Chapter 5: Other Relational Languages

Database System Concepts, 5th Ed.
©Silberschatz, Korth and Sudarshan
See www.dlb-book.com for conditions on re-use

Chapter 5: Other Relational Languages

- Tuple Relational Calculus
- Domain Relational Calculus
- Query-by-Example (QBE)
- Datalog

Tuple Relational Calculus

- A nonprocedural query language, where each query is of the form

$$
\{t \mid P(t)\}
$$

- It is the set of all tuples t such that predicate P is true for t
- t is a tuple variable, t [A] denotes the value of tuple t on attribute A
- $t \in r$ denotes that tuple t is in relation r
- P is a formula similar to that of the predicate calculus

Predicate Calculus Formula

1. Set of attributes and constants
2. Set of comparison operators: (e.g., $<, \leq,=, \neq,>, \geq$)
3. Set of connectives: and (\wedge), or (v), not (\neg)
4. Implication $(\Rightarrow): x \Rightarrow y$, if x if true, then y is true

$$
x \Rightarrow y \equiv \neg x \vee y
$$

5. Set of quantifiers:

- $\exists t \in r(Q(t)) \equiv$ "there exists" a tuple in t in relation r such that predicate $Q(t)$ is true
- $\forall t \in r(Q(t)) \equiv Q$ is true "for all" tuples t in relation r

Banking Example

- branch (branch_name, branch_city, assets)
- customer (customer_name, customer_street, customer_city)
- account (account_number, branch_name, balance)
- loan (loan_number, branch_name, amount)
- depositor (customer_name, account_number)
- borrower (customer_name, loan_number)

Example Queries

- Find the loan_number, branch_name, and amount for loans of over \$1200

$$
\{t \mid t \in \text { loan } \wedge t[\text { amount }]>1200\}
$$

■ Find the loan number for each loan of an amount greater than $\$ 1200$

$$
\{t \mid \exists s \in \text { loan }(t[\text { loan_number }]=s[\text { loan_number }] \wedge s[\text { amount }]>1200)\}
$$

Notice that a relation on schema [loan_number] is implicitly defined by the query

Example Queries

- Find the names of all customers having a loan, an account, or both at the bank

$$
\begin{aligned}
& \{t \mid \exists s \in \text { borrower (} t \text { [customer_name] = s [customer_name]) } \\
& \quad \vee \exists u \in \text { depositor (} t \text { [customer_name] = } u \text { [customer_name]) }
\end{aligned}
$$

- Find the names of all customers who have a loan and an account at the bank

$$
\begin{aligned}
& \{t \mid \exists s \in \text { borrower }(t \text { [customer_name] = s [customer_name]) } \\
& \quad \wedge \exists u \in \text { depositor }(t \text { [customer_name }]=u \text { [customer_name] })
\end{aligned}
$$

Example Queries

- Find the names of all customers having a loan at the Perryridge branch

$$
\begin{gathered}
\{t \mid \exists s \in \text { borrower (} t \text { [customer_name] = s [customer_name] } \\
\wedge \exists u \in \text { loan }(u \text { [branch_name] = "Perryridge" } \\
\wedge u[\text { loan_number] = s [loan_number }]))\}
\end{gathered}
$$

- Find the names of all customers who have a loan at the Perryridge branch, but no account at any branch of the bank

$$
\begin{gathered}
\{t \mid \exists s \in \text { borrower }(t \text { [customer_name] = s [customer_name] } \\
\wedge \exists u \in \operatorname{loan}(u[\text { branch_name }]=\text { "Perryridge" } \\
\wedge u[\text { loan_number }]=s[\text { loan_number }])) \\
\wedge \text { not } \exists v \in \text { depositor }(v[\text { customer_name }]= \\
t[\text { customer_name }])\}
\end{gathered}
$$

Example Queries

- Find the names of all customers having a loan from the Perryridge branch, and the cities in which they live
$\{t \mid \exists s \in$ loan (s [branch_name] = "Perryridge"

$$
\begin{aligned}
& \wedge \exists u \in \text { borrower (u [loan_number }]=s[\text { loan_number }] \\
& \quad \wedge t[\text { customer_name }]=u[\text { customer_name }]) \\
& \qquad \exists \exists \mathrm{v} \in \text { customer (} u \text { [customer_name }]=v[\text { customer_name }] \\
& \quad \wedge t[\text { customer_city }]=v[\text { customer_city }])))\}
\end{aligned}
$$

