
Database System Concepts
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

©Silberschatz, Korth and SudarshanDatabase System Concepts

Chapter 9: ObjectChapter 9: Object--Based DatabasesBased Databases

©Silberschatz, Korth and Sudarshan9.2Database System Concepts - 5th Edition, Aug 9, 2005.

Chapter 9: ObjectChapter 9: Object--Based DatabasesBased Databases

Complex Data Types and Object Orientation
Structured Data Types and Inheritance in SQL
Table Inheritance
Array and Multiset Types in SQL
Object Identity and Reference Types in SQL
Implementing O-R Features
Persistent Programming Languages
Comparison of Object-Oriented and Object-Relational Databases

©Silberschatz, Korth and Sudarshan9.3Database System Concepts - 5th Edition, Aug 9, 2005.

ObjectObject--Relational Data ModelsRelational Data Models

Extend the relational data model by including object orientation and
constructs to deal with added data types.
Allow attributes of tuples to have complex types, including non-atomic
values such as nested relations.
Preserve relational foundations, in particular the declarative access to
data, while extending modeling power.
Upward compatibility with existing relational languages.

©Silberschatz, Korth and Sudarshan9.4Database System Concepts - 5th Edition, Aug 9, 2005.

Complex Data TypesComplex Data Types

Motivation:
Permit non-atomic domains (atomic ≡ indivisible)
Example of non-atomic domain: set of integers,or set of
tuples
Allows more intuitive modeling for applications with
complex data

Intuitive definition:
allow relations whenever we allow atomic (scalar) values
— relations within relations
Retains mathematical foundation of relational model
Violates first normal form.

©Silberschatz, Korth and Sudarshan9.5Database System Concepts - 5th Edition, Aug 9, 2005.

Example of a Nested RelationExample of a Nested Relation

Example: library information system
Each book has

title,
a set of authors,
Publisher, and
a set of keywords

Non-1NF relation books

©Silberschatz, Korth and Sudarshan9.6Database System Concepts - 5th Edition, Aug 9, 2005.

4NF Decomposition of Nested Relation4NF Decomposition of Nested Relation
Remove awkwardness of flat-books by assuming that the following
multivalued dependencies hold:

title author
title keyword
title pub-name, pub-branch

Decompose flat-doc into 4NF using the schemas:
(title, author)
(title, keyword)
(title, pub-name, pub-branch)

©Silberschatz, Korth and Sudarshan9.7Database System Concepts - 5th Edition, Aug 9, 2005.

4NF Decomposition of 4NF Decomposition of flatflat––booksbooks

©Silberschatz, Korth and Sudarshan9.8Database System Concepts - 5th Edition, Aug 9, 2005.

Problems with 4NF SchemaProblems with 4NF Schema

4NF design requires users to include joins in their queries.
1NF relational view flat-books defined by join of 4NF relations:

eliminates the need for users to perform joins,
but loses the one-to-one correspondence between tuples and
documents.
And has a large amount of redundancy

Nested relations representation is much more natural here.

©Silberschatz, Korth and Sudarshan9.9Database System Concepts - 5th Edition, Aug 9, 2005.

Complex Types and SQL:1999Complex Types and SQL:1999
Extensions to SQL to support complex types include:

Collection and large object types
Nested relations are an example of collection types

Structured types
Nested record structures like composite attributes

Inheritance
Object orientation

Including object identifiers and references
Our description is mainly based on the SQL:1999 standard

Not fully implemented in any database system currently
But some features are present in each of the major commercial
database systems

Read the manual of your database system to see what it
supports

©Silberschatz, Korth and Sudarshan9.10Database System Concepts - 5th Edition, Aug 9, 2005.

Structured Types and Inheritance in SQLStructured Types and Inheritance in SQL
Structured types can be declared and used in SQL

create type Name as
(firstname varchar(20),
lastname varchar(20))
final

create type Address as
(street varchar(20),
city varchar(20),
zipcode varchar(20))
not final

Note: final and not final indicate whether subtypes can be created
Structured types can be used to create tables with composite attributes

create table customer (
name Name,
address Address,
dateOfBirth date)

Dot notation used to reference components: name.firstname

©Silberschatz, Korth and Sudarshan9.11Database System Concepts - 5th Edition, Aug 9, 2005.

