Link Restriction
In the DBTG model, only many-to-one links can be used. Many-to-many links are
disallowed to simplify the implementation. We represent one-to-one links using a
many-to-one link. These restrictions imply that the various algorithms of Section A.2
for transforming an E-R diagram to a data-structure diagram must be revised.

customer_street

customer_name customer_city

customer

account_number balance

accountdepositor

(a) E-R diagram

(b) Data structure diagram

customer_name customer_street customer_city
customer account

CustRlnk AcctRlnk

account_number balance

Rlink

Figure A.11 E-R diagram and its corresponding data-structure diagram.

A.3 The DBTG CODASYL Model 9

Consider a binary relationship that is either one to many or one to one. In this case,
the transformation algorithm defined in Section A.2.1 can be applied directly. Thus,
for our customer-account database, if the depositor relationship is one to many with
no descriptive attributes, then the appropriate data-structure diagram is as shown in
Figure A.10a. If the relationship has a descriptive attribute (for example, access-date),
then the appropriate data-structure diagram is as shown in Figure A.10b.

If the depositor relationship, however, is many to many, then our transformation al-
gorithm must be refined; if the relationship has no descriptive attributes (Figure A.11a),
then this algorithm must be employed:

1. Replace the entity sets customer and account with record types customer and
account, respectively.

2. Create a new dummy record type, Rlink, that may either have no fields or have
a single field containing an externally defined unique identifier.

3. Create the following two many-to-one links:
• CustRlnk from Rlink record type to customer record type
• AcctRlnk from Rlink record type to account record type

The corresponding data-structure diagram is as shown in Figure A.11b. An instance
of a database corresponding to the described schema appears in Figure A.12. We
encourage you to compare this sample database with the one described in Figure A.4.

If the relationship depositor is many to many with a descriptive attribute (for ex-
ample, access date), then the transformation algorithm is similar to the one described.
The only difference is that the new record type Rlink now contains the field access
date.

In the case of general (that is, nonbinary) relationships, the transformation algo-
rithm is the same as the one described in Section A.2.2. Thus, the E-R diagram of
Figure A.8a is transformed into the data-structure diagram of Figure A.8b.

 Hayes Main Harrison

 Johnson Alma Palo Alto

 Smith North Rye

A-102 400

A-101 500

A-201 900

A-215 700

1

2

3

4

5

Figure A.12 Sample database corresponding to the diagram of Figure A.11.

10 Appendix A Network Model

A

B

Figure A.13 DBTG set.

A.3.2 DBTG Sets
Given that only many-to-one links can be used in the DBTG model, a data-structure
diagram consisting of two record types that are linked together has the general form
of Figure A.13. This structure is referred to in the DBTG model as a DBTG set. The
name of the set is usually chosen to be the same as the name of the link connecting
the two record types.

In each such DBTG set, the record type A is designated as the owner (or parent) of
the set, and the record type B is designated as the member (or child) of the set. Each
DBTG set can have any number of set occurrences—that is, actual instances of linked
records. For example, in Figure A.14, we have three set occurrences corresponding to
the DBTG set of Figure A.13.

Since many-to-many links are disallowed, each set occurrence has precisely one
owner, and has zero or more member records. In addition, no member record of a set
can participate in more than one occurrence of the set at any point. A member record,
however, can participate simultaneously in several set occurrences of different DBTG
sets.

As an illustration, consider the data-structure diagram of Figure A.15. There are
two DBTG sets:

1. depositor, which has customer as the owner of the DBTG set, and account as the
member of the DBTG set

2. account branch, which has branch as the owner of the DBTG set, and account as
the member of the DBTG set

The set depositor can be defined as follows:

a1

b2b1

a3

b6

a2

b5b4b3

Figure A.14 Three set occurrences.

A.3 The DBTG CODASYL Model 11

customer_name customer_street customer_city

customer

depositor account_branch

account

account_number balance

branch

branch_name branch_city assets

Figure A.15 Data-structure diagram.

set name is depositor
owner is customer
member is account

The set account branch can be defined similarly:

set name is account branch
owner is branch
member is account

An instance of the database appears in Figure A.16. There are six set occurrences
listed next: three of set depositor (sets 1, 2, and 3), and three of set account branch (sets
4, 5, and 6).

1. Owner is customer record Hayes, with a single member account record A-102.

2. Owner is customer record Johnson, with two member account records A-101
and A-201.

3. Owner is customer record Turner, with three member account records A-305,
A-402, and A-408.

 Hayes Main Harrison

 Johnson Alma Palo Alto

 Turner Putnam Stamford

 Perryridge Horseneck 1700000

 Downtown Brooklyn 9000000

 Round Hill Horseneck 8000000

A-102 400

A-101 500

A-201 900

A-305 350

A-402 1000

A-408 1123

Figure A.16 Six set occurrences.

12 Appendix A Network Model

4. Owner is branch record Perryridge, with three member account records A-102,
A-201, and A-402.

5. Owner is branch record Downtown, with one member account record A-101.

6. Owner is branch record Round Hill, with two member account records A-305
and A-408.

Note that an account record (which is, in this case, a member of both DBTG sets)
cannot appear in more than one set occurrence of one individual set type. This re-
striction exists because an account can belong to exactly one customer, and can be
associated with only one bank branch. An account, however, can appear in two set
occurrences of different set types. For example, account A-102 is a member of set oc-
currence 1 of type depositor, and is also a member of set occurrence 4 of type account
branch.

