
Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 4: Advanced SQLChapter 4: Advanced SQL

©Silberschatz, Korth and Sudarshan4.2Database System Concepts, 5th Edition, Oct 5. 2006

Chapter 4: Advanced SQLChapter 4: Advanced SQL

SQL Data Types and Schemas
Integrity Constraints
Authorization
Embedded SQL
Dynamic SQL
Functions and Procedural Constructs**
Recursive Queries**
Advanced SQL Features**

©Silberschatz, Korth and Sudarshan4.3Database System Concepts, 5th Edition, Oct 5. 2006

BuiltBuilt--in Data Types in SQL in Data Types in SQL

date: Dates, containing a (4 digit) year, month and date
Example: date ‘2005-7-27’

time: Time of day, in hours, minutes and seconds.
Example: time ‘09:00:30’ time ‘09:00:30.75’

timestamp: date plus time of day
Example: timestamp ‘2005-7-27 09:00:30.75’

interval: period of time
Example: interval ‘1’ day
Subtracting a date/time/timestamp value from another gives an
interval value
Interval values can be added to date/time/timestamp values

©Silberschatz, Korth and Sudarshan4.4Database System Concepts, 5th Edition, Oct 5. 2006

BuildBuild--in Data Types in SQL (Cont.)in Data Types in SQL (Cont.)

Can extract values of individual fields from date/time/timestamp
Example: extract (year from r.starttime)

Can cast string types to date/time/timestamp
Example: cast <string-valued-expression> as date
Example: cast <string-valued-expression> as time

©Silberschatz, Korth and Sudarshan4.5Database System Concepts, 5th Edition, Oct 5. 2006

UserUser--Defined TypesDefined Types

create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

create domain construct in SQL-92 creates user-defined domain
types

create domain person_name char(20) not null

Types and domains are similar. Domains can have constraints, such
as not null, specified on them.

©Silberschatz, Korth and Sudarshan4.6Database System Concepts, 5th Edition, Oct 5. 2006

Domain ConstraintsDomain Constraints

Domain constraints are the most elementary form of integrity
constraint. They test values inserted in the database, and test queries
to ensure that the comparisons make sense.
New domains can be created from existing data types

Example: create domain Dollars numeric(12, 2)
create domain Pounds numeric(12,2)

We cannot assign or compare a value of type Dollars to a value of
type Pounds.

However, we can convert type as below
(cast r.A as Pounds)

(Should also multiply by the dollar-to-pound conversion-rate)

©Silberschatz, Korth and Sudarshan4.7Database System Concepts, 5th Edition, Oct 5. 2006

LargeLarge--Object TypesObject Types

Large objects (photos, videos, CAD files, etc.) are stored as a large
object:

blob: binary large object -- object is a large collection of
uninterpreted binary data (whose interpretation is left to an
application outside of the database system)
clob: character large object -- object is a large collection of
character data
When a query returns a large object, a pointer is returned rather
than the large object itself.

©Silberschatz, Korth and Sudarshan4.8Database System Concepts, 5th Edition, Oct 5. 2006

Integrity ConstraintsIntegrity Constraints

Integrity constraints guard against accidental damage to the
database, by ensuring that authorized changes to the
database do not result in a loss of data consistency.

A checking account must have a balance greater than
$10,000.00
A salary of a bank employee must be at least $4.00 an
hour
A customer must have a (non-null) phone number

©Silberschatz, Korth and Sudarshan4.9Database System Concepts, 5th Edition, Oct 5. 2006

Constraints on a Single Relation Constraints on a Single Relation

not null
primary key
unique
check (P), where P is a predicate

©Silberschatz, Korth and Sudarshan4.10Database System Concepts, 5th Edition, Oct 5. 2006

Not Null Constraint Not Null Constraint

Declare branch_name for branch is not null
branch_name char(15) not null

Declare the domain Dollars to be not null

create domain Dollars numeric(12,2) not null

©Silberschatz, Korth and Sudarshan4.11Database System Concepts, 5th Edition, Oct 5. 2006

The Unique ConstraintThe Unique Constraint

unique (A1, A2, …, Am)
The unique specification states that the attributes

A1, A2, … Am
form a candidate key.
Candidate keys are permitted to be null (in contrast to primary keys).

