
A P P E N D I X B

Hierarchical Model

In the network model, the data are represented by collections of records and relation-
ships between data are represented by links. This structure holds for the hierarchical
model as well. The only difference is that, in the hierarchical model, records are or-
ganized as collections of trees, rather than as arbitrary graphs.

B.1 Basic Concepts
A hierarchical database consists of a collection of records that are connected to each
other through links. A record is similar to a record in the network model. Each record
is a collection of fields (attributes), each of which contains only one data value. A link
is an association between precisely two records. Thus, a link here is similar to a link
in the network model.

Consider a database that represents a customer-account relationship in a banking
system. There are two record types: customer and account. The customer record type
can be defined in the same manner as in Appendix A. It consists of three fields: cus-
tomer name, customer street, and customer city. Similarly, the account record consists of
two fields: account number and balance.

A sample database appears in Figure B.1. It shows that customer Hayes has ac-
count A-305, customer Johnson has accounts A-101 and A-201, and customer Turner
has account A-305.

Note that the set of all customer and account records is organized in the form of a
rooted tree, where the root of the tree is a dummy node. As we shall see, a hierarchical
database is a collection of such rooted trees, and hence forms a forest. We shall refer
to each such rooted tree as a database tree.

The content of a particular record may have to be replicated in several different
locations. For example, in our customer-account banking system, an account may
belong to several customers. The information pertaining to that account, or the infor-
mation pertaining to the various customers to which that account may belong, will

1

2 Appendix B Hierarchical Model

 Hayes Main Harrison Johnson Alma Palo Alto Turner Putnam Stamford

A-102 400 A-101 500 A-201 900 A-305 350

Figure B.1 Sample database.

have to be replicated. This replication may occur either in the same database tree or
in several different trees. Record replication has two major drawbacks:

1. Data inconsistency may result when updating takes place.

2. Waste of space is unavoidable.

We shall deal with this issue in Section B.5 by introducing the concept of a virtual
record.

B.2 Tree-Structure Diagrams
A tree-structure diagram is the schema for a hierarchical database. Such a diagram
consists of two basic components:

1. Boxes, which correspond to record types

2. Lines, which correspond to links

A tree-structure diagram serves the same purpose as an entity–relationship (E-R) dia-
gram; namely, it specifies the overall logical structure of the database. A tree-structure
diagram is similar to a data-structure diagram in the network model. The main dif-
ference is that, in the latter, record types are organized in the form of an arbitrary
graph, whereas in the former, record types are organized in the form of a rooted tree.

B1 B2

A

Bn

C1 Cm Ck

…

……

Figure B.2 General structure of a tree-structure diagram.

B.2 Tree-Structure Diagrams 3

We have to be more precise about what a rooted tree is. First, there can be no cycles
in the underlying graph. Second, there is a record type that is designated as the root
of the tree. The relationships formed in the tree structure diagram must be such that
only one-to-many or one-to-one relationships exist between a parent and a child. The
general form of a tree-structure diagram appears in Figure B.2. Note that the arrows
are pointing from children to parents. A parent may have an arrow pointing to a child,
but a child must have an arrow pointing to its parent.

The database schema is represented as a collection of tree-structure diagrams. For
each such diagram, there exists one single instance of a database tree. The root of
this tree is a dummy node. The children of the dummy node are instances of the
root record type in the tree structure diagram. Each record instance may, in turn,
have several children, which are instances of various record types, as specified in the
corresponding tree-structure diagram.

To understand how tree-structure diagrams are formed, we shall show how to
transform E-R diagrams to their corresponding tree-structure diagrams. We first show
how to apply such transformations to single relationships. We then explain how to
ensure that the resulting diagrams are in the form of rooted trees.

B.2.1 Single Relationships
Consider the E-R diagram of Figure B.3a; it consists of the two entity sets customer and
account related through a binary, one-to-many relationship depositor, with no descrip-
tive attributes. This diagram specifies that a customer can have several accounts, but
an account can belong to only one customer. The corresponding tree-structure di-
agram appears in Figure B.3b. The record type customer corresponds to the entity

customer_street

customer_name customer_city

customer

account_number balance

accountdepositor

(a) E-R diagram

(b) Tree_structure diagram

customer

accountaccount_number balance

customer_name customer_street customer_city

Figure B.3 E-R diagram and its corresponding tree-structure diagram.

4 Appendix B Hierarchical Model

customer_name customer_street customer_city customer

accountaccount_number balance

Figure B.4 Tree-structure diagram with one-to-one relationship.

set customer. It includes three fields: customer name, customer street, and customer city.
Similarly, account is the record type corresponding to the entity set account. It includes
two fields: account number and balance. Finally, the relationship depositor has been re-
placed with the link depositor, with an arrow pointing to customer record type.

An instance of a database corresponding to the described schema may thus contain
a number of customer records linked to a number of account records, as in Figure B.1.
Since the relationship is one to many from customer to account, a customer can have
more than one account, as does Johnson, who has both accounts A-101 and A-201. An
account, however, cannot belong to more than one customer; none do in the sample
database.

If the relationship depositor is one to one, then the link depositor has two arrows: one
pointing to account record type, and one pointing to customer record type (Figure B.4).
A sample database corresponding to this schema appears in Figure B.5. Since the
relationship is one to one, an account can be owned by precisely one customer, and a
customer can have only one account, as is indeed the case in the sample database.