Example Queries

- Find the names of all customers who have an account at all branches located in Brooklyn:
$\{t \mid \exists r \in$ customer $(t$ [customer_name] = r [customer_name]) \wedge
($\forall \mathrm{u} \in$ branch (u [branch_city] = "Brooklyn" \Rightarrow

$$
\begin{aligned}
& \exists \mathrm{s} \in \text { depositor }(t \text { [customer_name] = s [customer_name] } \\
& \wedge \exists w \in \text { account }(\mathrm{w}[\text { account_number] = s [account_number] } \\
& \wedge(w[\text { branch_name] = u [branch_name }]))))\}
\end{aligned}
$$

Safety of Expressions

- It is possible to write tuple calculus expressions that generate infinite relations.
- For example, $\{\mathrm{t} \mid \neg t \in r\}$ results in an infinite relation if the domain of any attribute of relation r is infinite
- To guard against the problem, we restrict the set of allowable expressions to safe expressions.
- An expression $\{t \mid P(t)\}$ in the tuple relational calculus is safe if every component of t appears in one of the relations, tuples, or constants that appear in P
- NOTE: this is more than just a syntax condition.
- E.g. $\{t \mid t[A]=5 \vee$ true $\}$ is not safe --- it defines an infinite set with attribute values that do not appear in any relation or tuples or constants in P.

Domain Relational Calculus

- A nonprocedural query language equivalent in power to the tuple relational calculus
- Each query is an expression of the form:

$$
\left\{\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle \mid P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}
$$

- $x_{1}, x_{2}, \ldots, x_{n}$ represent domain variables
- P represents a formula similar to that of the predicate calculus

Example Queries

- Find the loan_number, branch_name, and amount for loans of over \$1200

$$
\{<l, b, a>\mid<l, b, a>\in \operatorname{loan} \wedge a>1200\}
$$

- Find the names of all customers who have a loan of over $\$ 1200$

$$
\{<c>\mid \exists I, b, a(<c, I\rangle \in \text { borrower } \wedge<l, b, a>\in \text { loan } \wedge a>1200)\}
$$

- Find the names of all customers who have a loan from the Perryridge branch and the loan amount:
- $\{<c, a\rangle \mid \exists I(<c, I\rangle \in$ borrower $\wedge \exists b(<I, b, a\rangle \in \operatorname{loan} \wedge$

$$
b=\text { "Perryridge"))\} }
$$

- $\{<c, a\rangle \mid \exists I(<c, I\rangle \in$ borrower $\wedge<l$, "Perryridge", $a>\in$ loan $)\}$

Example Queries

- Find the names of all customers having a loan, an account, or both at the Perryridge branch:

$$
\begin{aligned}
& \{<c>\mid \exists I(<c, I>\in \text { borrower } \\
& \quad \wedge \exists b, a(<l, b, a>\in \text { loan } \wedge b=\text { "Perryridge" })) \\
& \vee \exists a(<c, a>\in \text { depositor } \\
& \\
& \\
& \wedge \exists b, n(<a, b, n>\in \text { account } \wedge b=\text { "Perryridge" }))\}
\end{aligned}
$$

- Find the names of all customers who have an account at all branches located in Brooklyn:

$$
\begin{aligned}
& \{<c>\mid \exists \mathrm{s}, n(<c, s, n>\in \text { customer }) \wedge \\
& \quad \forall x, y, z(<x, y, z>\in \text { branch } \wedge y=\text { "Brooklyn" }) \Rightarrow \\
& \quad \exists a, b(<x, y, z>\in \text { account } \wedge<c, a>\in \text { depositor })\}
\end{aligned}
$$

Safety of Expressions

The expression:

$$
\left\{<x_{1}, x_{2}, \ldots, x_{n}>\mid P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}
$$

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values from dom (P) (that is, the values appear either in P or in a tuple of a relation mentioned in P).
2. For every "there exists" subformula of the form $\exists x\left(P_{1}(x)\right)$, the subformula is true if and only if there is a value of x in $\operatorname{dom}\left(P_{1}\right)$ such that $P_{1}(x)$ is true.
3. For every "for all" subformula of the form $\forall_{x}\left(P_{1}(x)\right)$, the subformula is true if and only if $P_{1}(x)$ is true for all values x from $\operatorname{dom}\left(P_{1}\right)$.

