
C H A P T E R 3

SQL

Solutions to Practice Exercises

3.1 Note: The participated relation relates drivers, cars, and accidents.
a. Note: this is not the same as the total number of accidents in 1989. We must

count people with several accidents only once.

select count (distinct name)
from accident, participated, person
where accident.report number = participated.report number
and participated.driver id = person.driver id
and date between date ’1989-00-00’ and date ’1989-12-31’

b. We assume the driver was “Jones,” although it could be someone else. Also,
we assume “Jones” owns one Toyota. First we must find the license of the
given car. Then the participated and accident relations must be updated in or-
der to both record the accident and tie it to the given car. We assume values
“Berkeley” for location, ’2001-09-01’ for date and date, 4007 for report number
and 3000 for damage amount.

insert into accident
values (4007, ’2001-09-01’, ’Berkeley’)

insert into participated
select o.driver id, c.license, 4007, 3000
from person p, owns o, car c
where p.name = ’Jones’ and p.driver id = o.driver id and

o.license = c.license and c.model = ’Toyota’
c. Since model is not a key of the car relation, we can either assume that only

one of John Smith’s cars is a Mazda, or delete all of John Smith’s Mazdas
(the query is the same). Again assume name is a key for person.

5

6 Chapter 3 SQL

delete car
where model = ’Mazda’ and license in

(select license
from person p, owns o
where p.name = ’John Smith’ and p.driver id = o.driver id)

Note: The owns, accident and participated records associated with the Mazda
still exist.

3.2 a. Query:

select e.employee name, city
from employee e, works w
where w.company name = ’First Bank Corporation’ and

w.employee name = e.employee name

b. If people may work for several companies, the following solution will only
list those who earn more than $10,000 per annum from “First Bank Corpo-
ration” alone.

select *
from employee
where employee name in

(select employee name
from works
where company name = ’First Bank Corporation’ and salary ¿ 10000)

As in the solution to the previous query, we can use a join to solve this one
also.

c. The following solution assumes that all people work for exactly one com-
pany.

select employee name
from works
where company name �= ’First Bank Corporation’

If one allows people to appear in the database (e.g. in employee) but not
appear in works, or if people may have jobs with more than one company,
the solution is slightly more complicated.

select employee name
from employee
where employee name not in

(select employee name
from works
where company name = ’First Bank Corporation’)

d. The following solution assumes that all people work for at most one com-
pany.

Exercises 7

select employee name
from works
where salary > all

(select salary
from works
where company name = ’Small Bank Corporation’)

If people may work for several companies and we wish to consider the
total earnings of each person, the problem is more complex. It can be solved
by using a nested subquery, but we illustrate below how to solve it using
the with clause.

with emp total salary as
(select employee name, sum(salary) as total salary
from works
group by employee name

)
select employee name
from emp total salary
where total salary > all

(select total salary
from emp total salary, works
where works.company name = ’Small Bank Corporation’ and

emp total salary.employee name = works.employee name
)

e. The simplest solution uses the contains comparison which was included in
the original System R Sequel language but is not present in the subsequent
SQL versions.

select T.company name
from company T
where (select R.city

from company R
where R.company name = T.company name)

contains
(select S.city
from company S
where S.company name = ’Small Bank Corporation’)

Below is a solution using standard SQL.

8 Chapter 3 SQL

select S.company name
from company S
where not exists ((select city

from company
where company name = ’Small Bank Corporation’)

except
(select city
from company T
where S.company name = T.company name))

f. Query:

select company name
from works
group by company name
having count (distinct employee name) >= all

(select count (distinct employee name)
from works
group by company name)

g. Query:

select company name
from works
group by company name
having avg (salary) > (select avg (salary)

from works
where company name = ’First Bank Corporation’)

3.3 a. The solution assumes that each person has only one tuple in the employee
relation.

update employee
set city = ’Newton’
where person name = ’Jones’

b. Query:

Exercises 9

update works T
set T.salary = T.salary * 1.03
where T.employee name in (select manager name

from manages)
and T.salary * 1.1 > 100000
and T.company name = ’First Bank Corporation’

update works T
set T.salary = T.salary * 1.1
where T.employee name in (select manager name

from manages)
and T.salary * 1.1 <= 100000
and T.company name = ’First Bank Corporation’

SQL-92 provides a case operation (see Exercise 3.5), using which we give
a more concise solution:

update works T
set T.salary = T.salary ∗

(case
when (T.salary ∗ 1.1 > 100000) then 1.03
else 1.1

)
where T.employee name in (select manager name

from manages) and
T.company name = ’First Bank Corporation’

3.4 Query:

select coalesce(a.name, b.name) as name,
coalesce(a.address, b.address) as address,
a.title,
b.salary

from a full outer join b on a.name = b.name and
a.address = b.address

3.5 We use the case operation provided by SQL-92:
a. To display the grade for each student:

select student id,
(case

when score < 40 then ’F’,
when score < 60 then ’C’,
when score < 80 then ’B’,
else ’A’

end) as grade
from marks

10 Chapter 3 SQL

b. To find the number of students with each grade we use the following query,
where grades is the result of the query given as the solution to part 0.a.

select grade, count(student id)
from grades
group by grade

3.6 The query selects those values of p.a1 that are equal to some value of r1.a1 or
r2.a1 if and only if both r1 and r2 are non-empty. If one or both of r1 and r2
are empty, the cartesian product of p, r1 and r2 is empty, hence the result of the
query is empty. Of course if p itself is empty, the result is as expected, i.e. empty.

3.7 To insert the tuple (“Johnson”, 1900) into the view loan info, we can do the fol-
lowing:
borrower ← (“Johnson”,⊥k) ∪ borrower

loan ← (⊥k,⊥, 1900) ∪ loan
such that ⊥k is a new marked null not already existing in the database.