If the relationship depositor is many to many (see Figure B.6a), then the transfor-
mation from an E-R diagram to a tree-structure diagram is more complicated. Only
one-to-many and one-to-one relationships can be directly represented in the hierar-
chical model.

There are many different ways to transform this E-R diagram to a tree-structure di-
agram. All these diagrams, however, share the property that the underlying database
tree (or trees) will have replicated records.

The decision regarding which transformation should be used depends on many
factors, including

• The type of queries expected on the database

 Hayes Main Harrison Lindsey Park Pittsfield Turner Putnam Stamford

A-102 400 A-222 700 A-201 900 A-305 350

Figure B.5 Sample database corresponding to diagram of Figure B.4.

B.2 Tree-Structure Diagrams 5

customer_street

customer_name customer_city

customer

account_number balance

accountdepositor

(a) E-R diagram

(b) Tree_structure diagrams
tree T2tree T1

customer_name customer_street customer_city

customer

account

account_number balance customer_name customer_street customer_city

customer

account
account_number balance

Figure B.6 E-R diagram and its corresponding tree-structure diagrams.

• The degree to which the overall database schema being modeled fits the given
E-R diagram

We shall present a transformation that is as general as possible. That is, all other
possible transformations are a special case of this one transformation.

To transform the E-R diagram of Figure B.6a into a tree-structure diagram, we take
these steps:

1. Create two separate tree-structure diagrams, T1 and T2, each of which has the
customer and account record types. In tree T1, customer is the root; in tree T2,
account is the root.

2. Create the following two links:
• depositor, a many-to-one link from account record type to customer record

type, in T1

• account customer, a many-to-one link from customer record type to account
record type, in T2

The resulting tree-structure diagrams appear in Figure B.6b. The presence of two di-
agrams (1) permits customers who do not participate in the depositor relationship as
well as accounts that do not participate in the depositor relationship, and (2) permits
efficient access to account information for a given customer as well as customer in-
formation for a given account.

6 Appendix B Hierarchical Model

 Hayes Main Harrison Johnson Alma Palo Alto Smith North Rye

A-102 400 A-101 500 A-201 900 A-201 900 A-215 700

(a)

 Hayes Main Harrison

A-102 400 A-101 500 A-201 900

 Johnson Alma Palo Alto

 Johnson Alma Palo Alto

 Smith North Rye

 Smith North Rye

A-215 700

(b)

Figure B.7 Sample database corresponding to diagram of Figure B.6b.

A sample database corresponding to the tree-structure diagram of Figure B.6b ap-
pears in Figure B.7. There are two database trees. The first tree (Figure B.7a) corre-
sponds to the tree-structure diagram T1; the second tree (Figure B.7b) corresponds
to the tree-structure diagram T2. As we can see, all customer and account records are
replicated in both database trees. In addition, account record A-201 appears twice in
the first tree, whereas customer records Johnson and Smith appear twice in the second
tree.

If a relationship also includes a descriptive attribute, the transformation from an
E-R diagram to a tree-structure diagram is more complicated. A link cannot contain
any data value. In this case, a new record type needs to be created, and the appropri-
ate links need to be established. The manner in which links are formed depends on
the way the relationship depositor is defined.

Consider the E-R diagram of Figure B.3a. Suppose that we add the attribute access
date to the relationship depositor, to denote the most recent date on which a customer

accessed the account. This newly derived E-R diagram appears in Figure B.8a. To
transform this diagram into a tree-structure diagram, we must

B.2 Tree-Structure Diagrams 7

customer_street

customer_name customer_city

customer

account_number balance

accountdepositor

(a) E-R diagram

customer_name customer_street customer_city customer

access_dateaccess_date

(b) Tree_structure diagram

accountaccount_number balance

access_date

Figure B.8 E-R diagram and its corresponding tree-structure diagram.

1. Create a new record type access date with a single field.

2. Create the following two links:
• customer date, a many-to-one link from access date record type to customer

record type
• date account, a many-to-one link from account record type to access date

record type

The resulting tree-structure diagram is illustrated in Figure B.8b.
An instance corresponding to the described schema appears in Figure B.9. It shows

that:

• Hayes has account A-102, which was last accessed on 10 June 1996.

• Johnson has two accounts: A-101, which was last accessed on 24 May 1996,
and A-201, which was last accessed on 17 June 1996.

• Turner has account A-305, which was last accessed on 10 June 1996.

8 Appendix B Hierarchical Model

 Hayes Main Harrison Johnson Alma Palo Alto Turner Putnam Stamford

10 June 1996 24 May 1996 17 June 1996 10 June 1996

A-102 400 A-101 500 A-201 900 A-305 350

Figure B.9 Sample database corresponding to diagram of Figure B.8b.

Note that two different accounts can be accessed on the same date, as were accounts
A-102 and A-305. These accounts belong to two different customers, so the access date
record must be replicated to preserve the hierarchy.

If the relationship depositor were one to one with the attribute date, then the trans-
formation algorithm would be similar to the one described. The only difference would
be that the two links customer date and date account would be one-to-one links.

Assume that the relationship depositor is many to many with the attribute access
date; here again, we can choose among a number of alternative transformations. We

shall use the most general transformation; it is similar to the one applied to the case
where the relationship depositor has no descriptive attribute. The record types cus-
tomer, account, and access date need to be replicated, and two separate tree-structure
diagrams must be created, as in Figure B.10. A sample database corresponding to this
schema is in Figure B.11.