©Silberschatz, Korth and Sudarshan4.12Database System Concepts, 5th Edition, Oct 5. 2006

The check clauseThe check clause

check (P), where P is a predicate

Example: Declare branch_name as the primary key for
branch and ensure that the values of assets are non-
negative.

create table branch
(branch_name char(15),
branch_city char(30),
assets integer,
primary key (branch_name),
check (assets >= 0))

©Silberschatz, Korth and Sudarshan4.13Database System Concepts, 5th Edition, Oct 5. 2006

The check clause (Cont.)The check clause (Cont.)

The check clause in SQL-92 permits domains to be restricted:
Use check clause to ensure that an hourly_wage domain allows
only values greater than a specified value.

create domain hourly_wage numeric(5,2)
constraint value_test check(value > = 4.00)

The domain has a constraint that ensures that the hourly_wage is
greater than 4.00

The clause constraint value_test is optional; useful to indicate
which constraint an update violated.

©Silberschatz, Korth and Sudarshan4.14Database System Concepts, 5th Edition, Oct 5. 2006

Referential IntegrityReferential Integrity

Ensures that a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another relation.

Example: If “Perryridge” is a branch name appearing in one of the
tuples in the account relation, then there exists a tuple in the branch
relation for branch “Perryridge”.

Primary and candidate keys and foreign keys can be specified as part of
the SQL create table statement:

The primary key clause lists attributes that comprise the primary key.
The unique key clause lists attributes that comprise a candidate key.
The foreign key clause lists the attributes that comprise the foreign
key and the name of the relation referenced by the foreign key. By
default, a foreign key references the primary key attributes of the
referenced table.

©Silberschatz, Korth and Sudarshan4.15Database System Concepts, 5th Edition, Oct 5. 2006

Referential Integrity in SQL Referential Integrity in SQL –– ExampleExample

create table customer
(customer_name char(20),
customer_street char(30),
customer_city char(30),
primary key (customer_name))

create table branch
(branch_name char(15),
branch_city char(30),
assets numeric(12,2),
primary key (branch_name))

©Silberschatz, Korth and Sudarshan4.16Database System Concepts, 5th Edition, Oct 5. 2006

Referential Integrity in SQL Referential Integrity in SQL –– Example (Cont.)Example (Cont.)

create table account
(account_number char(10),
branch_name char(15),
balance integer,
primary key (account_number),
foreign key (branch_name) references branch)

create table depositor
(customer_name char(20),
account_number char(10),
primary key (customer_name, account_number),
foreign key (account_number) references account,
foreign key (customer_name) references customer)

©Silberschatz, Korth and Sudarshan4.17Database System Concepts, 5th Edition, Oct 5. 2006

AssertionsAssertions

An assertion is a predicate expressing a condition that we wish the
database always to satisfy.
An assertion in SQL takes the form

create assertion <assertion-name> check <predicate>
When an assertion is made, the system tests it for validity, and tests it
again on every update that may violate the assertion

This testing may introduce a significant amount of overhead;
hence assertions should be used with great care.

Asserting
for all X, P(X)

is achieved in a round-about fashion using
not exists X such that not P(X)

©Silberschatz, Korth and Sudarshan4.18Database System Concepts, 5th Edition, Oct 5. 2006

Assertion ExampleAssertion Example

Every loan has at least one borrower who maintains an account with a
minimum balance or $1000.00

create assertion balance_constraint check
(not exists (

select *
from loan
where not exists (

select *
from borrower, depositor, account
where loan.loan_number = borrower.loan_number

and borrower.customer_name = depositor.customer_name
and depositor.account_number = account.account_number
and account.balance >= 1000)))