Query-by-Example (QBE)

- Basic Structure
- Queries on One Relation
- Queries on Several Relations
- The Condition Box
- The Result Relation
- Ordering the Display of Tuples
- Aggregate Operations
- Modification of the Database

QBE - Basic Structure

- A graphical query language which is based (roughly) on the domain relational calculus
- Two dimensional syntax - system creates templates of relations that are requested by users
- Queries are expressed "by example"

QBE Skeleton Tables for the Bank Example

QBE Skeleton Tables (Cont.)

Queries on One Relation

- Find all loan numbers at the Perryridge branch.

loan	loan_number	branch_name	amount
	P._x	Perryridge	

- _x is a variable (optional; can be omitted in above query)
- P. means print (display)
- duplicates are removed by default
- To retain duplicates use P.ALL

loan	loan_number	branch_name	amount
	P.ALL.	Perryridge	

Queries on One Relation (Cont.)

- Display full details of all loans
- Method 1:

- Method 2: Shorthand notation

loan	loan_number	branch_name	amount
P.			

Queries on One Relation (Cont.)

■ Find the loan number of all loans with a loan amount of more than $\$ 700$

loan	loan_number	branch_name	amount
	P.		>700

- Find names of all branches that are not located in Brooklyn

branch	branch_name	branch_city	assets
	P.	\neg Brooklyn	

Queries on One Relation (Cont.)

- Find the loan numbers of all loans made jointly to Smith and Jones.

borrower	customer_name	loan_number
	Smith	P._ x
	Jones	$-x$

- Find all customers who live in the same city as Jones

customer	customer_name	customer_street	customer_city
	P._x		$-y$
	Jones		$-y$

Queries on Several Relations

- Find the names of all customers who have a loan from the Perryridge branch.

loan	loan_number	branch_name	amount
	$\ldots x$	Perryridge	

borrower	customer_name	loan_number
	P._y	$\ldots x$

Queries on Several Relations (Cont.)

- Find the names of all customers who have both an account and a loan at the bank.

depositor	customer_name	account_number
	P._x	
borrower	customer_name	loan_number

Negation in QBE

- Find the names of all customers who have an account at the bank, but do not have a loan from the bank.

\neg means "there does not exist"

Negation in QBE (Cont.)

- Find all customers who have at least two accounts.

depositor	customer_name	account_number
	P._ x	$-y$
	$-x$	$\neg-y$

\neg means "not equal to"

The Condition Box

- Allows the expression of constraints on domain variables that are either inconvenient or impossible to express within the skeleton tables.
- Complex conditions can be used in condition boxes
- Example: Find the loan numbers of all loans made to Smith, to Jones, or to both jointly

borrower	customer_name	loan_number
	$-n$	P._ x
conditions		
$\|c\|$ $n=$ Smith or_ $n=$ Jones		

Condition Box (Cont.)

- QBE supports an interesting syntax for expressing alternative values

Condition Box (Cont.)

- Find all account numbers with a balance greater than $\$ 1,300$ and less than \$1,500

- Find all account numbers with a balance greater than \$1,300 and less than \$2,000 but not exactly \$1,500.

account	account_number	branch_name	balance
	P.		$-x$
	conditions		
	c $x=(\geq 1300$ and ≤ 2000 and $\neg 1500)$		

Condition Box (Cont.)

- Find all branches that have assets greater than those of at least one branch located in Brooklyn

branch	branch_name	branch_city	assets
	P._x		$-y$
	Brooklyn	$-z$	
	conditions		
	$-y>$		

The Result Relation

- Find the customer_name, account_number, and balance for all customers who have an account at the Perryridge branch.
- We need to:
- Join depositor and account.
- Project customer_name, account_number and balance.
- To accomplish this we:
- Create a skeleton table, called result, with attributes customer_name, account_number, and balance.
- Write the query.

The Result Relation (Cont.)