Structured Types (cont.)Structured Types (cont.)

User-defined row types
create type CustomerType as (

name Name,
address Address,
dateOfBirth date)
not final

Can then create a table whose rows are a user-defined type
create table customer of CustomerType

©Silberschatz, Korth and Sudarshan9.12Database System Concepts - 5th Edition, Aug 9, 2005.

MethodsMethods

Can add a method declaration with a structured type.
method ageOnDate (onDate date)

returns interval year
Method body is given separately.
create instance method ageOnDate (onDate date)

returns interval year
for CustomerType

begin
return onDate - self.dateOfBirth;

end
We can now find the age of each customer:
select name.lastname, ageOnDate (current_date)
from customer

©Silberschatz, Korth and Sudarshan9.13Database System Concepts - 5th Edition, Aug 9, 2005.

InheritanceInheritance
Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20))

Using inheritance to define the student and teacher types
create type Student

under Person
(degree varchar(20),
department varchar(20))

create type Teacher
under Person
(salary integer,
department varchar(20))

Subtypes can redefine methods by using overriding method in place of
method in the method declaration

©Silberschatz, Korth and Sudarshan9.14Database System Concepts - 5th Edition, Aug 9, 2005.

Multiple InheritanceMultiple Inheritance
SQL:1999 and SQL:2003 do not support multiple inheritance

If our type system supports multiple inheritance, we can define a type for
teaching assistant as follows:

create type Teaching Assistant
under Student, Teacher

To avoid a conflict between the two occurrences of department we can
rename them

create type Teaching Assistant
under
Student with (department as student_dept),
Teacher with (department as teacher_dept)

©Silberschatz, Korth and Sudarshan9.15Database System Concepts - 5th Edition, Aug 9, 2005.

Consistency Requirements for Consistency Requirements for SubtablesSubtables

Consistency requirements on subtables and supertables.
Each tuple of the supertable (e.g. people) can correspond to at
most one tuple in each of the subtables (e.g. students and teachers)
Additional constraint in SQL:1999:
All tuples corresponding to each other (that is, with the same values
for inherited attributes) must be derived from one tuple (inserted into
one table).

That is, each entity must have a most specific type
We cannot have a tuple in people corresponding to a tuple each
in students and teachers

©Silberschatz, Korth and Sudarshan9.16Database System Concepts - 5th Edition, Aug 9, 2005.

Array and Array and MultisetMultiset Types in SQLTypes in SQL
Example of array and multiset declaration:

create type Publisher as
(name varchar(20),
branch varchar(20))

create type Book as
(title varchar(20),
author-array varchar(20) array [10],
pub-date date,
publisher Publisher,
keyword-set varchar(20) multiset)

create table books of Book
Similar to the nested relation books, but with array of authors
instead of set

©Silberschatz, Korth and Sudarshan9.17Database System Concepts - 5th Edition, Aug 9, 2005.

Creation of Collection ValuesCreation of Collection Values
Array construction

array [‘Silberschatz’,`Korth’,`Sudarshan’]
Multisets

multisetset [‘computer’, ‘database’, ‘SQL’]
To create a tuple of the type defined by the books relation:

(‘Compilers’, array[`Smith’,`Jones’],
Publisher (`McGraw-Hill’,`New York’),
multiset [`parsing’,`analysis’])

To insert the preceding tuple into the relation books
insert into books
values

(‘Compilers’, array[`Smith’,`Jones’],
Publisher (`McGraw-Hill’,`New York’),
multiset [`parsing’,`analysis’])

©Silberschatz, Korth and Sudarshan9.18Database System Concepts - 5th Edition, Aug 9, 2005.