Until now, we have considered only binary relationships. We shift our attention
here to general relationships. The transformation of E-R diagrams corresponding to
general relationships into tree-structure diagrams is complicated. Rather than present
a general transformation algorithm, we present a single example to illustrate the
overall strategy that you can apply to deal with such a transformation.

customer_name customer_street customer_city

customer

access_dateaccess_date

account
account_number balance customer_name customer_street customer_city

customer

access_dateaccess_date

account

account_number balance

Figure B.10 Tree-structure diagram with many-to-many relationships.

B.2 Tree-Structure Diagrams 9

 Hayes Main Harrison Johnson Alma Palo Alto Smith North Rye

A-102 400 A-101 500 A-201 900 A-201 900 A-215 700

(a)

 Hayes Main Harrison

A-102 400 A-101 500 A-201 900

 Johnson Alma Palo Alto

 Johnson Alma Palo Alto

 Smith North Rye

 Smith North Rye

A-215 700

(b)

10 June 1996 24 May 1996 17 June 1996 3 June 199621 June 1996

10 June 1996 24 May 1996 17 June 1996 3 June 199621 June 1996

Figure B.11 Sample database corresponding to diagram of Figure B.10.

Consider the E-R diagram of Figure B.12a, which consists of the three entity sets
customer, account, and branch, related through the general relationship set CAB with
no descriptive attribute.

There are many different ways to transform this E-R diagram into a tree-structure
diagram. Again, all share the property that the underlying database tree (or trees)
will have replicated records. The most straightforward transformation is to create
two tree-structure diagrams, as shown in Figure B.12b.

An instance of the database corresponding to this schema is illustrated in Fig-
ure B.13. It shows that Hayes has account A-102 in the Perryridge branch; John-
son has accounts A-101 and A-201 in the Downtown and Perryridge branches, re-
spectively; and Smith has accounts A-201 and A-215 in the Perryridge and Mianus
branches, respectively.

10 Appendix B Hierarchical Model

customer_street

customer_name customer_city

customer

account_number balance

account

branch_city

branch_name assets

branch

CAB

(a) E-R diagram

customer_name customer_street customer_city

customer

branch

branch_name branch_city assets

branch

branch_name branch-city assets

(b) Tree-structure diagrams

account

account_number balance

account
account_number balance customer_name customer_street customer_city

customer

Figure B.12 E-R diagram and its corresponding tree-structure diagrams.

We can extend the preceding transformation algorithm in a straightforward man-
ner to deal with relationships that span more than three entity sets. We simply repli-
cate the various record types, and generate as many tree-structure diagrams as nec-
essary. We can extend this approach, in turn, to deal with a general relationship that
has descriptive attributes. We need only to create a new record type with one field
for each descriptive attribute, and then to insert that record type in the appropriate
location in the tree-structure diagram.

B.2.2 Several Relationships
The scheme that we have described to transform an E-R diagram to a tree-structure
diagram ensures that, for each single relationship, the transformation will result in

B.2 Tree-Structure Diagrams 11

 Hayes Main Harrison

 Johnson Alma Palo Alto

 Johnson Alma Palo Alto

 Smith North Rye

 Smith North Rye

 Mianus Horseneck 400000

 Mianus Horseneck 400000

A-102 400

A-201 900 A-201 900A-101 500 A-215 700

(a)

 Hayes Main Harrison

A-102 400 A-101 500 A-201 900

 Smith North Rye

 Smith North Rye

A-215 700

(b)

Downtown Brooklyn 9000000 Perryridge Horseneck 1700000

Downtown Brooklyn 9000000 Perryridge Horseneck 1700000

 Johnson Alma Palo Alto

 Johnson Alma Palo Alto

Figure B.13 Sample database corresponding to diagram of Figure B.12b.

diagrams that are of the form of rooted trees. Unfortunately, application of such a
transformation individually to each relationship in an E-R diagram does not neces-
sarily result in diagrams that are rooted trees.

Next, we shall discuss means for resolving the problem. The technique is to split
the diagrams in question into several diagrams, each of which is a rooted tree. We
present here two examples to illustrate the overall strategy that you can apply to

12 Appendix B Hierarchical Model

depositoraccount_
branch

customer_city

customer

account_number

balance

account

branch_city

branch_name assets

branch

(a) E-R diagram

(b) Transformation of E-R diagram

customer_name customer_street customer_city

account_number balance account

branch_name branch_city assetsbranch

customer_street

customer_name

Figure B.14 E-R diagram and its transformation.

deal with such transformations. (The large number of different possibilities would
make it cumbersome to present a general transformation algorithm.)

Consider the E-R diagram of Figure B.14a. By applying the transformation algo-
rithm in Section B.2.1 separately to the relationships account-branch and depositor, we
obtain the diagram of Figure B.14b. This diagram is not a rooted tree, since the only
possible root can be the record type account, but this record type has many-to-one re-
lationships with both its children, and that violates our definition of a rooted tree (see
Section B.2). To transform this diagram into one that is in the form of a rooted tree,
we replicate the account record type, and create two separate trees, as in Figure B.15.
Note that each such tree is indeed a rooted tree. Thus, in general, we can split such a
diagram into several diagrams, each of which is a rooted tree.