- The resulting query is:

Ordering the Display of Tuples

- $\mathrm{AO}=$ ascending order; $\mathrm{DO}=$ descending order.
- Example: list in ascending alphabetical order all customers who have an account at the bank

depositor	customer_name	account_number
	P.AO.	

- When sorting on multiple attributes, the sorting order is specified by including with each sort operator (AO or DO) an integer surrounded by parentheses.
- Example: List all account numbers at the Perryridge branch in ascending alphabetic order with their respective account balances in descending order.

account	account_number	branch_name	balance
	P.AO(1).	Perryridge	P.DO(2).

Aggregate Operations

- The aggregate operators are AVG, MAX, MIN, SUM, and CNT
- The above operators must be postfixed with "ALL" (e.g., SUM.ALL. or AVG.ALL._x) to ensure that duplicates are not eliminated.
- Example: Find the total balance of all the accounts maintained at the Perryridge branch.

account	account_number	branch_name	balance
		Perryridge	P.SUM.ALL.

Aggregate Operations (Cont.)

- UNQ is used to specify that we want to eliminate duplicates
- Find the total number of customers having an account at the bank.

Query Examples

- Find the average balance at each branch.

account	account_number	branch_name	balance
		P.G.	P.AVG.ALL._ x

- The "G" in "P.G" is analogous to SQL's group by construct
- The "ALL" in the "P.AVG.ALL" entry in the balance column ensures that all balances are considered
- To find the average account balance at only those branches where the average account balance is more than $\$ 1,200$, we simply add the condition box:

Query Example

- Find all customers who have an account at all branches located in Brooklyn.
- Approach: for each customer, find the number of branches in Brooklyn at which they have accounts, and compare with total number of branches in Brooklyn
- QBE does not provide subquery functionality, so both above tasks have to be combined in a single query.
- Can be done for this query, but there are queries that require subqueries and cannot always be expressed in QBE.
- In the query on the next page
- CNT.UNQ.ALL._w specifies the number of distinct branches in Brooklyn. Note: The variable _w is not connected to other variables in the query
- CNT.UNQ.ALL._z specifies the number of distinct branches in Brooklyn at which customer x has an account.

Query Example (Cont.)

depositor	customer_name	account_number	
	P.G._ x	- y	
account	account_number	branch_name	balance
	-y	_z	
branch	branch_name	branch_city	assets
	$\begin{aligned} & -z \\ & _w \end{aligned}$	Brooklyn Brooklyn	

conditions
CNT.UNQ._ $z=$
CNT.UNQ._ w

Modification of the Database - Deletion

- Deletion of tuples from a relation is expressed by use of a D. command. In the case where we delete information in only some of the columns, null values, specified by - , are inserted.
- Delete customer Smith

customer	customer_name	customer_street	customer_city
D.	Smith		

- Delete the branch_city value of the branch whose name is "Perryridge".

branch	branch_name	branch_city	assets
Perryridge			

Deletion Query Examples

- Delete all loans with a loan amount greater than $\$ 1300$ and less than \$1500.
- For consistency, we have to delete information from loan and borrower tables

loan	loan_number	branch_name	amount
D.	$-y$		$-x$

borrower	customer_name	loan_number
D.	$-y$	
	conditions	
	$x=(\geq 1300$ and $\leq 1500)$	

Deletion Query Examples (Cont.)

- Delete all accounts at branches located in Brooklyn.

Modification of the Database - Insertion

- Insertion is done by placing the I. operator in the query expression.
- Insert the fact that account A-9732 at the Perryridge branch has a balance of $\$ 700$.

account	account_number	branch_name	balance
I.	A-9732	Perryridge	700

Modification of the Database - Insertion (Cont.)

- Provide as a gift for all loan customers of the Perryridge branch, a new $\$ 200$ savings account for every loan account they have, with the loan number serving as the account number for the new savings account.