©Silberschatz, Korth and Sudarshan4.19Database System Concepts, 5th Edition, Oct 5. 2006

Assertion ExampleAssertion Example

The sum of all loan amounts for each branch must be less than the
sum of all account balances at the branch.
create assertion sum_constraint check

(not exists (select *
from branch
where (select sum(amount)

from loan
where loan.branch_name =

branch.branch_name)
>= (select sum (amount)

from account
where loan.branch_name =

branch.branch_name)))

©Silberschatz, Korth and Sudarshan4.20Database System Concepts, 5th Edition, Oct 5. 2006

AuthorizationAuthorization

Forms of authorization on parts of the database:

Read - allows reading, but not modification of data.

Insert - allows insertion of new data, but not modification of existing data.
Update - allows modification, but not deletion of data.
Delete - allows deletion of data.

Forms of authorization to modify the database schema (covered in Chapter 8):
Index - allows creation and deletion of indices.
Resources - allows creation of new relations.
Alteration - allows addition or deletion of attributes in a relation.
Drop - allows deletion of relations.

©Silberschatz, Korth and Sudarshan4.21Database System Concepts, 5th Edition, Oct 5. 2006

Authorization Specification in SQLAuthorization Specification in SQL

The grant statement is used to confer authorization
grant <privilege list>
on <relation name or view name> to <user list>

<user list> is:
a user-id
public, which allows all valid users the privilege granted
A role (more on this in Chapter 8)

Granting a privilege on a view does not imply granting any privileges
on the underlying relations.
The grantor of the privilege must already hold the privilege on the
specified item (or be the database administrator).

©Silberschatz, Korth and Sudarshan4.22Database System Concepts, 5th Edition, Oct 5. 2006

Privileges in SQLPrivileges in SQL

select: allows read access to relation,or the ability to query using
the view

Example: grant users U1, U2, and U3 select authorization on
the branch relation:

grant select on branch to U1, U2, U3

insert: the ability to insert tuples
update: the ability to update using the SQL update statement
delete: the ability to delete tuples.
all privileges: used as a short form for all the allowable privileges
more in Chapter 8

©Silberschatz, Korth and Sudarshan4.23Database System Concepts, 5th Edition, Oct 5. 2006

Revoking Authorization in SQLRevoking Authorization in SQL

The revoke statement is used to revoke authorization.
revoke <privilege list>
on <relation name or view name> from <user list>

Example:
revoke select on branch from U1, U2, U3

<privilege-list> may be all to revoke all privileges the revokee may
hold.
If <revokee-list> includes public, all users lose the privilege except
those granted it explicitly.
If the same privilege was granted twice to the same user by different
grantees, the user may retain the privilege after the revocation.
All privileges that depend on the privilege being revoked are also
revoked.

©Silberschatz, Korth and Sudarshan4.24Database System Concepts, 5th Edition, Oct 5. 2006

Embedded SQLEmbedded SQL

The SQL standard defines embeddings of SQL in a variety of
programming languages such as C, Java, and Cobol.
A language to which SQL queries are embedded is referred to as a host
language, and the SQL structures permitted in the host language
comprise embedded SQL.
The basic form of these languages follows that of the System R
embedding of SQL into PL/I.
EXEC SQL statement is used to identify embedded SQL request to the
preprocessor

EXEC SQL <embedded SQL statement > END_EXEC
Note: this varies by language (for example, the Java embedding uses

SQL { …. };)

©Silberschatz, Korth and Sudarshan4.25Database System Concepts, 5th Edition, Oct 5. 2006

Example QueryExample Query

Specify the query in SQL and declare a cursor for it
EXEC SQL

declare c cursor for
select depositor.customer_name, customer_city
from depositor, customer, account
where depositor.customer_name = customer.customer_name

and depositor account_number = account.account_number
and account.balance > :amount

END_EXEC

From within a host language, find the names and cities of
customers with more than the variable amount dollars in some
account.