The member records of a set occurrence can be ordered in a variety of ways. We
shall discuss this issue in greater detail in Section A.6.6, after we describe the mech-
anism for inserting and deleting records into a set occurrence.

The DBTG model allows more complicated set structures, in which one single
owner type and several different member types exist. For example, suppose that we
have two types of bank accounts: checking and saving. Then, the data-structure dia-

customer

savings_account checking_account savings_account checking_account

ISA

customer

(a) (b)

account

has

Figure A.17 Data-structure and E-R diagram.

A.4 DBTG Data-Retrieval Facility 13

 Turner Putnam Stamford

 Field Horseneck

Figure A.18 A customer record.

gram for the customer-account schema is as depicted in Figure A.17a. Such a schema
is similar in nature to the E-R diagram of Figure A.17b.

The DBTG model also provides for the definition of a special kind of set, referred
to as a singular set (or system set). In such a set, the owner is a system-defined, unique
record type, called system, with no fields. Such a set has a single set occurrence. This
scheme is useful in searching records of one particular type, as we shall discuss in
Section A.4.4.

A.3.3 Repeating Groups
The DBTG model provides a mechanism for a field (or collection of fields) to have a
set of values, rather than one single value. For example, suppose that a customer has
several addresses. In this case, the customer record type will have the (street, city) pair
of fields defined as a repeating group. Thus, the customer record for Turner may be as
in Figure A.18.

The repeating-groups construct provides another way to represent the notion of
weak entities in the E-R model. As an illustration, let us partition the entity set cus-
tomer into two sets:

1. customer, with descriptive attribute customer name

2. customer address, with descriptive attributes customer street and customer city

The customer address entity set is a weak entity set, since it depends on the strong
entity set customer.

The E-R diagram describing this schema appears in Figure A.19a. If we do not use
the repeating-group construct in the schema, then the corresponding data-structure
diagram is the one in Figure A.19b. If, on the other hand, we do use the repeating-
group construct, then the data-structure diagram consists of simply one single record
type customer.

A.4 DBTG Data-Retrieval Facility
The data-manipulation language of the DBTG proposal consists of commands that are
embedded in a host language. In this section, we present several of these commands,
and use Pascal as the host language. To illustrate the various concepts, we use the

14 Appendix A Network Model

customer_street customer_city

customer

customer_address

customer_name

(a) E-R diagram (b) Data_structure diagram

customer_city

customer_address

has

customer

customer_name

customer_street

Figure A.19 E-R and data-structure diagram.

example of the customer-account-branch schema discussed in Section A.3.2. In par-
ticular, the data-structure diagram corresponding to our schema is the one depicted
in Figure A.15, and the database sample is the one shown in Figure A.16.

A.4.1 Program Work Area
Each application program executing in the system consists of a sequence of state-
ments; some are Pascal statements, whereas others are DBTG command statements.
Each such program is called a run unit. These statements access and manipulate
database items, as well as locally declared variables. For each such application pro-
gram, the system maintains a program work area (referred to in the DBTG model as a
user work area), which is a buffer storage area that contains the following variables:

• Record templates: A record (in the Pascal sense) for each record type accessed
by the application program

• Currency pointers: A set of pointers to various database records most recently
accessed by the application program; currency pointers are of the following
types:

A.4 DBTG Data-Retrieval Facility 15

� Current of record type: One currency pointer for each record type T ref-
erenced by the application program; each pointer contains the address (lo-
cation on disk) of the most recently accessed record of type T

� Current of set type: One currency pointer for each set type S referenced
by the application program; each pointer contains the address of the most
recently accessed record of that set type; note that this pointer may point
to a record of either the owner or member type, depending on whether an
owner or a member was most recently accessed

� Current of run unit: One single currency pointer, containing the address of
the record (regardless of type) most recently accessed by the application
program

• Status flags: A set of variables used by the system to communicate to the
application program the outcome of the last operation applied to the database;
the most frequently used one is DB-status, set to 0 if the most recent operation
succeeded and otherwise set to an error code.

The additional status variables (DB-set-name, DB-record-name, and DB-
data-name) are set when the final operation fails, to help identify the source
of the difficulty.

We emphasize that a particular program work area is associated with precisely one
application program.

For our customer-account-branch database example, a particular program work
area contains the following:

• Templates: three record types:
� customer record
� account record
� branch record

• Currency pointers: six pointers:
� Three currency pointers for record types: one to the most recently accessed

customer record, one to the most recently accessed account record, and one
to the most recently accessed branch record

� Two currency pointers for set types: one to the most recently accessed
record in an occurrence of the set depositor, and one to the most recently
accessed record in an occurrence of the set account branch

� One current of run-unit pointer

• Status flags: the four status variables that we defined previously.