Now consider the E-R diagram of Figure B.16a. By applying the transformation
algorithm described in Section B.2.1, we obtain the diagram in Figure B.16b. This
diagram is not in the form of a rooted tree, since it contains a cycle. To transform the
diagram to a tree-structure diagram, we replicate all three record types, and create

customer_name customer_street customer_city

customer

account_number balance

account

branch_name branch_city assets

branch

account_number balance

account

Figure B.15 Tree-structure diagram corresponding to Figure B.14a.

B.3 Data-Retrieval Facility 13

A

C B

A

C

B

(a) (b)

Figure B.16 E-R diagram and its transformation.

two separate diagrams, as in Figure B.17. Note that each such diagram is indeed a
rooted tree. Thus, in general, we can split such a diagram into several diagrams, each
of which is a rooted tree.

B.3 Data-Retrieval Facility
In this section, we present a query language for hierarchical databases that is derived
from DL/I, the data-manipulation language of IMS. To simplify the presentation, we
shall deviate from the DL/I syntax, and shall use a simplified notation. Our language
consists of commands that are embedded in a host language, Pascal. We shall use a
simple example of a customer-account-branch schema. The tree-structure diagram cor-
responding to this schema appears in Figure B.18. It specifies that a branch can have
several customers, each of which can have several accounts. An account, however,
may belong to only one customer, and a customer can belong to only one branch. An
instance corresponding to this schema appears in Figure B.19.

B.3.1 Program Work Area
Each application program executing in the system consists of a sequence of state-
ments. Some of these statements are in Pascal; others are data-manipulation-language

B

A

C

C

A

B

Figure B.17 Tree-structure diagram corresponding to Figure B.16a.

14 Appendix B Hierarchical Model

customer_name customer_street customer_city customer

account_number balance account

branch_name assets branch_city branch

Figure B.18 Tree-structure diagram.

command statements. These statements access and manipulate database items, as
well as locally declared variables. For each such application program, the system
maintains a program work area, which is a buffer storage area that contains the follow-
ing variables:

• Record templates. A record (in the Pascal sense) for each record type accessed
by the application program

• Currency pointers. A set of pointers, one for each database tree, containing the
address of the record in that particular tree (regardless of type) most recently
accessed by the application program

 Parkview 100000000 Brooklyn

 Fleming Bayridge Brooklyn

 Freeman Flatbush Brooklyn

 Seashore 150000000 Queens

 Boyd Airport Queens

A-522 750 A-561 9953 A-533 600 A-409 27 A-622 107

Figure B.19 Sample database corresponding to Figure B.18.

B.3 Data-Retrieval Facility 15

• Status flag. A variable set by the system to indicate to the application program
the outcome of the most recent database operation; we call this flag DB-status
and use the same convention as in the DBTG model to denote failure—namely,
if DB-status = 0, then the most recent operation succeeded.

We reemphasize that a particular program work area is associated with precisely one
application program.

For our branch-customer-account example, a particular program work area contains
the following:

• Templates. One record for each of three record types:
� branch record
� customer record
� account record

• Currency pointer. A pointer to the most recently accessed record of branch,
customer, or account type

• Status. One status variable

B.3.2 The get Command
Data are retrieved through the get command. The actions taken in response to a get
are as follows:

1. Locate a record in the database and set the currency pointer to it

2. Copy that record from the database to the appropriate program area template

The get command must specify which of the database trees is to be searched. For our
example, we assume that the only database tree to be searched is the sample database
of Figure B.19; thus, we omit this specification in our queries.

As an illustration of the general effect that the get command has on the program
work area, consider the sample database of Figure B.19. Suppose that a get command
is issued to locate the customer record belonging to Freeman. Once this command
executes successfully, these changes occur in the state of the program work area:

• The currency pointer points now to the record of Freeman.

• The information pertaining to Freeman is copied into the customer record work-
area template.

• DB-status is set to the value 0.

To scan all records in a consistent manner, we must impose an ordering on the
records. The one commonly used is preorder. A preorder search starts at the root, and
then searches the subtrees of the root from left to right, recursively. Thus, we start at
the root, visit the leftmost child, visit its leftmost child, and so on, until we reach a leaf
(childless) node. We then move back to the parent of the leaf and visit the leftmost

16 Appendix B Hierarchical Model

unvisited child. We proceed in this manner until we have visited the entire tree. For
example, the preordered listing of the records in the database tree of Figure B.19 is:

Parkview, Fleming, A-522, A-561, Freeman, A-533,
Seashore, Boyd, A-409, A-622

B.3.3 Access within a Database Tree
There are two different get commands for locating records in a database tree. The
simplest command has the form

get first <record type>
where <condition>

The where clause is optional. The attached <condition> is a predicate that may in-
volve any record type that is either an ancestor of <record type> or the <record
type> itself.

The get command locates the first record (in preorder) of type <record type> in
the database that satisfies the <condition> of the where clause. If the where clause
is omitted, then the command locates the first record of type <record-type>. Once
such a record is found, the currency pointer is set to point to that record, and the
content of the record is copied into the appropriate work-area template. If no such
record exists in the database tree, then the search fails, and the variable DB-status is
set to an appropriate error message.