©Silberschatz, Korth and Sudarshan4.26Database System Concepts, 5th Edition, Oct 5. 2006

Embedded SQL (Cont.)Embedded SQL (Cont.)

The open statement causes the query to be evaluated
EXEC SQL open c END_EXEC

The fetch statement causes the values of one tuple in the query result
to be placed on host language variables.

EXEC SQL fetch c into :cn, :cc END_EXEC
Repeated calls to fetch get successive tuples in the query result
A variable called SQLSTATE in the SQL communication area
(SQLCA) gets set to ‘02000’ to indicate no more data is available
The close statement causes the database system to delete the
temporary relation that holds the result of the query.

EXEC SQL close c END_EXEC
Note: above details vary with language. For example, the Java

embedding defines Java iterators to step through result tuples.

©Silberschatz, Korth and Sudarshan4.27Database System Concepts, 5th Edition, Oct 5. 2006

Updates Through CursorsUpdates Through Cursors

Can update tuples fetched by cursor by declaring that the cursor is for
update

declare c cursor for
select *
from account
where branch_name = ‘Perryridge’

for update
To update tuple at the current location of cursor c

update account
set balance = balance + 100
where current of c

©Silberschatz, Korth and Sudarshan4.28Database System Concepts, 5th Edition, Oct 5. 2006

Dynamic SQLDynamic SQL

Allows programs to construct and submit SQL queries at run time.
Example of the use of dynamic SQL from within a C program.

char * sqlprog = “update account
set balance = balance * 1.05

where account_number = ?”
EXEC SQL prepare dynprog from :sqlprog;
char account [10] = “A-101”;
EXEC SQL execute dynprog using :account;
The dynamic SQL program contains a ?, which is a place holder for a
value that is provided when the SQL program is executed.

©Silberschatz, Korth and Sudarshan4.29Database System Concepts, 5th Edition, Oct 5. 2006

ODBC and JDBCODBC and JDBC

API (application-program interface) for a program to interact with a
database server
Application makes calls to

Connect with the database server
Send SQL commands to the database server
Fetch tuples of result one-by-one into program variables

ODBC (Open Database Connectivity) works with C, C++, C#, and
Visual Basic
JDBC (Java Database Connectivity) works with Java

©Silberschatz, Korth and Sudarshan4.30Database System Concepts, 5th Edition, Oct 5. 2006

ODBCODBC

Open DataBase Connectivity(ODBC) standard
standard for application program to communicate with a database
server.
application program interface (API) to

open a connection with a database,
send queries and updates,
get back results.

Applications such as GUI, spreadsheets, etc. can use ODBC

©Silberschatz, Korth and Sudarshan4.31Database System Concepts, 5th Edition, Oct 5. 2006

ODBC (Cont.)ODBC (Cont.)

Each database system supporting ODBC provides a "driver" library that
must be linked with the client program.
When client program makes an ODBC API call, the code in the library
communicates with the server to carry out the requested action, and
fetch results.
ODBC program first allocates an SQL environment, then a database
connection handle.
Opens database connection using SQLConnect(). Parameters for
SQLConnect:

connection handle,
the server to which to connect
the user identifier,
password

Must also specify types of arguments:
SQL_NTS denotes previous argument is a null-terminated string.

©Silberschatz, Korth and Sudarshan4.32Database System Concepts, 5th Edition, Oct 5. 2006

ODBC CodeODBC Code

int ODBCexample()
{

RETCODE error;
HENV env; /* environment */
HDBC conn; /* database connection */
SQLAllocEnv(&env);
SQLAllocConnect(env, &conn);
SQLConnect(conn, "aura.bell-labs.com", SQL_NTS, "avi", SQL_NTS,

"avipasswd", SQL_NTS);
{ …. Do actual work … }

SQLDisconnect(conn);
SQLFreeConnect(conn);
SQLFreeEnv(env);

}

©Silberschatz, Korth and Sudarshan4.33Database System Concepts, 5th Edition, Oct 5. 2006

ODBC Code (Cont.)ODBC Code (Cont.)

