
C H A P T E R 1 4

Query Optimization

Solutions to Practice Exercises

14.1 a. E1 �θ (E2 − E3) = (E1 �θ E2 − E1 �θ E3).
Let us rename (E1 �θ (E2−E3)) as R1, (E1 �θ E2) as R2 and (E1 �θ E3)

as R3. It is clear that if a tuple t belongs to R1, it will also belong to R2. If
a tuple t belongs to R3, t[E3’s attributes] will belong to E3, hence t cannot
belong to R1. From these two we can say that

∀t, t ∈ R1 ⇒ t ∈ (R2 − R3)

It is clear that if a tuple t belongs to R2 − R3, then t[R2’s attributes] ∈ E2

and t[R2’s attributes] �∈ E3. Therefore:

∀t, t ∈ (R2 − R3) ⇒ t ∈ R1

The above two equations imply the given equivalence.
This equivalence is helpful because evaluation of the right hand side

join will produce many tuples which will finally be removed from the re-
sult. The left hand side expression can be evaluated more efficiently.

b. σθ( AGF (E)) = AGF (σθ(E)), where θ uses only attributes from A.
θ uses only attributes from A. Therefore if any tuple t in the output of

AGF (E) is filtered out by the selection of the left hand side, all the tuples in
E whose value in A is equal to t[A] are filtered out by the selection of the
right hand side. Therefore:

∀t, t �∈ σθ( AGF (E)) ⇒ t �∈ AGF (σθ(E))

Using similar reasoning, we can also conclude that

∀t, t �∈ AGF (σθ(E)) ⇒ t �∈ σθ( AGF (E))

The above two equations imply the given equivalence.

69



70 Chapter 14 Query Optimization

This equivalence is helpful because evaluation of the right hand side
avoids performing the aggregation on groups which are anyway going to
be removed from the result. Thus the right hand side expression can be
evaluated more efficiently than the left hand side expression.

c. σθ(E1 � E2) = σθ(E1) � E2 where θ uses only attributes from E1.
θ uses only attributes from E1. Therefore if any tuple t in the output of

(E1 � E2) is filtered out by the selection of the left hand side, all the tuples
in E1 whose value is equal to t[E1] are filtered out by the selection of the
right hand side. Therefore:

∀t, t �∈ σθ(E1 � E2) ⇒ t �∈ σθ(E1) � E2

Using similar reasoning, we can also conclude that

∀t, t �∈ σθ(E1) � E2 ⇒ t �∈ σθ(E1 � E2)

The above two equations imply the given equivalence.
This equivalence is helpful because evaluation of the right hand side

avoids producing many output tuples which are anyway going to be re-
moved from the result. Thus the right hand side expression can be evalu-
ated more efficiently than the left hand side expression.

14.2 a. R = {(1, 2)}, S = {(1, 3)}
The result of the left hand side expression is {(1)}, whereas the result of

the right hand side expression is empty.
b. R = {(1, 2), (1, 5)}

The left hand side expression has an empty result, whereas the right
hand side one has the result {(1, 2)}.

c. Yes, on replacing the max by the min, the expressions will become equiv-
alent. Any tuple that the selection in the rhs eliminates would not pass the
selection on the lhs if it were the minimum value, and would be eliminated
anyway if it were not the minimum value.

d. R = {(1, 2)}, S = {(2, 3)}, T = {(1, 4)}. The left hand expression gives
{(1, 2, null, 4)} whereas the the right hand expression gives {(1, 2, 3, null)}.

e. Let R be of the schema (A, B) and S of (A, C). Let R = {(1, 2)}, S =
{(2, 3)} and let θ be the expression C = 1. The left side expression’s result
is empty, whereas the right side expression results in {(1, 2, null)}.

14.3 a. We define the multiset versions of the relational-algebra operators here.
Given multiset relations r1 and r2,

i. σ
Let there be c1 copies of tuple t1 in r1. If t1 satisfies the selection σθ,

then there are c1 copies of t1 in σθ(r1), otherwise there are none.
ii. Π

For each copy of tuple t1 in r1, there is a copy of tuple ΠA(t1) in
ΠA(r1), where ΠA(t1) denotes the projection of the single tuple t1.

iii. ×
If there are c1 copies of tuple t1 in r1 and c2 copies of tuple t2 in r2,

then there are c1 ∗ c2 copies of the tuple t1.t2 in r1 × r2.



Exercises 71

iv. �

The output will be the same as a cross product followed by a selec-
tion.

v. −
If there are c1 copies of tuple t in r1 and c2 copies of t in r2, then there

will be c1 − c2 copies of t in r1 − r2, provided that c1 − c2 is positive.
vi. ∪

If there are c1 copies of tuple t in r1 and c2 copies of t in r2, then there
will be c1 + c2 copies of t in r1 ∪ r2.

vii. ∩
If there are c1 copies of tuple t in r1 and c2 copies of t in r2, then there

will be min(c1, c2) copies of t in r1 ∩ r2.
b. All the equivalence rules 1 through 7.b of section 14.2.1 hold for the multi-

set version of the relational-algebra defined in the first part.
There exist equivalence rules which hold for the ordinary relational-

algebra, but do not hold for the multiset version. For example consider
the rule :-

A ∩ B = A ∪ B − (A − B) − (B − A)

This is clearly valid in plain relational-algebra. Consider a multiset in-
stance in which a tuple t occurs 4 times in A and 3 times in B. t will occur
3 times in the output of the left hand side expression, but 6 times in the
output of the right hand side expression. The reason for this rule to not
hold in the multiset version is the asymmetry in the semantics of multiset
union and intersection.