A.4.2 The Find and Get Commands
The two most frequently used DBTG commands are

• find, which locates a record in the database and sets the appropriate currency
pointers

16 Appendix A Network Model

 Perryridge Horseneck 1700000

 Downtown Brooklyn 9000000

 Round Hill Horseneck 8000000

 Round Hill Horseneck 8000000

A-102 400

A-101 500

A-201 900

A-305 350

A-305 350

A-402 1000

A-408 1123

 Hayes Main Harrison

 Johnson Alma Palo Alto

 Turner Putnam Stamford

 Turner Putnam Stamford

customer template

account template

branch template

customer

account

branch

depositor

account_branch

run unit

currency
pointers

Figure A.20 Program work area.

• get, which copies the record to which the current of run-unit points from the
database to the appropriate program work area template

Let us illustrate the general effect that the find and get statements have on the pro-
gram work area. Consider the sample database of Figure A.16. Suppose that the cur-
rent state of the program work area of a particular application program is as shown
in Figure A.20. Further suppose that a find command is issued to locate the customer
record belonging to Johnson. This command causes the following changes to occur
in the state of the program work area:

• The current of record type customer now points to the record of Johnson.

• The current of set type depositor now points to the record of Johnson.

A.4 DBTG Data-Retrieval Facility 17

• The current of run unit now points to customer record Johnson.

If the get command is executed, the result is that the information pertaining to
Johnson is loaded into the customer record template.

A.4.3 Access of Individual Records
The find command has a number of forms. We shall present only a few of these com-
mands in this appendix. There are two different find commands for locating individ-
ual records in the database. The simplest command has the form

find any <record type> using <record-field>

This command locates a record of type <record type> whose <record-field> value
is the same as the value of <record-field> in the <record type> template in the pro-
gram work area. Once the system finds such a record, it sets the following currency
pointers to point to that record:

• The current of run-unit pointer

• The record-type currency pointer for <record type>

• The set currency pointer for every set in which <record type> is either the
owner type or member type.

As an illustration, let us construct the DBTG query that prints the street address of
Hayes:

customer.customer name := ”Hayes”;
find any customer using customer name;
get customer;
print (customer.customer street);

There may be several records with the specified value. The find command locates
the first of these in some prespecified ordering (see Section A.6.6). To locate other
database records that match the <record-field>, we use the command

find duplicate <record type> using <record-field>

which locates (according to a system-dependent ordering) the next record that
matches the <record-field>. The currency pointers noted previously are affected.

As an example, let us construct the DBTG query that prints the names of all the
customers who live in Harrison:

18 Appendix A Network Model

customer.customer city := ”Harrison”;
find any customer using customer city;
while DB-status = 0 do

begin
get customer;
print (customer.customer name);
find duplicate customer using customer city;

end;

We have enclosed part of the query in a while loop, because we do not know in
advance how many such customers exist. We exit from the loop when DB-status �= 0.
This action indicates that the most recent find duplicate operation failed, implying
that we have exhausted all customers residing in Harrison.

A.4.4 Access of Records within a Set
The previous find commands located any database record of type <record type>. In
this subsection, we concentrate on find commands that locate records in a particular
DBTG set. The set in question is the one that is pointed to by the <set-type> currency
pointer. There are three different types of commands. The basic find command is

find first <record type> within <set-type>

which locates the first member record of type <record type> belonging to the cur-
rent occurrence of <set-type>. The various ways in which a set can be ordered are
discussed in Section A.6.6.

To step through the other members of type <record type> belonging to the set
occurrence, we repeatedly execute the following command:

find next <record type> within <set-type>

The find first and find next commands need to specify the record type since a DBTG
set can have members of different record types.

As an illustration of how these commands execute, let us construct the DBTG query
that prints the total balance of all accounts belonging to Hayes.

sum := 0;
customer.customer name := ”Hayes”;
find any customer using customer name;
find first account within depositor;
while DB-status = 0 do

begin
get account;
sum := sum + account.balance;
find next account within depositor;

end
print (sum);

A.4 DBTG Data-Retrieval Facility 19

Note that we exit from the while loop and print out the value of sum only when the
DB-status is set to a value not equal to zero. Such a nonzero value results after the
find next operation fails, indicating that we have exhausted all the members of a set
occurrence of type depositor, whose owner is the record of customer Hayes.

The previous find commands locate member records within a particular DBTG set
occurrence. There are many circumstances, however, under which it may be neces-
sary to locate the owner of a particular DBTG set occurrence. We can do so through
the following command:

find owner within <set-type>

The set in question is <set-type>. Note that, for each set occurrence, there exists
precisely one single owner.

As an illustration, consider the DBTG query that prints all the customers of the
Perryridge branch:

branch.branch name := ”Perryridge”;
find any branch using branch name;
find first account within account branch;
while DB-status = 0 do

begin
find owner within depositor;
get customer;
print (customer.customer name);
find next account within account branch;

end

Note that, if a customer has several accounts in the Perryridge branch, then his name
will be printed several times.

As a final example, consider the DBTG query that prints the names of all the cus-
tomers of the bank. Such a query cannot be formed easily with the mechanism that
we have described thus far, since no one single set has all the customer records as its
members. The remedy is to define a singular set (Section A.3.2) consisting of mem-
bers of type customer. This set is defined as follows:

set name is AllCust
owner is system
member is customer

Once such a set has been defined, we can form our query as follows:

20 Appendix A Network Model

find first customer within AllCust;
while DB-status = 0 do

begin
get customer;
print (customer.customer name);
find next customer within AllCust;

end

A.4.5 Predicates
The find statements that we have described allow the value of a field in one of
the record templates to be matched with the corresponding field in the appropri-
ate database records. Although, with this technique, we can formulate a variety of
DBTG queries in a convenient and concise way, there are many queries in which a
field value must be matched with a specified range of values, rather than to only one.
To accomplish this match, we need to get the appropriate records into memory, to
examine each one separately for a match, and thus to determine whether each is the
target of our find statement.