As an illustration, we construct the database query that prints the address of cus-
tomer Fleming:

get first customer
where customer.customer name = ”Fleming”;

print (customer.customer address);

As another example, consider the query that prints an account belonging to Flem-
ing that has a balance greater than $10,000 (if one such exists).

get first account
where customer.customer name = ”Fleming” and account.balance > 10000;

if DB-status = 0 then print (account.account number);

There may be several similar records in the database that we wish to retrieve. The
get first command locates one of these. To locate the other database records, we can
use the following command:

get next <record type>
where <condition>

This command locates the next record (in preorder) that satisfies <condition>. If the
where clause is omitted, then the command locates the next record of type <record

B.3 Data-Retrieval Facility 17

type>. Note that the system uses the currency pointer to determine where to resume
the search. As before, the currency pointer, the work-area template of type <record-
type>, and DB-status are affected.

As an illustration, we construct the database query that prints the account number
of all the accounts that have a balance greater than $500.

get first account
where account.balance > 500;

while DB-status = 0 do
begin

print (account.account number);
get next account

where account.balance > 500;
end

We have enclosed part of the query in a while loop, since we do not know in advance
how many such accounts exist. We exit from the loop when DB-status �= 0. This value
indicates that the last get next operation failed, implying that we have exhausted all
account records with account.balance > 500.

The two previous get commands locate a database record of type <record type>
within a particular database tree. There are, however, many circumstances in which
we wish to locate such a record within a particular subtree. That is, we want to limit
the search to one specific subtree, rather than search the entire database tree. The root
of the subtree in question is the most recent record that was located with either a
get first or get next command. This record is known as the current parent. There is
only one current parent record per database tree. The get command to locate a record
within the subtree rooted at the current parent has the form

get next within parent <record type>
where <condition>

It locates the next record (in preorder) of type <record type> that satisfies <condition>
and is in the subtree rooted at the current parent. If the where clause is omitted, then
the command locates the next record of type <record type> within the designated
subtree. The system uses the currency pointer to determine where to resume the
search. As before, the currency pointer and the work-area template of type <record
type> are affected. In this case, however, the DB-status is set to a nonzero value if no
such record exists in the designated subtree, rather than if none exists in the entire
tree. Note that a get next within parent command will not modify the pointer to the
current parent.

To illustrate how this get command executes, we shall construct the query that
prints the total balance of all accounts belonging to Boyd:

18 Appendix B Hierarchical Model

sum := 0;
get first customer

where customer.customer name = ”Boyd”;
get next within parent account;
while DB-status = 0 do

begin
sum := sum + account.balance;
get next within parent account;

end
print (sum);

Note that we exit from the while loop and print out the value of sum only when
the DB-status is set to a value not equal to 0. Such a value exists after the get next
within parent operation fails, indicating that we have exhausted all the accounts
whose owner is customer Boyd.

B.4 Update Facility
Section B.3 described commands for querying the database. In this section, we de-
scribe the mechanisms available for updating information in the database. They al-
low insertion and deletion of records, as well as modification of the content of existing
records.

B.4.1 Creation of New Records
To insert a record of type <record type> into the database, we must first set the
appropriate values in the corresponding <record type> work-area template. Once
we set them, we add the new record to the database tree by executing

insert <record type>
where <condition>

If the where clause is included, the system searches the database tree (in preorder)
for a record that satisfies the <condition> in the where clause. Once it finds such
a record—say, X—it inserts the newly created record into the tree as the leftmost
child of X. If the where clause is omitted, the system inserts the record in the first
position (in preorder) in the database tree where a record type <record type> can be
inserted in accordance with the schema specified by the corresponding tree-structure
diagram.

Consider the program for adding a new customer, Jackson, to the Seashore branch:

customer.customer name := ”Jackson”;
customer.customer street := ”Old Road”;
customer.customer city := ”Queens”;
insert customer

where branch.branch name = ”Seashore”;

B.4 Update Facility 19

 Parkview 100000000 Brooklyn

 Fleming Bayridge Brooklyn

 Freeman Flatbush Brooklyn

 Jackson Old Road Queens

 Seashore 150000000 Queens

 Boyd Airport Queens

A-522 750

A-561 9953
A-533 600

A-409 27

A-622 107

Figure B.20 New database tree.

The result of executing this program is the database tree of Figure B.20.
As another example, consider the program for creating a new account numbered

A-655 that belongs to customer “Jackson”:

account.account number := ”A-655”;
account.balance := 100;
insert account

where customer.customer name = ”Jackson”;

The result of executing this program is the database tree of Figure B.21.

B.4.2 Modification of an Existing Record
To modify an existing record of type <record type>, we must get that record into
the work-area template for <record type>, and change the desired fields in that tem-
plate. Then, we reflect the changes in the database by executing

replace

Note that the replace command does not have <record type> as an argument. The
record that is affected is the one to which the currency pointer points, which must be
the desired record.

The DL/I language requires that, before a record can be modified, the get com-
mand must have the additional clause hold, so that the system is aware that a record
is to be modified.

20 Appendix B Hierarchical Model

A-655 100

 Parkview 100000000 Brooklyn

 Fleming Bayridge Brooklyn

 Freeman Flatbush Brooklyn

 Jackson Old Road Queens

 Seashore 150000000 Queens

 Boyd Airport Queens

A-522 750

A-561 9953
A-533 600

A-409 27

A-622 107

Figure B.21 New database tree.

As an example, consider the program to change the street address of Boyd to
Northview:

get hold first customer
where customer.customer name = ”Boyd”;

customer.customer street := ”Northview”;
replace;

Note that, in our example, we have only one record containing the address of Boyd.
If that were not the case, our program would have included a loop to search all Boyd
records.