Querying CollectionQuerying Collection--Valued AttributesValued Attributes
To find all books that have the word “database” as a keyword,

select title
from books
where ‘database’ in (unnest(keyword-set))

We can access individual elements of an array by using indices
E.g.: If we know that a particular book has three authors, we could write:

select author-array[1], author-array[2], author-array[3]
from books
where title = `Database System Concepts’

To get a relation containing pairs of the form “title, author-name” for each
book and each author of the book

select B.title, A.author
from books as B, unnest (B.author-array) as A (author)

To retain ordering information we add a with ordinality clause
select B.title, A.author, A.position
from books as B, unnest (B.author-array) with ordinality as

A (author, position)

©Silberschatz, Korth and Sudarshan9.19Database System Concepts - 5th Edition, Aug 9, 2005.

UnnestingUnnesting
The transformation of a nested relation into a form with fewer (or no)
relation-valued attributes us called unnesting.
E.g.
select title, A as author, publisher.name as pub_name,

publisher.branch as pub_branch, K.keyword
from books as B, unnest(B.author_array) as A (author),

unnest (B.keyword_set) as K (keyword)

©Silberschatz, Korth and Sudarshan9.20Database System Concepts - 5th Edition, Aug 9, 2005.

Nesting Nesting
Nesting is the opposite of unnesting, creating a collection-valued attribute
NOTE: SQL:1999 does not support nesting
Nesting can be done in a manner similar to aggregation, but using the function
colect() in place of an aggregation operation, to create a multiset
To nest the flat-books relation on the attribute keyword:
select title, author, Publisher (pub_name, pub_branch) as publisher,

collect (keyword) as keyword_set
from flat-books
groupby title, author, publisher
To nest on both authors and keywords:
select title, collect (author) as author_set,

Publisher (pub_name, pub_branch) as publisher,
collect (keyword) as keyword_set

from flat-books
group by title, publisher

©Silberschatz, Korth and Sudarshan9.21Database System Concepts - 5th Edition, Aug 9, 2005.

1NF Version of Nested Relation1NF Version of Nested Relation

1NF version of books

flat-books

©Silberschatz, Korth and Sudarshan9.22Database System Concepts - 5th Edition, Aug 9, 2005.

Nesting (Cont.)Nesting (Cont.)

Another approach to creating nested relations is to use subqueries in
the select clause.
select title,

array (select author
from authors as A
where A.title = B.title
order by A.position) as author_array,

Publisher (pub-name, pub-branch) as publisher,
multiset (select keyword
from keywords as K
where K.title = B.title) as keyword_set

from books4 as B

©Silberschatz, Korth and Sudarshan9.23Database System Concepts - 5th Edition, Aug 9, 2005.

ObjectObject--Identity and Reference TypesIdentity and Reference Types
Define a type Department with a field name and a field head which is a
reference to the type Person, with table people as scope:
create type Department (

name varchar (20),
head ref (Person) scope people)

We can then create a table departments as follows
create table departments of Department

We can omit the declaration scope people from the type declaration
and instead make an addition to the create table statement:

create table departments of Department
(head with options scope people)

©Silberschatz, Korth and Sudarshan9.24Database System Concepts - 5th Edition, Aug 9, 2005.

Initializing ReferenceInitializing Reference--Typed ValuesTyped Values
To create a tuple with a reference value, we can first create the tuple
with a null reference and then set the reference separately:
insert into departments

values (`CS’, null)
update departments

set head = (select p.person_id
from people as p

where name = `John’)
where name = `CS’

©Silberschatz, Korth and Sudarshan9.25Database System Concepts - 5th Edition, Aug 9, 2005.

User Generated IdentifiersUser Generated Identifiers
The type of the object-identifier must be specified as part of the type
definition of the referenced table, and
The table definition must specify that the reference is user generated

create type Person
(name varchar(20)
address varchar(20))

ref using varchar(20)
create table people of Person
ref is person_id user generated

When creating a tuple, we must provide a unique value for the identifier:
insert into people (person_id, name, address) values

(‘01284567’, ‘John’, `23 Coyote Run’)
We can then use the identifier value when inserting a tuple into
departments

Avoids need for a separate query to retrieve the identifier:
insert into departments
values(`CS’, `02184567’)

©Silberschatz, Korth and Sudarshan9.26Database System Concepts - 5th Edition, Aug 9, 2005.