As an illustration, consider the DBTG query to print the total number of accounts
in the Perryridge branch with a balance greater than $10,000:

count := 0;
branch.branch name := ”Perryridge”;
find any branch using branch name;
find first account within account branch;
while DB-status = 0 do

begin
get account;
if account.balance > 10000 then count := count + 1;
find next account within account branch;

end
print (count);

A.5 DBTG Update Facility
In Section A.4, we described the various DBTG commands for querying the database.
In this section, we describe the mechanisms available for updating information in
the database. They include the creation of new records and deletion of old records,
as well as the modification of the content of existing records.

A.5.1 Creation of New Records
To create a new record of type <record type>, we insert the appropriate values in the
corresponding <record type> template. We then add this new record to the database
by executing

store <record type>

A.5 DBTG Update Facility 21

Note that this technique allows us to create and add new records only one at a time.
As an illustration, consider the DBTG program for adding a new customer, Jackson,

to the database:

customer.customer name := ”Jackson”;
customer.customer street := ”Old Road”;
customer.customer city := ”Richardson”;
store customer;

Note that, if a new record is created that must belong to a particular DBTG set oc-
currence (for example, a new account), then, in addition to the store operation, we
need a mechanism for inserting records into set occurrences. This mechanism is de-
scribed in Section A.6.

A.5.2 Modification of an Existing Record
To modify an existing record of type <record type>, we must find that record in
the database, get that record into memory, and then change the desired fields in the
template of <record type>. Then, we reflect the changes to the record to which the
currency pointer of <record type> points by executing

modify <record type>

The DBTG model requires that the find command executed prior to modification
of a record must have the additional clause for update, so that the system is aware
that a record is to be modified. We are not required to update a record that we “find
for update.” However, we cannot update a record unless it is found for update.

As an example, consider the DBTG program to change the street address of Turner
to North Loop.

customer.customer name := ”Turner”;
find for update any customer using customer name;
get customer;
customer.customer street := ”North Loop”;
modify customer;

A.5.3 Deletion of a Record
To delete an existing record of type <record type>, we must make the currency
pointer of that type point to the record in the database to be deleted. Then, we can
delete that record by executing

erase <record type>

Note that, as in the case of record modification, the find command must have the
attribute for update attached to it.

As an illustration, consider the DBTG program to delete account A-402 belonging
to Turner:

22 Appendix A Network Model

finish := false;
customer.customer name := ”Turner”;
find any customer using customer name;
find for update first account within depositor;
while DB-status = 0 and not finish do

begin
get account;
if account.account number = ”A-402” then

begin
erase account;
finish := true;

end
else find for update next account within depositor;

end

We can delete an entire set occurrence by finding the owner of the set—say, a
record of type <record type>—and executing

erase all <record type>

This command will delete the owner of the set, as well as all the set’s members. If a
member of the set is an owner of another set, the members of that second set also will
be deleted. Thus, the erase all operation is recursive.

Consider the DBTG program to delete customer “Johnson” and all her accounts:

customer.customer name := ”Johnson”;
find for update any customer using customer name;
erase all customer;

A natural question is what happens when we wish to delete a record that is an
owner of a set, but we do not specify all in the erase statement. In this case, several
possibilities exist:

• Delete only that record.

• Delete the record and all its members.

• Do not delete any records.

It turns out that each of these options can be specified in the DBTG model. We discuss
them in Section A.6.

A.6 DBTG Set-Processing Facility
We saw in Section A.5 that the store and erase statements are closely tied to the set-
processing facility. In particular, a mechanism must be provided for inserting records
into and removing records from a particular set occurrence. In the case of deletion,
we have a number of different options to consider if the record to be deleted is the
owner of a set.

A.6 DBTG Set-Processing Facility 23

A.6.1 The connect Statement
To insert a new record of type <record type> into a particular occurrence of <set-
type>, we must first insert the record into the database (if it is not already there).
Then, we need to set the currency pointers of <record type> and <set-type> to point
to the appropriate record and set occurrence. Then, we can insert the new record into
the set by executing

connect <record type> to <set-type>

A new record can be inserted as follows:

1. Create a new record of type <record type> (see Section A.5.1). This action sets
the appropriate <record type> currency pointer.

2. Find the appropriate owner of the set <set-type>. This automatically sets the
appropriate currency pointer of <set-type>.

3. Insert the new record into the set oocurrence by executing the connect state-
ment.

As an illustration, consider the DBTG query for creating new account A-267, which
belongs to Jackson:

account.account number := ”A-267”;
account.balance := 0;
store account;
customer.customer name := ”Jackson”;
find any customer using customer name;
connect account to depositor;

A.6.2 The disconnect Statement
To remove a record of type <record type> from a set occurrence of type <set-type>,
we need to set the currency pointer of <record type> and <set-type> to point to the
appropriate record and set occurrence. Then, we can remove the record from the set
by executing

disconnect <record type> from <set-type>

Note that this operation only removes a record from a set; it does not delete that
record from the database. If deletion is desired, we can delete the record by executing
erase <record type>.