Program sends SQL commands to the database by using SQLExecDirect
Result tuples are fetched using SQLFetch()
SQLBindCol() binds C language variables to attributes of the query result

When a tuple is fetched, its attribute values are automatically stored in
corresponding C variables.
Arguments to SQLBindCol()

ODBC stmt variable, attribute position in query result
The type conversion from SQL to C.
The address of the variable.
For variable-length types like character arrays,

– The maximum length of the variable
– Location to store actual length when a tuple is fetched.
– Note: A negative value returned for the length field indicates null value

Good programming requires checking results of every function call for
errors; we have omitted most checks for brevity.

©Silberschatz, Korth and Sudarshan4.34Database System Concepts, 5th Edition, Oct 5. 2006

ODBC Code (Cont.)ODBC Code (Cont.)

Main body of program
char branchname[80];
float balance;
int lenOut1, lenOut2;
HSTMT stmt;
SQLAllocStmt(conn, &stmt);
char * sqlquery = "select branch_name, sum (balance)

from account
group by branch_name";

error = SQLExecDirect(stmt, sqlquery, SQL_NTS);
if (error == SQL_SUCCESS) {

SQLBindCol(stmt, 1, SQL_C_CHAR, branchname , 80,
&lenOut1);

SQLBindCol(stmt, 2, SQL_C_FLOAT, &balance, 0 ,
&lenOut2);

while (SQLFetch(stmt) >= SQL_SUCCESS) {
printf (" %s %g\n", branchname, balance);

}
}
SQLFreeStmt(stmt, SQL_DROP);

©Silberschatz, Korth and Sudarshan4.35Database System Concepts, 5th Edition, Oct 5. 2006

More ODBC FeaturesMore ODBC Features

Prepared Statement
SQL statement prepared: compiled at the database
Can have placeholders: E.g. insert into account values(?,?,?)
Repeatedly executed with actual values for the placeholders

Metadata features
finding all the relations in the database and
finding the names and types of columns of a query result or a relation in
the database.

By default, each SQL statement is treated as a separate transaction that is
committed automatically.

Can turn off automatic commit on a connection
SQLSetConnectOption(conn, SQL_AUTOCOMMIT, 0)}

transactions must then be committed or rolled back explicitly by
SQLTransact(conn, SQL_COMMIT) or
SQLTransact(conn, SQL_ROLLBACK)

©Silberschatz, Korth and Sudarshan4.36Database System Concepts, 5th Edition, Oct 5. 2006

ODBC Conformance LevelsODBC Conformance Levels

Conformance levels specify subsets of the functionality defined by the
standard.

Core
Level 1 requires support for metadata querying
Level 2 requires ability to send and retrieve arrays of parameter
values and more detailed catalog information.

SQL Call Level Interface (CLI) standard similar to ODBC interface, but
with some minor differences.

©Silberschatz, Korth and Sudarshan4.37Database System Concepts, 5th Edition, Oct 5. 2006

JDBCJDBC

JDBC is a Java API for communicating with database systems
supporting SQL
JDBC supports a variety of features for querying and updating data, and
for retrieving query results
JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of relation
attributes
Model for communicating with the database:

Open a connection
Create a “statement” object
Execute queries using the Statement object to send queries and
fetch results
Exception mechanism to handle errors

©Silberschatz, Korth and Sudarshan4.38Database System Concepts, 5th Edition, Oct 5. 2006

JDBC CodeJDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)
{

try {
Class.forName ("oracle.jdbc.driver.OracleDriver");
Connection conn = DriverManager.getConnection(

"jdbc:oracle:thin:@aura.bell-labs.com:2000:bankdb", userid, passwd);
Statement stmt = conn.createStatement();

… Do Actual Work ….
stmt.close();
conn.close();

}
catch (SQLException sqle) {

System.out.println("SQLException : " + sqle);
}

}

©Silberschatz, Korth and Sudarshan4.39Database System Concepts, 5th Edition, Oct 5. 2006

JDBC Code (Cont.)JDBC Code (Cont.)

