
C H A P T E R 1 6

Concurrency Control

Solutions to Practice Exercises

16.1 Suppose two-phase locking does not ensure serializability. Then there exists a
set of transactions T0, T1 ... Tn−1 which obey 2PL and which produce a non-
serializable schedule. A non-serializable schedule implies a cycle in the prece-
dence graph, and we shall show that 2PL cannot produce such cycles. Without
loss of generality, assume the following cycle exists in the precedence graph:
T0 → T1 → T2 → ... → Tn−1 → T0. Let αi be the time at which Ti obtains its last
lock (i.e. Ti’s lock point). Then for all transactions such that Ti → Tj , αi < αj .
Then for the cycle we have

α0 < α1 < α2 < ... < αn−1 < α0

Since α0 < α0 is a contradiction, no such cycle can exist. Hence 2PL cannot
produce non-serializable schedules. Because of the property that for all trans-
actions such that Ti → Tj , αi < αj , the lock point ordering of the transactions
is also a topological sort ordering of the precedence graph. Thus transactions
can be serialized according to their lock points.

16.2 a. Lock and unlock instructions:

T31: lock-S(A)
read(A)
lock-X(B)
read(B)
if A = 0
then B := B + 1
write(B)
unlock(A)
unlock(B)

77



78 Chapter 16 Concurrency Control

T32: lock-S(B)
read(B)
lock-X(A)
read(A)
if B = 0
then A := A + 1
write(A)
unlock(B)
unlock(A)

b. Execution of these transactions can result in deadlock. For example, con-
sider the following partial schedule:

T31 T32

lock-S(A)
lock-S(B)
read(B)

read(A)
lock-X (B)

lock-X (A)

The transactions are now deadlocked.

16.3 Rigorous two-phase locking has the advantages of strict 2PL. In addition it has
the property that for two conflicting transactions, their commit order is their
serializability order. In some systems users might expect this behavior.

16.4 The proof is in Buckley and Silberschatz, “Concurrency Control in Graph Pro-
tocols by Using Edge Locks,” Proc. ACM SIGACT-SIGMOD Symposium on the
Principles of Database Systems, 1984.

16.5 Consider the tree-structured database graph given below.

�A

�B

�C

Schedule possible under tree protocol but not under 2PL:



Exercises 79

T1 T2

lock (A)
lock (B)
unlock (A)

lock (A)
lock (C)
unlock (B)

lock (B)
unlock (A)
unlock (B)

unlock (C)

Schedule possible under 2PL but not under tree protocol:

T1 T2

lock (A)
lock (B)

lock (C)
unlock (B)

unlock (A)
unlock (C)

16.6 The proof is in Kedem and Silberschatz, “Locking Protocols: From Exclusive to
Shared Locks,” JACM Vol. 30, 4, 1983.

16.7 The proof is in Kedem and Silberschatz, “Controlling Concurrency Using Lock-
ing Protocols,” Proc. Annual IEEE Symposium on Foundations of Computer
Science, 1979.

16.8 The proof is in Kedem and Silberschatz, “Controlling Concurrency Using Lock-
ing Protocols,” Proc. Annual IEEE Symposium on Foundations of Computer
Science, 1979.

16.9 The access protection mechanism can be used to implement page level locking.
Consider reads first. A process is allowed to read a page only after it read-locks
the page. This is implemented by using mprotect to initially turn off read
permissions to all pages, for the process. When the process tries to access an
address in a page, a protection violation occurs. The handler associated with
protection violation then requests a read lock on the page, and after the lock
is acquired, it uses mprotect to allow read access to the page by the process,
and finally allows the process to continue. Write access is handled similarly.

16.10 The proof is in Korth, “Locking Primitives in a Database System,” JACM Vol.
30, 1983.

16.11 It would make no difference. The write protocol is such that the most recent
transaction to write an item is also the one with the largest timestamp to have
done so.



80 Chapter 16 Concurrency Control

16.12 If a transaction needs to access a large a set of items, multiple granularity lock-
ing requires fewer locks, whereas if only one item needs to be accessed, the
single lock granularity system allows this with just one lock. Because all the
desired data items are locked and unlocked together in the multiple granular-
ity scheme, the locking overhead is low, but concurrency is also reduced.

16.13 In the concurrency control scheme of Section 16.3 choosing Start(Ti) as the
timestamp of Ti gives a subset of the schedules allowed by choosing
Validation(Ti) as the timestamp. Using Start(Ti) means that whoever started
first must finish first. Clearly transactions could enter the validation phase
in the same order in which they began executing, but this is overly restric-
tive. Since choosing Validation(Ti) causes fewer nonconflicting transactions to
restart, it gives the better response times.

16.14 • Two-phase locking: Use for simple applications where a single granularity
is acceptable. If there are large read-only transactions, multiversion proto-
cols would do better. Also, if deadlocks must be avoided at all costs, the
tree protocol would be preferable.

• Two-phase locking with multiple granularity locking: Use for an appli-
cation mix where some applications access individual records and others
access whole relations or substantial parts thereof. The drawbacks of 2PL
mentioned above also apply to this one.

• The tree protocol: Use if all applications tend to access data items in an or-
der consistent with a particular partial order. This protocol is free of dead-
locks, but transactions will often have to lock unwanted nodes in order to
access the desired nodes.