Modification of the Database - Updates

- Use the U. operator to change a value in a tuple without changing all values in the tuple. QBE does not allow users to update the primary key fields.
- Update the asset value of the Perryridge branch to $\$ 10,000,000$.

branch	branch_name	branch_city	assets
	Perryridge		U.10000000

- Increase all balances by 5 percent.

account	account_number	branch_name	balance
			U._ $x^{*} 1.05$

Microsoft Access QBE

- Microsoft Access supports a variant of QBE called Graphical Query By Example (GQBE)
- GQBE differs from QBE in the following ways
- Attributes of relations are listed vertically, one below the other, instead of horizontally
- Instead of using variables, lines (links) between attributes are used to specify that their values should be the same.
- Links are added automatically on the basis of attribute name, and the user can then add or delete links
- By default, a link specifies an inner join, but can be modified to specify outer joins.
- Conditions, values to be printed, as well as group by attributes are all specified together in a box called the design grid

An Example Query in Microsoft Access QBE

- Example query: Find the customer_name, account_number and balance for all accounts at the Perryridge branch

An Aggregation Query in Access QBE

- Find the name, street and city of all customers who have more than one account at the bank

Aggregation in Access QBE

- The row labeled Total specifies
- which attributes are group by attributes
- which attributes are to be aggregated upon (and the aggregate function).
- For attributes that are neither group by nor aggregated, we can still specify conditions by selecting where in the Total row and listing the conditions below
- As in SQL, if group by is used, only group by attributes and aggregate results can be output

Datalog

- Basic Structure
- Syntax of Datalog Rules
- Semantics of Nonrecursive Datalog
- Safety
- Relational Operations in Datalog
- Recursion in Datalog
- The Power of Recursion

Basic Structure

- Prolog-like logic-based language that allows recursive queries; based on first-order logic.
- A Datalog program consists of a set of rules that define views.
- Example: define a view relation v1 containing account numbers and balances for accounts at the Perryridge branch with a balance of over \$700.

$$
\text { v1 }(A, B) \text { :- account (A, "Perryridge", B), B > } 700 .
$$

- Retrieve the balance of account number "A-217" in the view relation v1.
? v1 ("A-217", B).
- To find account number and balance of all accounts in v1 that have a balance greater than 800

$$
\text { ? v1 }(A, B), B>800
$$

Example Queries

- Each rule defines a set of tuples that a view relation must contain.
- E.g. $\quad v 1(A, B):-\operatorname{account}(A, " P e r r y r i d g e ", B), B>700$ is read as

for all A, B

if $(A$, "Perryridge", $B) \in$ account and $B>700$
then $(A, B) \in v 1$

- The set of tuples in a view relation is then defined as the union of all the sets of tuples defined by the rules for the view relation.
- Example:

```
interest_rate (A, 5) :- account (A, N, B ), B < 10000
interest_rate (A, 6) :- account (A, N, B ), B >= 10000
```


Negation in Datalog

- Define a view relation c that contains the names of all customers who have a deposit but no loan at the bank:

$$
\begin{aligned}
& c(N) \text { :- depositor }(N, A) \text {, not is_borrower }(N) \text {. } \\
& \text { is_borrower }(N) \text { :-borrower }(N, L) \text {. }
\end{aligned}
$$

- NOTE: using not borrower (N, L) in the first rule results in a different meaning, namely there is some loan L for which N is not a borrower.
- To prevent such confusion, we require all variables in negated "predicate" to also be present in non-negated predicates

Named Attribute Notation

- Datalog rules use a positional notation that is convenient for relations with a small number of attributes
- It is easy to extend Datalog to support named attributes.
- E.g., v1 can be defined using named attributes as
v1 (account_number A, balance B) :account (account_number A, branch_name " Perryridge", balance B), B > 700 .

Formal Syntax and Semantics of Datalog

- We formally define the syntax and semantics (meaning) of Datalog programs, in the following steps

1. We define the syntax of predicates, and then the syntax of rules
2. We define the semantics of individual rules
3. We define the semantics of non-recursive programs, based on a layering of rules
4. It is possible to write rules that can generate an infinite number of tuples in the view relation. To prevent this, we define what rules are "safe". Non-recursive programs containing only safe rules can only generate a finite number of answers.
5. It is possible to write recursive programs whose meaning is unclear. We define what recursive programs are acceptable, and define their meaning.