B.4.3 Deletion of a Record
To delete a record of type <record type>, we must set the currency pointer to point
to that record. Then, we can delete that record by executing

delete

Note that, as in record modification, the get command must have the attribute hold
attached to it.

As an illustration, consider the program to delete account A-561:

get hold first account
where account.account number = ”A-561”;

delete;

B.5 Virtual Records 21

A delete operation deletes not only the record in question, but also the entire sub-
tree rooted by that record. Thus, to delete customer Boyd and all his accounts, we
write

get hold first customer
where customer.customer name = ”Boyd”;

delete;

B.5 Virtual Records
We have seen that, in the case of many-to-many relationships, record replication is
necessary to preserve the tree-structure organization of the database. Record replica-
tion has two major drawbacks:

1. Data inconsistency may result when updating takes place.

2. Waste of space is unavoidable.

There are several ways to eliminate these drawbacks.
To eliminate record replication, we need to relax our requirement that the logical

organization of data be constrained to a tree structure. We need to do that cautiously,
however, since otherwise we will end up with the network model.

The solution is to introduce the concept of a virtual record. Such a record contains
no data value; it does contain a logical pointer to a particular physical record. Instead
of replication, we keep a single copy of the physical record, and everywhere else we
keep virtual records containing a pointer to that physical record.

More specifically, we let R be a record type that is replicated in several tree-structure
diagrams—say, T1, T2, · · · , Tn. To eliminate replication, we create a new virtual record
type virtual-R, and replace R in each of the n− 1 trees with a record of type virtual-R.

As an example, consider the E-R diagram of Figure B.6a and its corresponding
tree-structure diagram, which comprises two separate trees, each consisting of both
customer and account record types (Figure B.6b).

To eliminate data replication, we create two virtual record types: virtual customer
and virtual account. We then replace record type account with record type virtual account
in the first tree, and replace record type customer with record type virtual customer in
the second tree. We also add a dashed line from virtual customer record to customer
record, and a dashed line from virtual account record to account record, to specify the

customer_name customer_street customer_city

customer account

virtual account virtual customer

account_number balance

Figure B.22 Tree-structure diagram with virtual records.

22 Appendix B Hierarchical Model

 Smith North Rye Hayes Main Harrison Johnson Alma Palo Alto

A-102 400 A-101 500 A-201 900 A-215 700

Figure B.23 Sample database corresponding to diagram of Figure B.22.

association between a virtual record and its corresponding physical record. The re-
sulting tree-structure diagram appears in Figure B.22.

A sample database corresponding to the diagram of Figure B.22 appears in Fig-
ure B.23. Note that only a single copy of the information for each customer and each
account exists. Contrast this database with the same information depicted in Fig-
ure B.7, where replication is allowed.

The data-manipulation language for this new configuration remains the same as in
the case where record replication is allowed. Thus, a user does not need to be aware
of these changes. Only the internal implementation is affected.

B.6 Mapping of Hierarchies to Files
A straightforward technique for implementing the instance of a tree-structure dia-
gram is to associate one pointer with a record for each child that the record has.
Consider the database tree of Figure B.1. Figure B.24 shows an implementation of
this database using parent-to-child pointers. Parent–child pointers, however, are not
an ideal structure for the implementation of hierarchical databases, since a parent
record may have an arbitrary number of children. Thus, fixed-length records become
variable-length records once the parent–child pointers are added.

B.6 Mapping of Hierarchies to Files 23

 Hayes Main Harrison Johnson Alma Palo Alto Turner Putnam Stamford

A-102 400 A-101 500 A-201 900 A-305 350

Figure B.24 Implementation with parent-child pointers.

Instead of parent–child pointers, we can use leftmost-child and next-sibling pointers.
Figure B.25 shows this structure for the database tree of Figure B.1. Under this struc-
ture, every record has exactly two pointer fields. Thus, fixed-length records retain
their fixed length when we add the necessary pointers. Note that the leftmost-child
pointers for the account record are null, since account is a leaf of the tree.

Observe that several pointer fields are unused in Figure B.25. In general, the final
child of a parent has no next sibling; thus, its next-sibling field is set to null. Rather
than place nulls in such fields, we can place pointers there to facilitate the preorder
traversal required to process queries on hierarchical databases. Thus, for each record
that is a rightmost sibling, we place a pointer in the next-sibling field to the next
record in preorder after traversing its subtree. Figure B.26 shows this modification
to the structure of Figure B.25. These pointers allow us to process a tree instance in
preorder simply by following pointers. For this reason, the pointers are sometimes
referred to as preorder threads.

A parent pointer is often added to records in an implementation of a hierarchical
database. This pointer facilitates the processing of queries that give a value for a
child record and request a value from the corresponding parent record. If we include
parent pointers, a total of exactly three pointer fields is added to each record.

To see how best to locate records of a hierarchical database physically on disk, we
draw an analogy between the parent–child relationship within a hierarchy and the
owner–member relationship within a DBTG set. In both cases, a one-to-many relation-
ship is being represented. We want to store together the members and the owners of
a set occurrence. Similarly, we want to store physically close on disk the child records

 Hayes Main Harrison Turner Putnam Stamford

A-102 400 A-101 500 A-201 900 A-305 350

Johnson Alma Palo Alto

Figure B.25 Implementation with leftmost-child and next-sibling pointers.