Assume that we wish to close account A-201. To do so, we need to delete the re-
lationship between account A-201 and its customer. However, we need to keep the
record of account A-201 in the database for the bank’s internal archives. The follow-
ing program shows how to perform these two actions within the DBTG model. This
program will remove account A-201 from the set occurrence of type depositor. The
account will still be accessible in the database for record-keeping purposes.

24 Appendix A Network Model

account.account number := ”A-201”;
find for update any account using account number;
find owner within depositor;
disconnect account from depositor;

A.6.3 The reconnect Statement
To move a record of type <record type> from one set occurrence to another set oc-
currence of type <set-type>, we need to find the appropriate record and the owner
of the set occurrences to which that record is to be moved. Then, we can move the
record by executing

reconnect <record type> to <set-type>

Consider the DBTG program to move all accounts of Hayes that are currently at
the Perryridge branch to the Downtown branch:

customer.customer name := ”Hayes”;
find any customer using customer name;
find first account within depositor;
while DB-status = 0 do

begin
find owner within account branch;
get branch;
if branch.branch name = ”Perryridge” then

begin
branch.branch name := ”Downtown”;
find any branch using branch name;
reconnect account to account branch;

end
find next account within depositor;

end

A.6.4 Insertion and Retention of Records
When a new set is defined, we must specify how member records are to be inserted.
In addition, we must specify the conditions under which a record must be retained
in the set occurrence in which it was initially inserted.

A.6.4.1 Set Insertion
A newly created member record of type <record type> of a set type <set-type> can
be added to a set occurrence either explicitly (manually) or implicitly (automatically).
This distinction is specified at set-definition time via

insertion is <insert mode>

where <insert mode> can take one of two forms:

A.6 DBTG Set-Processing Facility 25

• Manual. We can insert the new record into the set manually (explicitly) by
executing

connect <record type> to <set-type>

• Automatic. The new record is inserted into the set automatically (implicitly)
when it is created—that is, when we execute

store <record type>

In either case, just prior to insertion, the <set-type> currency pointer must point to
the set occurrence into which the insertion is to be made.

As an illustration, consider the creation of account A-535 that belongs to Hayes
and is at the Downtown branch. Suppose that set insertion is manual for set type
depositor and is automatic for set type account branch. The appropriate DBTG program
is

branch.branch name := ”Downtown”;
find any branch using branch name;
account.account number := ”A-535”;
account.balance := 0;
store account;
customer.customer name := ”Hayes”;
find any customer using customer name;
connect account to depositor;

A.6.4.2 Set Retention
There are various restrictions on how and when a member record can be removed
from a set occurrence into which it has been inserted previously. These restrictions
are specified at set-definition time via

retention is <retention-mode>

where <retention-mode> can take one of the three forms:

1. Fixed. Once a member record has been inserted into a particular set occur-
rence, it cannot be removed from that set. If retention is fixed, then, to recon-
nect a record to another set, we must erase that record, re-create it, and then
insert it into the new set occurrence.

2. Mandatory. Once a member record has been inserted into a particular set oc-
currence, it can be reconnected to another set occurrence of only type <set-
type>. It can neither be disconnected nor be reconnected to a set of another
type.

3. Optional. No restrictions are placed on how and when a member record can
be removed from a set occurrence. A member record can be reconnected, dis-
connected, and connected at will.

26 Appendix A Network Model

The decision of which option to choose depends on the application. For example,
in our banking database, the optional retention mode is appropriate for the depositor
set because we may have defunct accounts not owned by anybody. On the other
hand, the mandatory retention mode is appropriate for the account branch set, since
an account has to belong to some branch.

A.6.5 Deletion
When a record is deleted (erased) and that record is the owner of set occurrence of
type <set-type>, the best way of handling this deletion depends on the specification
of the set retention of <set-type>.

• If the retention status is optional, then the record will be deleted and every
member of the set that it owns will be disconnected. These records, however,
will remain in the database.

• If the retention status is fixed, then the record and all its owned members will
be deleted. This action occurs because the fixed status means that a member
record cannot be removed from the set occurrence without being deleted.

• If the retention status is mandatory, then the record cannot be erased, because
the mandatory status indicates that a member record must belong to a set
occurrence. The record cannot be disconnected from that set.

A.6.6 Set Ordering
The members of a set occurrence of type <set-type> can be ordered in a variety of
ways. These orders are specified by a programmer when the set is defined via

order is <order-mode>

where <order-mode> can be any of the following:

• first. When a new record is added to a set, it is inserted in the first position.
Thus, the set is in reverse chronological order.

• last. When a new record is added to a set, it is inserted in the final position.
Thus, the set is in chronological order.

• next. Suppose that the currency pointer of <set-type> points to record X. If X
is a member type, then, when a new record is added to the set, that record is
inserted in the next position following X. If X is an owner type, then, when a
new record is added, that record is inserted in the first position.