Syntax of Datalog Rules

- A positive literal has the form

$$
p\left(t_{1}, t_{2} \ldots, t_{n}\right)
$$

- $\quad p$ is the name of a relation with n attributes
- each t_{i} is either a constant or variable
- A negative literal has the form

$$
\operatorname{not} p\left(t_{1}, t_{2} \ldots, t_{n}\right)
$$

- Comparison operations are treated as positive predicates
- E.g. $X>Y$ is treated as a predicate $>(X, Y)$
- " $>$ " is conceptually an (infinite) relation that contains all pairs of values such that the first value is greater than the second value
- Arithmetic operations are also treated as predicates
- E.g. $A=B+C$ is treated as $+(B, C, A)$, where the relation " + " contains all triples such that the third value is the sum of the first two

Syntax of Datalog Rules (Cont.)

- Rules are built out of literals and have the form:

$$
\mathrm{p} \underbrace{\left(t_{1}, t_{2}, \ldots, t_{\mathrm{n}}\right.}_{\text {head }}):-\underbrace{L_{1}, \underbrace{}_{2}, \ldots, L_{m} .}_{\text {body }}
$$

- each L_{i} is a literal
- head - the literal $p\left(t_{1}, t_{2}, \ldots, t_{n}\right)$
- body - the rest of the literals
- A fact is a rule with an empty body, written in the form:

$$
p\left(v_{1}, v_{2}, \ldots, v_{n}\right) .
$$

- indicates tuple $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is in relation p
- A Datalog program is a set of rules

Semantics of a Rule

- A ground instantiation of a rule (or simply instantiation) is the result of replacing each variable in the rule by some constant.
- Eg. Rule defining v1

$$
v 1(A, B):- \text { account (A,"Perryridge", } B \text {), } B>700 .
$$

- An instantiation above rule:

$$
\begin{gathered}
\text { v1 ("A-217", 750) :-account ("A-217", "Perryridge", 750), } \\
750>700 .
\end{gathered}
$$

- The body of rule instantiation R^{\prime} is satisfied in a set of facts (database instance) / if

1. For each positive literal $q_{i}\left(v_{i, 1}, \ldots, v_{i, n i}\right)$ in the body of R^{\prime}, I contains the fact $q_{i}\left(v_{i, 1}, \ldots, v_{i, n i}\right)$.
2. For each negative literal not $q_{j}\left(v_{j, 1}, \ldots, v_{j, n j}\right)$ in the body of R^{\prime}, I does not contain the fact $q_{j}\left(v_{j, 1}, \ldots, v_{j, n j}\right)$.

Semantics of a Rule (Cont.)

- We define the set of facts that can be inferred from a given set of facts / using rule R as:
$\operatorname{infer}(R, I)=\left\{p\left(t_{1}, \ldots, t_{n}\right) \mid\right.$ there is a ground instantiation R^{\prime} of R where $p\left(t_{1}, \ldots, t_{n}\right)$ is the head of R^{\prime}, and the body of R^{\prime} is satisfied in /\}
- Given an set of rules $\mathfrak{R}=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$, we define $\operatorname{infer}(\Re, l)=\operatorname{infer}\left(R_{1}, l\right) \cup \operatorname{infer}\left(R_{2}, l\right) \cup \ldots \cup \operatorname{infer}\left(R_{n}, l\right)$

Layering of Rules

- Define the interest on each account in Perryridge

$$
\begin{aligned}
\text { interest }(A, I):- & \text { perryridge_account }(A, B), \\
& \text { interest_rate }(A, R), I=B * R / 100 .
\end{aligned}
$$

perryridge_account (A, B) :- account (A, "Perryridge", B).
interest_rate $(A, 5)$:- account $(N, A, B), B<10000$.
interest_rate $(A, 6):-\operatorname{account}(N, A, B), B>=10000$.

- Layering of the view relations

Layering Rules (Cont.)

Formally:

- A relation is a layer 1 if all relations used in the bodies of rules defining it are stored in the database.
- A relation is a layer 2 if all relations used in the bodies of rules defining it are either stored in the database, or are in layer 1.
- A relation p is in layer $i+1$ if
- it is not in layers $1,2, \ldots, i$
- all relations used in the bodies of rules defining a p are either stored in the database, or are in layers 1, 2, ..., i

Semantics of a Program

Let the layers in a given program be $1,2, \ldots, n$. Let \Re_{i} denote the set of all rules defining view relations in layer i.