Update to database
try {

stmt.executeUpdate("insert into account values
('A-9732', 'Perryridge', 1200)");

} catch (SQLException sqle) {
System.out.println("Could not insert tuple. " + sqle);

}
Execute query and fetch and print results
ResultSet rset = stmt.executeQuery("select branch_name,

avg(balance)
from account
group by branch_name");

while (rset.next()) {
System.out.println(

rset.getString("branch_name") + " " + rset.getFloat(2));

}

©Silberschatz, Korth and Sudarshan4.40Database System Concepts, 5th Edition, Oct 5. 2006

JDBC Code Details JDBC Code Details

Getting result fields:
rs.getString(“branchname”) and rs.getString(1) equivalent if
branchname is the first argument of select result.

Dealing with Null values
int a = rs.getInt(“a”);
if (rs.wasNull()) Systems.out.println(“Got null value”);

©Silberschatz, Korth and Sudarshan4.41Database System Concepts, 5th Edition, Oct 5. 2006

Procedural Extensions and Stored ProceduresProcedural Extensions and Stored Procedures

SQL provides a module language
Permits definition of procedures in SQL, with if-then-else statements,
for and while loops, etc.
more in Chapter 9

Stored Procedures
Can store procedures in the database
then execute them using the call statement
permit external applications to operate on the database without
knowing about internal details

These features are covered in Chapter 9 (Object Relational Databases)

©Silberschatz, Korth and Sudarshan4.42Database System Concepts, 5th Edition, Oct 5. 2006

Functions and ProceduresFunctions and Procedures

SQL:1999 supports functions and procedures
Functions/procedures can be written in SQL itself, or in an external
programming language
Functions are particularly useful with specialized data types such as
images and geometric objects

Example: functions to check if polygons overlap, or to compare
images for similarity

Some database systems support table-valued functions, which
can return a relation as a result

SQL:1999 also supports a rich set of imperative constructs, including
Loops, if-then-else, assignment

Many databases have proprietary procedural extensions to SQL that
differ from SQL:1999

©Silberschatz, Korth and Sudarshan4.43Database System Concepts, 5th Edition, Oct 5. 2006

SQL FunctionsSQL Functions

Define a function that, given the name of a customer, returns the
count of the number of accounts owned by the customer.

create function account_count (customer_name varchar(20))
returns integer
begin

declare a_count integer;
select count (*) into a_count
from depositor
where depositor.customer_name = customer_name
return a_count;

end
Find the name and address of each customer that has more than one
account.

select customer_name, customer_street, customer_city
from customer
where account_count (customer_name) > 1

©Silberschatz, Korth and Sudarshan4.44Database System Concepts, 5th Edition, Oct 5. 2006

Table FunctionsTable Functions
SQL:2003 added functions that return a relation as a result
Example: Return all accounts owned by a given customer
create function accounts_of (customer_name char(20)

returns table (account_number char(10),
branch_name char(15)
balance numeric(12,2))

return table
(select account_number, branch_name, balance
from account A
where exists (

select *
from depositor D
where D.customer_name = accounts_of.customer_name

and D.account_number = A.account_number))

©Silberschatz, Korth and Sudarshan4.45Database System Concepts, 5th Edition, Oct 5. 2006

Table Functions (contTable Functions (cont’’d)d)

Usage
select *
from table (accounts_of (‘Smith’))

©Silberschatz, Korth and Sudarshan4.46Database System Concepts, 5th Edition, Oct 5. 2006

SQL ProceduresSQL Procedures

The author_count function could instead be written as procedure:
create procedure account_count_proc (in title varchar(20),

out a_count integer)
begin
select count(author) into a_count
from depositor
where depositor.customer_name = account_count_proc.customer_name

end
Procedures can be invoked either from an SQL procedure or from
embedded SQL, using the call statement.

declare a_count integer;
call account_count_proc(‘Smith’, a_count);

Procedures and functions can be invoked also from dynamic SQL
SQL:1999 allows more than one function/procedure of the same name
(called name overloading), as long as the number of
arguments differ, or at least the types of the arguments differ

©Silberschatz, Korth and Sudarshan4.47Database System Concepts, 5th Edition, Oct 5. 2006

Procedural ConstructsProcedural Constructs

Compound statement: begin … end,

May contain multiple SQL statements between begin and end.