• prior. Suppose that the currency pointer of <set-type> points to record X. If
X is a member type, then, when a new record is added to the set, that record
is inserted in the position just prior to X. If X is an owner type, then, when a
new record is added, that record is inserted in the last position.

A.7 Mapping of Networks to Files 27

• system default. When a new record is added to a set, it is inserted in an arbi-
trary position determined by the system.

• sorted. When a new record is added to a set, it is inserted in a position that
ensures that the set will remain sorted. The sorting order is specified by a
particular key value when a programmer defines the set. The programmer
must specify whether members are ordered in ascending or descending order
relative to that key.

Consider again Figure A.16, where the set occurrence of type depositor with the
owner-record customer Turner and member-record accounts A-305, A-402, and A-
408 are ordered as indicated. Suppose that we add a new account A-125 to that set.
For each <order-mode> option, the new set ordering is as follows:

• first: {A-125, A-305, A-402, A-408}
• last: {A-305, A-402, A-408, A-125}
• next: Suppose that the currency pointer points to record “Turner”; then the

new set order is {A-125, A-305, A-402, A-408}
• prior: Suppose that the currency pointer points to record A-402; then the new

set order is {A-305, A-125, A-402, A-408}
• system default: Any arbitrary order is acceptable; thus, {A-305, A-402, A-125,

A-408} is a valid set ordering

• sorted: The set must be ordered in ascending order with account number be-
ing the key; thus, the ordering must be {A-125, A-305, A-402, A-408}

A.7 Mapping of Networks to Files
A network database consists of records and links. We implement links by adding
pointer fields to records that are associated via a link. Each record must have one
pointer field for each link with which it is associated. As an illustration, return to
the data-structure diagram of Figure A.2b, and to the sample database correspond-
ing to it in Figure A.4. Figure A.21 shows the sample instance with pointer fields to
represent the links. Each line in Figure A.4 is replaced in Figure A.21 by two pointers.

Since the depositor link is many to many, each record can be associated with an
arbitrary number of records. Thus, it is not possible to limit the number of pointer
fields in a record. Therefore, even if a record itself is of fixed length, the actual record
used in the physical implementation is a variable-length record.

These complications led the architects of the DBTG model to restrict links to be
either one to one or one to many. We shall see that, under this restriction, the number
of pointers needed is reduced, and it is possible to retain fixed-length records. To
illustrate the implementation of the DBTG model, we assume that the depositor link is
one to many and is represented by the DBTG set depositor as defined here:

28 Appendix A Network Model

 Hayes Main Harrison

 Johnson Alma Palo Alto

 Smith North Rye

A-102 400

A-101 500

A-201 900

A-215 700

Figure A.21 Implementation of instance of Figure A.4.

set name is depositor
owner is customer
member is account

A sample database corresponding to this schema is in Figure A.1.
An account record can be associated with only one customer record. Thus, we need

only one pointer in the account record to represent the depositor relationship. How-
ever, a customer record can be associated with many account records. Instead of using
multiple pointers in the customer record, we can use a ring structure to represent the
entire occurrence of the DBTG set depositor. In a ring structure, the records of both the
owner and member types for a set occurrence are organized into a circular list. There
is one circular list for each set occurrence (that is, for each record of the owner type).

Figure A.22 shows the ring structure for the example of Figure A.1. Let us examine
the DBTG-set occurrence owned by the “Johnson” record. There are two member-type

 Hayes Main Harrison

 Johnson Alma Palo Alto

 Turner Putnam Stamford

A-102 400

A-101 500

A-201 900

A-305 350

Figure A.22 Ring structure for instance of Figure A.1.

A.7 Mapping of Networks to Files 29

(account) records. Instead of containing one pointer to each member record, the owner
(Johnson) record contains a pointer to only the first member record (account A-101).
This member record contains a pointer to the next member record (account A-201).
Since the record for account A-201 is the final member record, it contains a pointer to
the owner record.

If we represent DBTG sets by using the ring structure, a record contains exactly one
pointer for each DBTG set in which it is involved, regardless of whether it is of the
owner type or member type. Thus, we can represent fixed-length records within a
ring structure without resorting to variable-length records. This structural simplicity
is offset by added complexity in accessing records within a set. To find a particular
member record of a set occurrence, we must traverse the pointer chain to navigate
from the owner record to the desired member record.

The ring-structure implementation strategy for the DBTG model provided the basis
for the DBTG data retrieval facility. Recall these statements:

• find first <record type> within <set type>

• find next <record type> within <set type>

The terms first and next in these statements refer to the ordering of records given by
the ring-structure pointers. Thus, once the owner has been found, it is easy to do a
find first, since all the system must do is to follow a pointer. Similarly, all the system
must do in response to a find next is to follow the ring-structure pointer.

The find owner statement of the DBTG query language can be supported efficiently
by a modified form of the ring structure in which every member-type record con-
tains a second pointer, which points to the owner record. This structure appears in
Figure A.23. Under this implementation strategy, a record has one pointer for each
DBTG set for which it is of the owner type, and two pointers (a next-member pointer
and an owner pointer) for each DBTG set for which it is of the member type. This strat-

 Hayes Main Harrison

 Johnson Alma Palo Alto

 Turner Putnam Stamford

A-102 400

A-101 500

A-201 900

A-305 350

Figure A.23 Ring structure of Figure A.22 with owner pointers.