- Define $I_{0}=$ set of facts stored in the database.
- Recursively define $I_{i+1}=I_{i} \cup \operatorname{infer}\left(\mathfrak{R}_{i+1}, I_{i}\right)$
- The set of facts in the view relations defined by the program (also called the semantics of the program) is given by the set of facts I_{n} corresponding to the highest layer n.

Note: Can instead define semantics using view expansion like in relational algebra, but above definition is better for handling extensions such as recursion.

Safety

- It is possible to write rules that generate an infinite number of answers.

$$
\begin{aligned}
& g t(X, Y):-X>Y \\
& \text { not_in_loan }(B, L):- \text { not loan }(B, L)
\end{aligned}
$$

To avoid this possibility Datalog rules must satisfy the following conditions.

- Every variable that appears in the head of the rule also appears in a non-arithmetic positive literal in the body of the rule.
- This condition can be weakened in special cases based on the semantics of arithmetic predicates, for example to permit the rule

$$
p(A):-q(B), A=B+1
$$

- Every variable appearing in a negative literal in the body of the rule also appears in some positive literal in the body of the rule.

Relational Operations in Datalog

- Project out attribute account_name from account.

$$
\text { query }(A) \text { :-account (A, N, B). }
$$

- Cartesian product of relations r_{1} and r_{2}.

$$
\begin{aligned}
& \text { query }\left(X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{1}, Y_{2}, \ldots, Y_{m}\right):- \\
& \quad r_{1}\left(X_{1}, X_{2}, \ldots, X_{n}\right), r_{2}\left(Y_{1}, Y_{2}, \ldots, Y_{m}\right) .
\end{aligned}
$$

- Union of relations r_{1} and r_{2}.

$$
\begin{aligned}
& \text { query }\left(X_{1}, X_{2}, \ldots, X_{n}\right):-r_{1}\left(X_{1}, X_{2}, \ldots, X_{n}\right), \\
& \text { query }\left(X_{1}, X_{2}, \ldots, X_{n}\right):-r_{2}\left(X_{1}, X_{2}, \ldots, X_{n}\right),
\end{aligned}
$$

- Set difference of r_{1} and r_{2}.

$$
\begin{aligned}
\text { query }\left(X_{1}, X_{2}, \ldots, X_{n}\right): & -r_{1}\left(X_{1}, X_{2}, \ldots, X_{n}\right), \\
& \operatorname{not} r_{2}\left(X_{1}, X_{2}, \ldots, X_{n}\right),
\end{aligned}
$$

Recursion in Datalog

- Suppose we are given a relation manager (X, Y) containing pairs of names X, Y such that Y is a manager of X (or equivalently, X is a direct employee of Y).
- Each manager may have direct employees, as well as indirect employees
- Indirect employees of a manager, say Jones, are employees of people who are direct employees of Jones, or recursively, employees of people who are indirect employees of Jones
- Suppose we wish to find all (direct and indirect) employees of manager Jones. We can write a recursive Datalog program.

```
empl_jones (X ) :- manager (X, Jones ).
empl_jones (X ) :- manager (X, Y ), empl_jones (Y ).
```


Semantics of Recursion in Datalog

- Assumption (for now): program contains no negative literals
- The view relations of a recursive program containing a set of rules \mathfrak{R} are defined to contain exactly the set of facts I computed by the iterative procedure Datalog-Fixpoint
procedure Datalog-Fixpoint
$I=$ set of facts in the database
repeat
Old_I = I
$I=I \cup \operatorname{infer}(\Re, I)$
until I = Old_I
- At the end of the procedure, infer $(\Re, I) \subseteq I$
- $\operatorname{Infer}(\Re, I)=I$ if we consider the database to be a set of facts that are part of the program
- $/$ is called a fixed point of the program.