Local variables can be declared within a compound statements

While and repeat statements:

declare n integer default 0;
while n < 10 do

set n = n + 1
end while

repeat
set n = n – 1

until n = 0
end repeat

©Silberschatz, Korth and Sudarshan4.48Database System Concepts, 5th Edition, Oct 5. 2006

Procedural Constructs (Cont.)Procedural Constructs (Cont.)

For loop
Permits iteration over all results of a query

Example: find total of all balances at the Perryridge branch

declare n integer default 0;
for r as

select balance from account
where branch_name = ‘Perryridge’

do
set n = n + r.balance

end for

©Silberschatz, Korth and Sudarshan4.49Database System Concepts, 5th Edition, Oct 5. 2006

Procedural Constructs (cont.)Procedural Constructs (cont.)

Conditional statements (if-then-else)
E.g. To find sum of balances for each of three categories of accounts
(with balance <1000, >=1000 and <5000, >= 5000)

if r.balance < 1000
then set l = l + r.balance

elseif r.balance < 5000
then set m = m + r.balance

else set h = h + r.balance
end if

SQL:1999 also supports a case statement similar to C case statement
Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_stock condition
declare exit handler for out_of_stock
begin
…
.. signal out-of-stock
end

The handler here is exit -- causes enclosing begin..end to be exited
Other actions possible on exception

©Silberschatz, Korth and Sudarshan4.50Database System Concepts, 5th Edition, Oct 5. 2006

External Language Functions/ProceduresExternal Language Functions/Procedures

SQL:1999 permits the use of functions and procedures written in other
languages such as C or C++
Declaring external language procedures and functions

create procedure account_count_proc(in customer_name varchar(20),
out count integer)

language C
external name ’ /usr/avi/bin/account_count_proc’

create function account_count(customer_name varchar(20))
returns integer
language C
external name ‘/usr/avi/bin/author_count’

©Silberschatz, Korth and Sudarshan4.51Database System Concepts, 5th Edition, Oct 5. 2006

External Language Routines (Cont.)External Language Routines (Cont.)

Benefits of external language functions/procedures:
more efficient for many operations, and more expressive power

Drawbacks
Code to implement function may need to be loaded into database
system and executed in the database system’s address space

risk of accidental corruption of database structures
security risk, allowing users access to unauthorized data

There are alternatives, which give good security at the cost of
potentially worse performance
Direct execution in the database system’s space is used when
efficiency is more important than security

©Silberschatz, Korth and Sudarshan4.52Database System Concepts, 5th Edition, Oct 5. 2006

Security with External Language RoutinesSecurity with External Language Routines

To deal with security problems
Use sandbox techniques

that is use a safe language like Java, which cannot be used to
access/damage other parts of the database code

Or, run external language functions/procedures in a separate
process, with no access to the database process’ memory

Parameters and results communicated via inter-process
communication

Both have performance overheads
Many database systems support both above approaches as well as
direct executing in database system address space

©Silberschatz, Korth and Sudarshan4.53Database System Concepts, 5th Edition, Oct 5. 2006

Recursion in SQLRecursion in SQL

SQL:1999 permits recursive view definition
Example: find all employee-manager pairs, where the employee
reports to the manager directly or indirectly (that is manager’s
manager, manager’s manager’s manager, etc.)

with recursive empl (employee_name, manager_name) as (
select employee_name, manager_name
from manager

union
select manager.employee_name, empl.manager_name
from manager, empl
where manager.manager_name = empl.employe_name)

select *
from empl

This example view, empl, is called the transitive closure of the
manager relation

©Silberschatz, Korth and Sudarshan4.54Database System Concepts, 5th Edition, Oct 5. 2006

The Power of RecursionThe Power of Recursion

Recursive views make it possible to write queries, such as transitive
closure queries, that cannot be written without recursion or iteration.