User Generated Identifiers (Cont.)User Generated Identifiers (Cont.)

Can use an existing primary key value as the identifier:
create type Person

(name varchar (20) primary key,
address varchar(20))

ref from (name)
create table people of Person

ref is person_id derived
When inserting a tuple for departments, we can then use
insert into departments

values(`CS’,`John’)

©Silberschatz, Korth and Sudarshan9.27Database System Concepts - 5th Edition, Aug 9, 2005.

Path ExpressionsPath Expressions

Find the names and addresses of the heads of all departments:
select head –>name, head –>address
from departments

An expression such as “head–>name” is called a path expression
Path expressions help avoid explicit joins

If department head were not a reference, a join of departments
with people would be required to get at the address
Makes expressing the query much easier for the user

©Silberschatz, Korth and Sudarshan9.28Database System Concepts - 5th Edition, Aug 9, 2005.

Implementing OImplementing O--R FeaturesR Features

Similar to how E-R features are mapped onto relation schemas
Subtable implementation

Each table stores primary key and those attributes defined in that
table

or,
Each table stores both locally defined and inherited attributes

©Silberschatz, Korth and Sudarshan9.29Database System Concepts - 5th Edition, Aug 9, 2005.

Persistent Programming LanguagesPersistent Programming Languages

Languages extended with constructs to handle persistent data
Programmer can manipulate persistent data directly

no need to fetch it into memory and store it back to disk (unlike
embedded SQL)

Persistent objects:
by class - explicit declaration of persistence
by creation - special syntax to create persistent objects
by marking - make objects persistent after creation
by reachability - object is persistent if it is declared explicitly to be
so or is reachable from a persistent object

©Silberschatz, Korth and Sudarshan9.30Database System Concepts - 5th Edition, Aug 9, 2005.

Object Identity and PointersObject Identity and Pointers

Degrees of permanence of object identity
Intraprocedure: only during execution of a single procedure
Intraprogram: only during execution of a single program or query
Interprogram: across program executions, but not if data-storage
format on disk changes
Persistent: interprogram, plus persistent across data
reorganizations

Persistent versions of C++ and Java have been implemented
C++

ODMG C++
ObjectStore

Java
Java Database Objects (JDO)

©Silberschatz, Korth and Sudarshan9.31Database System Concepts - 5th Edition, Aug 9, 2005.

Comparison of OComparison of O--O and OO and O--R DatabasesR Databases

Relational systems
simple data types, powerful query languages, high protection.

Persistent-programming-language-based OODBs
complex data types, integration with programming language, high
performance.

Object-relational systems
complex data types, powerful query languages, high protection.

Note: Many real systems blur these boundaries
E.g. persistent programming language built as a wrapper on a
relational database offers first two benefits, but may have poor
performance.

Database System Concepts
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

©Silberschatz, Korth and SudarshanDatabase System Concepts

End of ChapterEnd of Chapter

	Chapter 9: Object-Based Databases
	Chapter 9: Object-Based Databases
	Object-Relational Data Models
	Complex Data Types
	Example of a Nested Relation
	4NF Decomposition of Nested Relation
	4NF Decomposition of flat–books
	Problems with 4NF Schema
	Complex Types and SQL:1999
	Structured Types and Inheritance in SQL
	Structured Types (cont.)
	Methods
	Inheritance
	Multiple Inheritance
	Consistency Requirements for Subtables
	Array and Multiset Types in SQL
	Creation of Collection Values
	Querying Collection-Valued Attributes
	Unnesting
	Nesting
	1NF Version of Nested Relation
	Nesting (Cont.)
	Object-Identity and Reference Types
	Initializing Reference-Typed Values
	User Generated Identifiers
	User Generated Identifiers (Cont.)
	Path Expressions
	Implementing O-R Features
	Persistent Programming Languages
	Object Identity and Pointers
	Comparison of O-O and O-R Databases
	End of Chapter