Example of Datalog-FixPoint Iteration

employee_name	manager_name
Alon	Barinsky
Barinsky	Estovar
Corbin	Duarte
Duarte	Jones
Estovar	Jones
Jones	Klinger
Rensal	Klinger

Iteration number	Tuples in empl_jones
0	(Duarte), (Estovar)
1	(Duarte), (Estovar), (Barinsky), (Corbin)
2	(Duarte), (Estovar), (Barinsky), (Corbin), (Alon)
3	(Duarte), (Estovar), (Barinsky), (Corbin), (Alon)

A More General View

- Create a view relation empl that contains every tuple (X, Y) such that X is directly or indirectly managed by Y.

$$
\begin{aligned}
& \text { empl }(X, Y):- \text { manager }(X, Y) . \\
& \text { empl }(X, Y):- \text { manager }(X, Z), \text { empl }(Z, Y)
\end{aligned}
$$

- Find the direct and indirect employees of Jones.
? empl (X, "Jones").
- Can define the view empl in another way too:

$$
\begin{aligned}
& \text { empl }(X, Y):- \text { manager }(X, Y) . \\
& \text { empl }(X, Y):- \text { empl }(X, Z), \text { manager }(Z, Y) .
\end{aligned}
$$

The Power of Recursion

- Recursive views make it possible to write queries, such as transitive closure queries, that cannot be written without recursion or iteration.
- Intuition: Without recursion, a non-recursive non-iterative program can perform only a fixed number of joins of manager with itself
- This can give only a fixed number of levels of managers
- Given a program we can construct a database with a greater number of levels of managers on which the program will not work

Recursion in SQL

- Starting with SQL:1999, SQL permits recursive view definition
- E.g. query to find all employee-manager pairs

```
with recursive empl (emp, mgr ) as (
    select emp, mgr
    from manager
    union
    select manager.emp, empl.mgr
    from manager, empl
    where manager.mgr = empl.emp )
select *
from empl
```


Monotonicity

- A view V is said to be monotonic if given any two sets of facts I_{1} and I_{2} such that $I_{1} \subseteq I_{2}$, then $E_{v}\left(I_{1}\right) \subseteq E_{v}\left(I_{2}\right)$, where E_{v} is the expression used to define V.
- A set of rules R is said to be monotonic if

$$
I_{1} \subseteq I_{2} \text { implies infer }\left(\mathrm{R}, I_{1}\right) \subseteq \operatorname{infer}\left(\mathrm{R}, I_{2}\right),
$$

- Relational algebra views defined using only the operations: $\Pi, \sigma, \times, \cup$, $|\mathrm{X}|, \cap$, and ρ (as well as operations like natural join defined in terms of these operations) are monotonic.
- Relational algebra views defined using set difference (-) may not be monotonic.
- Similarly, Datalog programs without negation are monotonic, but Datalog programs with negation may not be monotonic.

Non-Monotonicity

- Procedure Datalog-Fixpoint is sound provided the rules in the program are monotonic.
- Otherwise, it may make some inferences in an iteration that cannot be made in a later iteration. E.g. given the rules
a :- not b.
$b:-c$.
c.

Then a can be inferred initially, before b is inferred, but not later.

- We can extend the procedure to handle negation so long as the program is "stratified": intuitively, so long as negation is not mixed with recursion

Non-Monotonicity (Cont.)

- There are useful queries that cannot be expressed by a stratified program
- Example: given information about the number of each subpart in each part, in a part-subpart hierarchy, find the total number of subparts of each part.
- A program to compute the above query would have to mix aggregation with recursion
- However, so long as the underlying data (part-subpart) has no cycles, it is possible to write a program that mixes aggregation with recursion, yet has a clear meaning
- There are ways to evaluate some such classes of non-stratified programs

End of Chapter 5

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan
See www.dlb-book.com for conditions on re-use

Figure 5.1

customer_name

Adams

Hayes

Figure 5.2

Figure 5.5

account_number	branch_name	balance
A-101	Downtown	500
A-215	Mianus	700
A-102	Perryridge	400
A-305	Round Hill	350
A-201	Perryridge	900
A-222	Redwood	700
A-217	Perryridge	750

Figure 5.6

Figure 5.9

account_number balance

$$
\begin{array}{l|l}
\hline \mathrm{A}-201 & 900 \\
\mathrm{~A}-217 & 750
\end{array}
$$

Figure in-5.2

loan	loan_number	branch_name	amount
	P.	Perryridge	

Figure in-5.15

conditions

$x \neg=$ Jones

Figure in-5.18

conditions

- y

Figure in-5-31

branch	branch_name	branch_city	assets
Perryridge			

Figure in-5.36

branch	branch_name	branch_city	assets
I.	Capital	Queens	