Intuition: Without recursion, a non-recursive non-iterative program
can perform only a fixed number of joins of manager with itself

This can give only a fixed number of levels of managers
Given a program we can construct a database with a greater
number of levels of managers on which the program will not work

Computing transitive closure
The next slide shows a manager relation
Each step of the iterative process constructs an extended version of
empl from its recursive definition.
The final result is called the fixed point of the recursive view
definition.

Recursive views are required to be monotonic. That is, if we add tuples
to manger the view contains all of the tuples it contained before, plus
possibly more

©Silberschatz, Korth and Sudarshan4.55Database System Concepts, 5th Edition, Oct 5. 2006

Example of FixedExample of Fixed--Point ComputationPoint Computation

©Silberschatz, Korth and Sudarshan4.56Database System Concepts, 5th Edition, Oct 5. 2006

Advanced SQL Features**Advanced SQL Features**

Create a table with the same schema as an existing table:
create table temp_account like account
SQL:2003 allows subqueries to occur anywhere a value is required
provided the subquery returns only one value. This applies to updates as
well
SQL:2003 allows subqueries in the from clause to access attributes of
other relations in the from clause using the lateral construct:

select C.customer_name, num_accounts
from customer C,

lateral (select count(*)
from account A
where A.customer_name = C.customer_name)

as this_customer (num_accounts)

©Silberschatz, Korth and Sudarshan4.57Database System Concepts, 5th Edition, Oct 5. 2006

Advanced SQL Features (contAdvanced SQL Features (cont’’d)d)

Merge construct allows batch processing of updates.
Example: relation funds_received (account_number, amount) has
batch of deposits to be added to the proper account in the account
relation
merge into account as A

using (select *
from funds_received as F)

on (A.account_number = F.account_number)
when matched then

update set balance = balance + F.amount

Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of ChapterEnd of Chapter

	Chapter 4: Advanced SQL
	Chapter 4: Advanced SQL
	Built-in Data Types in SQL
	Build-in Data Types in SQL (Cont.)
	User-Defined Types
	Domain Constraints
	Large-Object Types
	Integrity Constraints
	 Constraints on a Single Relation
	Not Null Constraint
	The Unique Constraint
	The check clause
	The check clause (Cont.)
	Referential Integrity
	Referential Integrity in SQL – Example
	Referential Integrity in SQL – Example (Cont.)
	Assertions
	Assertion Example
	Assertion Example
	Authorization
	Authorization Specification in SQL
	Privileges in SQL
	Revoking Authorization in SQL
	Embedded SQL
	Example Query
	Embedded SQL (Cont.)
	Updates Through Cursors
	Dynamic SQL
	ODBC and JDBC
	ODBC
	ODBC (Cont.)
	ODBC Code
	ODBC Code (Cont.)
	ODBC Code (Cont.)
	More ODBC Features
	ODBC Conformance Levels
	JDBC
	JDBC Code
	JDBC Code (Cont.)
	JDBC Code Details
	Procedural Extensions and Stored Procedures
	Functions and Procedures
	SQL Functions
	Table Functions
	Table Functions (cont’d)
	SQL Procedures
	Procedural Constructs
	Procedural Constructs (Cont.)
	Procedural Constructs (cont.)
	External Language Functions/Procedures
	External Language Routines (Cont.)
	Security with External Language Routines
	Recursion in SQL
	The Power of Recursion
	Example of Fixed-Point Computation
	Advanced SQL Features**
	Advanced SQL Features (cont’d)
	End of Chapter