30 Appendix A Network Model

 Hayes Main Harrison
 Johnson Alma Palo Alto
 Turner Putnam Stamford

A-102 400

A-101 500
A-201 900

A-305 350

Block 0

Block 1

Block 2

Block 3

Figure A.24 Clustered record placement for instance of Figure A.1.

egy allows efficient execution of a find owner statement. Under our earlier strategy,
it is necessary to traverse the ring structure until we find the owner.

The physical placement of records is important for an efficient implementation of
a network database, as it is for a relational database.

The statements find first, find next, and find owner are designed for processing a
sequence of records within a particular DBTG-set occurrence. Since these statements
are the ones most frequently used in a DBTG query, it is desirable to store records of
a DBTG-set occurrence physically close to one another on disk. To specify the strat-
egy that the system is to use to store a DBTG set, we add a placement clause to the
definition of the member record type.

Consider the DBTG set depositor and the example shown in Figure A.1. If we add
the clause

placement clustered via depositor

to the definition of record type account (the member-record type of the depositor DBTG
set), the system will store members of each set occurrence close to one another physi-
cally on disk. To the extent possible, members of a set occurrence will be stored in the
same block. Figure A.24 illustrates this storage strategy for the instance of Figure A.1.

The clustered placement strategy does not require the owner record of a DBTG set
to be stored near the set’s members. Thus, each record type can be stored in a distinct
file. If we are willing to store more than one record type in a file, we can specify that
owner and member records are to be stored close to one another physically on disk.
We do so by adding the clause near owner to the placement clause. For our example
of the depositor set, we add the clause

placement clustered via depositor near owner

to the definition of the record type account. Figure A.25 illustrates this storage strat-
egy. By storing member records in the same block as the owner, we reduce the num-

A.8 Summary 31

 Hayes Main Harrison
 A-102 400

Block 0

Block 2
 Turner Putnam Stamford
 A-305 350

Block 1
 Johnson Alma Palo Alto
 A-101 500
 A-201 900

Figure A.25 Record placement using clustering with the near owner option.

ber of block accesses required to read an entire set occurrence. This form of storage
is analogous to the clustering file structure that we proposed earlier for the relational
model. This similarity is not surprising, since queries that require traversal of DBTG-
set occurrences under the network model require natural joins under the relational
model.

A.8 Summary
A network database consists of a collection of records that are connected to each other
through links. A link is an association between precisely two records. Records are
organized in the form of an arbitrary graph.

A data-structure diagram is a schema for a network database. Such a diagram con-
sists of two basic components: boxes, which correspond to record types, and lines,
which correspond to links. A data-structure diagram serves the same purpose as an
E-R diagram; namely, it specifies the overall logical structure of the database. For ev-
ery E-R diagram, there is a corresponding data-structure diagram.

In the late 1960s, several commercial database systems based on the network model
emerged. These systems were studied extensively by the Database Task Group (DBTG)
within the CODASYL group. In the DBTG model, only many-to-one links can be used.
Many-to-many links are disallowed to simplify the implementation. One-to-one links
are represented as many-to-one links. A data-structure diagram consisting of two
record types that are linked together is referred to, in the DBTG model, as a DBTG set.
Each DBTG set has one record type designated as the owner of the set, and another
record type designated as a member of the set. A DBTG set can have any number of set
occurrences.

The data-manipulation language of the DBTG model consists of a number of com-
mands embedded in a host language. These commands access and manipulate data-
base records and links, as well as locally declared variables. For each such application
program, the system maintains a program work area, which contains record templates,
currency pointers, and status flags.

32 Appendix A Network Model

The two most frequently used DBTG commands are find and get. There are many
different formats for the find command. The main distinction among them is whether
any records in the database, or records within a particular set occurrence, are to be
located.

There are various mechanisms available in the DBTG model for updating informa-
tion in the database. They allow the creation and deletion of new records (via the
store and erase operations), as well as the modification (via the modify operation)
of the content of existing records. The connect, disconnect, and reconnect operations
provide for inserting records into and removing records from a particular set occur-
rence.

When a new set is defined, we must specify how member records are to be in-
serted, and under what conditions they can be moved from one set occurrence to
another. A newly created member record can be added to a set occurrence either
explicitly or implicitly. This distinction is specified at set-definition time via the in-
sertion is statement with the manual and automatic insert-mode options.

There are various restrictions on how and when a member record can be removed
from a set occurrence into which it has been inserted previously. These restrictions are
specified at set-definition time via the retention is statement with the fixed, manda-
tory, and optional retention-mode options.

Implementation techniques for the DBTG model exploit the restrictions of the model
to allow the physical representation of DBTG sets without the need for variable-length
records. A DBTG set is represented by one ring structure for each occurrence.

Exercises
A.1 Transform the E-R diagram of Figure A.26 into a data-structure diagram assum-

ing that the data model is
a. Network
b. DBTG

A.2 Construct a sample database for the data-structure diagram of Exercise A.1,
with 10 students and three different classes.

A.3 Show the set of variables that exists in a program work area for the data-
structure diagram corresponding to the E-R diagram of Figure A.26.