14.4 • The relation resulting from the join of r1, r2, and r3 will be the same no
matter which way we join them, due to the associative and commutative
properties of joins. So we will consider the size based on the strategy of
((r1 � r2) � r3). Joining r1 with r2 will yield a relation of at most 1000
tuples, since C is a key for r2. Likewise, joining that result with r3 will
yield a relation of at most 1000 tuples because E is a key for r3. Therefore
the final relation will have at most 1000 tuples.

• An efficient strategy for computing this join would be to create an index
on attribute C for relation r2 and on E for r3. Then for each tuple in r1, we
do the following:
a. Use the index for r2 to look up at most one tuple which matches the C

value of r1.
b. Use the created index on E to look up in r3 at most one tuple which

matches the unique value for E in r2.

14.5 The estimated size of the relation can be determined by calculating the average
number of tuples which would be joined with each tuple of the second relation.
In this case, for each tuple in r1, 1500/V (C, r2) = 15/11 tuples (on the average)
of r2 would join with it. The intermediate relation would have 15000/11 tuples.
This relation is joined with r3 to yield a result of approximately 10,227 tuples
(15000/11 × 750/100 = 10227). A good strategy should join r1 and r2 first, since



72 Chapter 14 Query Optimization

the intermediate relation is about the same size as r1 or r2. Then r3 is joined to
this result.

14.6 a. Use the index to locate the first tuple whose branch city field has value
“Brooklyn”. From this tuple, follow the pointer chains till the end, retriev-
ing all the tuples.

b. For this query, the index serves no purpose. We can scan the file sequen-
tially and select all tuples whose branch city field is anything other than
“Brooklyn”.

c. This query is equivalent to the query:
σ(branch city≥’Brooklyn’ ∧ assets<5000)(branch).

Using the branch city index, we can retrieve all tuples with branch city value
greater than or equal to “Brooklyn” by following the pointer chains from
the first “Brooklyn” tuple. We also apply the additional criteria of assets <
5000 on every tuple.

14.7 Each join order is a complete binary tree (every non-leaf node has exactly two
children) with the relations as the leaves. The number of different complete
binary trees with n leaf nodes is 1

n

(2(n−1)
(n−1)

)
. This is because there is a bijection

between the number of complete binary trees with n leaves and number of
binary trees with n−1 nodes. Any complete binary tree with n leaves has n−1
internal nodes. Removing all the leaf nodes, we get a binary tree with n − 1
nodes. Conversely, given any binary tree with n− 1 nodes, it can be converted
to a complete binary tree by adding n leaves in a unique way. The number
of binary trees with n − 1 nodes is given by 1

n

(2(n−1)
(n−1)

)
, known as the Catalan

number. Multiplying this by n! for the number of permutations of the n leaves,
we get the desired result.

14.8 Consider the dynamic programming algorithm given in Section 14.4.2. For
each subset having k + 1 relations, the optimal join order can be computed
in time 2k+1. That is because for one particular pair of subsets A and B, we
need constant time and there are at most 2k+1 − 2 different subsets that A can
denote. Thus, over all the

(
n

k+1

)
subsets of size k+1, this cost is

(
n

k+1

)
2k+1. Sum-

ming over all k from 1 to n− 1 gives the binomial expansion of ((1 + x)n − x)
with x = 2. Thus the total cost is less than 3n.

14.9 The derivation of time taken is similar to the general case, except that instead
of considering 2k+1 − 2 subsets of size less than or equal to k for A, we only
need to consider k+1 subsets of size exactly equal to k. That is because the right
hand operand of the topmost join has to be a single relation. Therefore the total
cost for finding the best join order for all subsets of size k + 1 is

(
n

k+1

)
(k + 1),

which is equal to n
(
n−1

k

)
. Summing over all k from 1 to n−1 using the binomial

expansion of (1 + x)n−1 with x = 1, gives a total cost of less than n2n−1.

14.10 a. The nested query is as follows:



Exercises 73

select S.acount number
from account S
where S.branch name like ’B%’ and

S.balance =
(select max(T.balance)
from account T
where T.branch name = S.branch name)

b. The decorrelated query is as follows:

create table t1 as
select branch name, max(balance)
from account
group by branch name

select account number
from account, t1
where account.branch name like ’B%’ and

account.branch name = t1.branch name and
account.balance = t1.balance

c. In general, consider the queries of the form:

select · · ·
from L1

where P1 and
A1 op
(select f(A2)
from L2

where P2)
where, f is some aggregate function on attributes A2, and op is some boolean
binary operator. It can be rewritten as

create table t1 as
select f(A2),V
from L2

where P 1
2

group by V
select · · ·
from L1, t1
where P1 and P 2

2 and
A1 op t1.A2

where P 1
2 contains predicates in P2 without selections involving correla-

tion variables, and P 2
2 introduces the selections involving the correlation

variables. V contains all the attributes that are used in the selections in-
volving correlation variables in the nested query.