24 Appendix B Hierarchical Model

 Hayes Turner

A-102 400 A-101 500 A-201 900 A-305 350

Johnson Alma Palo AltoMain Harrison Putnam Stamford

Figure B.26 Implementation using preorder threads.

and their parent. This form of storage allows a sequence of get first, get next, and
get next within parent statements to be executed with a minimal number of block
accesses.

B.7 The IMS Database System
The hierarchical model is significant primarily because of the importance of IBM’s
IMS database system.

The IBM Information Management System (IMS) is one of the oldest and most
widely used database systems. Since IMS databases have historically been among the
largest, the IMS developers were among the first to deal with such issues as concur-
rency, recovery, integrity, and efficient query processing. Through several releases,
IMS acquired a large number of features and options. As a result, IMS is a highly
complex system. We shall consider only a few features of IMS here.

Queries on IMS databases are issued through embedded calls in a host language.
The embedded calls are part of the IMS database language DL/I. (The language used
in this appendix is a simplified form of DL/I.)

Since performance is critically important in large databases, IMS allows the data-
base designer a broad number of options in the data-definition language. The data-
base designer defines a physical hierarchy as the database schema. She can define
several subschemas (or views) by constructing a logical hierarchy from the record
types constituting the schema. The various options available in the data-definition
language (block sizes, special pointer fields, and so on) allow the database adminis-
trator to tune the system for improved performance.

Several record access schemes are available in IMS:

• The hierarchical sequential-access method (HSAM) is used for physically
sequential files (such as tape files). Records are stored physically in preorder.

• The hierarchical indexed-sequential-access method (HISAM) is an index-
sequential organization at the root level of the hierarchy. Records are stored
physically in preorder.

• The hierarchical indexed-direct-access method (HIDAM) is an ordered index
organization at the root level with pointers to child records.

B.8 Summary 25

• The hierarchical direct-access method (HDAM) is similar to HIDAM, but with
hashed access at the root level.

The original version of IMS predated the development of concurrency-control the-
ory. Early versions of IMS had a simple form of concurrency control. Only one update
application program could run at a time. However, any number of read-only appli-
cations could run concurrently with an update application. This feature permitted
applications to read uncommitted updates and allowed nonserializable executions.
Exclusive access to the database was the only option available to applications that
demanded a greater degree of isolation from the anomalies of concurrent processing.

Later versions of IMS included a more sophisticated program-isolation feature that
allowed for both improved concurrency control and more sophisticated transaction-
recovery techniques (such as logging). These features increased in importance as
more IMS users began to use online transactions, as opposed to the batch transac-
tions that were originally the norm.

The need for high-performance transaction processing led to the introduction of
IMS Fast Path. Fast Path uses an alternative physical data organization designed to
allow the most active parts of the database to reside in main memory. Instead of
forcing updates to disk at the end of a transaction (as standard IMS does), Fast Path
defers update until a checkpoint or synchronization point. In the event of a crash, the
recovery subsystem must redo all committed transactions whose updates were not
forced to disk. These tricks and others allow for extremely high rates of transaction
throughput. IMS Fast Path is a forerunner of much of the work on developing main-
memory database systems that has emerged as main memory has become larger and
less expensive.

B.8 Summary
A hierarchical database consists of a collection of records that are connected to each
other through links. A record is a collection of fields, each of which contains only one
data value. A link is an association between precisely two records. The hierarchical
model is thus similar to the network model in the sense that data and relationships
between data are also represented by records and links, respectively. The hierarchi-
cal model differs from the network model in that the record types are organized as
collections of trees, rather than as arbitrary graphs.

A tree-structure diagram is a schema for a hierarchical database. Such a diagram
consists of two basic components: boxes, which correspond to record types, and lines,
which correspond to links. A tree-structure diagram serves the same purpose as an
E-R diagram; it specifies the overall logical structure of the database. A tree-structure
diagram is similar to a data-structure diagram in the network model. The main dif-
ference is that, in the former, record types are organized in the form of an arbitrary
graph, whereas in the latter, record types are organized in the form of a rooted tree.
For every E-R diagram, there is a corresponding tree-structure diagram.

The database schema is thus represented as a collection of tree-structure diagrams.
For each such diagram, there exists a single instance of a database tree. The root of

26 Appendix B Hierarchical Model

this tree is a dummy node. The children of the dummy node are instances of the
root record type in the tree structure diagram. Each record instance may, in turn,
have several children, which are instances of various record types, as specified in the
corresponding tree-structure diagram.

The data-manipulation language discussed in this appendix consists of commands
that are embedded in a host language. These commands access and manipulate data-
base items, as well as locally declared variables. For each application program, the
system maintains a program work area that contains record templates, currency pointers,
and a status flag.

Data items are retrieved through the get command, which locates a record in the
database, sets the currency pointer to point to that record, and then copies the record
from the database to the appropriate program work-area template. There are various
forms of the get command. The main distinction among them is where in the database
tree the search starts and whether the search continues until the end of the entire
database tree or restricts itself to a particular subtree.

Various mechanisms are available for updating information in the database. They
allow the creation and deletion of records (via the insert and delete operations), and
the modification (via the replace operation) of the content of existing records.