A.4 Suppose that the attribute grade is added to the relationship enroll of Figure A.26.
Show the corresponding data-structure diagram, assuming the network and
DBTG model.

A.5 Transform the E-R diagram of Figure A.27 into a data-structure diagram.

A.6 Define the following terms:
a. DBTG set
b. Owner of a set
c. Member of a set
d. Set occurrence

Exercises 33

SS#

name address

student enroll

location

number time

class

Figure A.26 Class enrollment E-R diagram.

A.7 Explain why a member record of a set occurrence cannot participate in more
than one occurrence of the set at any point.

A.8 Suppose that the find owner statement is not provided as part of the DBTG
query language. Is it still possible to answer the set of queries? Explain your
answer.

A.9 The DBTG find statement does not allow specification of predicates.
a. Discuss the drawbacks of this limitation.
b. Suggest a modification to the language to overcome this difficulty.

A.10 Transform the E-R diagram of Figure A.28 into a data-structure diagram, as-
suming the DBTG model.

A.11 For the data-structure diagram corresponding to the E-R diagram of Figure A.28,
construct the following DBTG queries:

a. Find the total number of people whose car was involved in an accident in
1993.

b. Find the total number of accidents in which the cars belonging to “John
Smith” were involved.

c. Add a new customer to the database.
d. Delete the car “Mazda” belonging to “John Smith.”
e. Add a new accident record for the Toyota belonging to “Jones.”

A.12 What is a system-set? Why was it introduced in the DBTG model?

person
father

children
father_of

Figure A.27 Parent–child E-R diagram.

34 Appendix A Network Model

logowns

damage_amt

accident

model

year license

car

SS#

name address

person

driver

date

Figure A.28 Car-insurance E-R diagram.

A.13 Explain the concept of repeating groups. Is it necessary to have this construct
available in the network model? Explain your answer.

A.14 Explain the differences among the connect, disconnect, and reconnect state-
ments.

A.15 Explain the differences among the manual and automatic option in set inser-
tion.

A.16 Explain the difference between the fixed, mandatory, and optional options in
set retention.

A.17 What are the appropriate set-insertion and set-retention options for the data-
structure diagram corresponding to Figure A.28?

A.18 Give a network data-structure diagram for the following relational database:

employee (person name, street, city)
works (person name, company name, salary)
company (company name, city)
manages (person name, manager name)

A.19 Construct the following DBTG queries for the data-structure diagram that you
obtained as a solution to Exercise A.18

a. Find the names of all employees who work for First Bank Corporation.
b. Find the names and cities of residence of all employees who work for First

Bank Corporation.
c. Find the names, streets, and cities of residence of all employees who work

for First Bank Corporation and earn more than $10,000.
d. Find all employees who live in the city where the company they work for

is located.
e. Find all employees who live in the same city and on the same street as their

managers.
f. Find all employees in the database who do not work for First Bank Corpo-

ration.
g. Find all employees in the database who earn more than every employee of

Small Bank Corporation.
h. Assume that the companies can be located in several cities. Find all compa-

nies located in every city in which Small Bank Corporation is located.

Bibliographic Notes 35

i. Find all employees who earn more than the average salary of employees
who work in their companies.

j. Find the company that employs the most people.
k. Find the company that has the smallest payroll.
l. Find those companies that pay higher salaries, on average, than the average

salary at First Bank Corporation.
m. Modify the database such that Jones now lives in Newtown.
n. Give all employees of First Bank Corporation a 10 percent raise.
o. Give all managers in the database a 10 percent raise.
p. Give all managers in the database a 10 percent raise, unless the resulting

salary would be greater than $100,000; if it would be, give only a 3 percent
raise.

q. Delete all employees of Small Bank Corporation.

A.20 Give a network data-structure diagram for the following relational database:

course (course name, room, instructor)
enrollment (course name, student name, grade)

Also give an example implementation of an instance of this database.

Bibliographical Notes
In the late 1960s, several commercial database systems emerged that relied on the
network model. The most influential of these systems were the Integrated Data Store
(IDS) system, which was developed in General Electric under the guidance of Charles
Bachman [Bachman and Williams 1964], and Associate PL/I (APL) [Dodd 1969]. These
and other systems were studied extensively by the DBTG within the CODASYL group
that earlier set the standard for COBOL. This study resulted in the first database stan-
dard specification, called the CODASYL DBTG 1971 report [CODASYL 1971]. Since
then, a number of changes have been suggested to that report, including [CODASYL
1978].

The concept of data-structure diagrams was introduced by Bachman [1969]. The
original presentation of data-structure diagrams used arrows to point from owner to
member record types. This presentation corresponds to the physical pointer imple-
mentation. We have used the arrows pointing from member to owner record types to
be consistent with our presentation of the E-R model. The same convention is used
by Ullman [1988].

Implementation and design issues concerning the DBTG model are discussed by
Schenk [1974], Gerritsen [1975], Dahl and Bubenko [1982], and Whang et al. [1982].
Discussions concerning the view level (the external level) of DBTG are offered by
Zaniolo [1979a, 1979b] and Clemons [1978, 1979]. A high-level query language for
the network model is proposed by Bradley [1978]. Translation of network queries to
relational queries is discussed by Katz and Wong [1982]. Taylor and Frank [1976] is a
survey paper on the DBTG model.