• Timestamp ordering: Use if the application demands a concurrent execu-
tion that is equivalent to a particular serial ordering (say, the order of ar-
rival), rather than any serial ordering. But conflicts are handled by roll-back
of transactions rather than waiting, and schedules are not recoverable. To
make them recoverable, additional overheads and increased response time
have to be tolerated. Not suitable if there are long read-only transactions,
since they will starve. Deadlocks are absent.

• Validation: If the probability that two concurrently executing transactions
conflict is low, this protocol can be used advantageously to get better con-
currency and good response times with low overheads. Not suitable under
high contention, when a lot of wasted work will be done.

• Multiversion timestamp ordering: Use if timestamp ordering is appropri-
ate but it is desirable for read requests to never wait. Shares the other dis-
advantages of the timestamp ordering protocol.

• Multiversion two-phase locking: This protocol allows read-only transac-
tions to always commit without ever waiting. Update transactions follow
2PL, thus allowing recoverable schedules with conflicts solved by waiting
rather than roll-back. But the problem of deadlocks comes back, though
read-only transactions cannot get involved in them. Keeping multiple ver-



Exercises 81

sions adds space and time overheads though, therefore plain 2PL may be
preferable in low conflict situations.

16.15 A transaction waits on a. disk I/O and b. lock acquisition. Transactions gen-
erally wait on disk reads and not on disk writes as disk writes are handled
by the buffering mechanism in asynchronous fashion and transactions update
only the in-memory copy of the disk blocks.

The technique proposed essentially separates the waiting times into two
phases. The first phase – where transaction is executed without acquiring any
locks and without performing any writes to the database – accounts for almost
all the waiting time on disk I/O as it reads all the data blocks it needs from
disk if they are not already in memory. The second phase—the transaction re-
execution with strict two-phase locking—accounts for all the waiting time on
acquiring locks. The second phase may, though rarely, involve a small waiting
time on disk I/O if a disk block that the transaction needs is flushed to memory
(by buffer manager) before the second phase starts.

The technique may increase concurrency as transactions spend almost no
time on disk I/O with locks held and hence locks are held for shorter time.
In the first phase the transaction reads all the data items required—and not
already in memory—from disk. The locks are acquired in the second phase
and the transaction does almost no disk I/O in this phase. Thus the transaction
avoids spending time in disk I/O with locks held.

The technique may even increase disk throughput as the disk I/O is not
stalled for want of a lock. Consider the following scenario with strict two-
phase locking protocol: A transaction is waiting for a lock, the disk is idle and
there are some item to be read from disk. In such a situation disk bandwidth
is wasted. But in the proposed technique, the transaction will read all the re-
quired item from the disk without acquiring any lock and the disk bandwidth
may be properly utilized.

Note that the proposed technique is most useful if the computation involved
in the transactions is less and most of the time is spent in disk I/O and waiting
on locks, as is usually the case in disk-resident databases. If the transaction is
computation intensive, there may be wasted work. An optimization is to save
the updates of transactions in a temporary buffer, and instead of reexecuting
the transaction, to compare the data values of items when they are locked with
the values used earlier. If the two values are the same for all items, then the
buffered updates of the transaction are executed, instead of reexecuting the
entire transaction.

16.16 Consider two transactions T1 and T2 shown below.

T1 T2

write(p)
read(p)
read(q)

write(q)



82 Chapter 16 Concurrency Control

Let TS(T1) < TS(T2) and let the timestamp test at each operation except
write(q) be successful. When transaction T1 does the timestamp test for write(q)
it finds that TS(T1) < R-timestamp(q), since TS(T1) < TS(T2) and R-timestamp(q)
= TS(T2). Hence the writeoperation fails and transaction T1 rolls back. The cas-
cading results in transaction T2 also being rolled back as it uses the value for
item p that is written by transaction T1.

If this scenario is exactly repeated every time the transactions are restarted,
this could result in starvation of both transactions.

16.17 In the text, we considered two approaches to dealing with the phantom phe-
nomenon by means of locking. The coarser granularity approach obviously
works for timestamps as well. The B+-tree index based approach can be adapted
to timestamping by treating index buckets as data items with timestamps as-
sociated with them, and requiring that all read accesses use an index. We now
show that this simple method works. Suppose a transaction Ti wants to access
all tuples with a particular range of search-key values, using a
B+-tree index on that search-key. Ti will need to read all the buckets in that
index which have key values in that range. It can be seen that any delete or
insert of a tuple with a key-value in the same range will need to write one of
the index buckets read by Ti. Thus the logical conflict is converted to a conflict
on an index bucket, and the phantom phenomenon is avoided.

16.18 Note: The tree-protocol of Section 16.1.5 which is referred to in this question,
is different from the multigranularity protocol of Section 16.4 and the B+-tree
concurrency protocol of Section 16.9.

One strategy for early lock releasing is given here. Going down the tree from
the root, if the currently visited node’s child is not full, release locks held on
all nodes except the current node, request an X-lock on the child node, after
getting it release the lock on the current node, and then descend to the child.
On the other hand, if the child is full, retain all locks held, request an X-lock on
the child, and descend to it after getting the lock. On reaching the leaf node,
start the insertion procedure. This strategy results in holding locks only on the
full index tree nodes from the leaf upwards, until and including the first non-
full node.

An optimization to the above strategy is possible. Even if the current node’s
child is full, we can still release the locks on all nodes but the current one. But
after getting the X-lock on the child node, we split it right away. Releasing the
lock on the current node and retaining just the lock on the appropriate split
child, we descend into it making it the current node. With this optimization, at
any time at most two locks are held, of a parent and a child node.