In the case of many-to-many relationships, record replication is necessary to pre-
serve the tree-structure organization of the database. Record replication has two ma-
jor drawbacks: (1) data inconsistency may result when updating takes place and
(2) waste of space is unavoidable. The solution is to introduce the concept of a vir-
tual record. Such a record contains no data value; it does contains a logical pointer to
a particular physical record. When a record needs to be replicated, a single copy of
the actual record is retained, and all other records are replaced with a virtual record
containing a pointer to that physical record. The data-manipulation language for this
new configuration remains the same as in the case where record replication is al-
lowed. Thus, a user does not need to be aware of these changes. Only the internal
implementation is affected.

Implementations of hierarchical databases do not use parent-to-child pointers,
since that would require the use of variable-length records. Instead, they use preorder
threads. This technique allows each record to contain exactly two pointers. Option-
ally, a third child-to-parent pointer may be added.

Exercises
B.1 Transform the E-R diagram of Figure B.27 to a tree-structure diagram.

B.2 Construct a sample database for the tree-structure diagrams of Exercise B.1,
with three students and three different classes.

B.3 Show the preorder order of the sample database of Exercise B.2.

B.4 Show the set of variables in a program work area for the tree-structure diagram
corresponding to the E-R diagram of Figure B.27.

Exercises 27

SS#

name address

student enroll

location

number time

class

Figure B.27 Class-enrollment E-R diagram.

B.5 Suppose that we add the attribute “grade” to the relationship enroll of Fig-
ure B.27. Show the corresponding tree-structure diagram.

B.6 Transform the E-R diagram of Figure B.28 into a tree-structure diagram.

B.7 Compare the hierarchical model with the relational model in terms of ease of
learning and ease of use.

B.8 Are certain applications easier to code in the hierarchical model than in the
relational model? If you answer yes, give an example of one; if you answer no,
explain your answer.

B.9 Transform the E-R diagram of Figure B.29 into a tree-structure diagram.

B.10 For the tree-structure diagram corresponding to the E-R diagram of Figure B.29,
construct the following queries:

a. Find the total number of people whose car was involved in an accident in
1993.

b. Find the total number of accidents in which the cars belonging to “John
Smith” were involved.

c. Add a new customer to the database.
d. Delete the car “Mazda” belonging to “John Smith.”
e. Add a new accident record for the Toyota belonging to “Jones.”

B.11 The addition of virtual records to the hierarchical model results in a structure
that is no longer tree-like. In effect, the underlying structure is quite similar to
the network model. What are the differences between the hierarchical model
with virtual records and the network model?

person
father

children
father_of

Figure B.28 Parent–child E-R diagram.

28 Appendix B Hierarchical Model

logowns

damage_amt

accident

model

year license

car

SS#

name address

person

driver

date

Figure B.29 Car-insurance E-R diagram.

B.12 Give an appropriate tree-structure diagram for the following relational data-
base:

employee (person name, street, city)
works (person name, company name, salary)
company (company name, city)
manages (person name, manager name)

B.13 Consider the database schema corresponding to the tree-structure diagram that
you obtained as a solution to Exercise B.12. For each of the following queries,
construct the appropriate program:

a. Find the names of all employees who work for First Bank Corporation.
b. Find the names and cities of residence of all employees who work for First

Bank Corporation.
c. Find the names, streets, and cities of residence of all employees who work

for First Bank Corporation and earn more than $10,000.
d. Find all employees who live in the city where the company for which they

work is located.
e. Find all employees who live in the same city and on the same street as their

managers.
f. Find all employees in the database who do not work for First Bank Corpo-

ration.
g. Find all employees in the database who earn more than every employee of

Small Bank Corporation.
h. Assume that the companies can be located in several cities. Find all compa-

nies located in every city in which Small Bank Corporation is located.
i. Find all employees who earn more than the average salary of employees

who work in their company.
j. Find the company that employs the most people.

k. Find the company that has the smallest payroll.
l. Find those companies that pay higher salaries, on average, than the average

salary at First Bank Corporation.
m. Modify the database such that Jones now lives in Newtown.
n. Give all employees of First Bank Corporation a 10 percent raise.
o. Give all managers in the database a 10 percent raise.

Bibliographic Notes 29

p. Give all managers in the database a 10 percent raise, unless the resulting
salary would be greater than $100,000; if it would be, give only a 3 percent
raise.

q. Delete all employees of Small Bank Corporation.

B.14 Give a tree-structure diagram for the following relational database:

course (course name, room, instructor)
enrollment (course name, student name, grade)

Also give an example implementation of an instance of this database.

Bibliographical Notes
Two influential database systems that rely on the hierarchical model are IBM’s Infor-
mation Management System (IMS) [IBM 1978a, McGee 1977] and MRI’s System 2000
[MRI 1974, 1979]. The first IMS version was developed in the late 1960s by IBM and
by North American Aviation (Rockwell International) for the Apollo moon-landing
program.

A survey paper on the hierarchical data model is presented by Tsichritzis and Lo-
chovsky [1976]. The simplified version of DL/I used in this appendix is similar to the
one presented by Ullman [1988]. With the current dominance of relational database
systems, there is often a need to query data in legacy hierarchical databases by using
a relational language. Meng et al. [1995] discusses translation of relational queries
into hierarchical queries.

Obermarck [1980] discusses the IMS program-isolation feature and gives a brief
history of the concurrency-control component of IMS. Bjorner and Lovengren [1982]
presents a formal definition of IMS.

