
A P P E N D I X C
Other Relational Query
Languages

In Chapter 6 we presented the relational algebra, which forms the basis of the
widely used SQL query language. SQL was covered in great detail in Chapters 3
and 5. We also presented two more formal languages, the tuple relational calculus
and the domain relational calculus, which are declarative query languages based
on mathematical logic. These two formal languages form the basis for two more
user-friendly languages, QBE and Datalog, that we study in this chapter.

Unlike SQL, QBE is a graphical language, where queries look like tables. QBE and
its variants are widely used in database systems on personal computers. Datalog
has a syntax modeled after the Prolog language. Although not used commercially
at present, Datalog has been used in several research database systems.

For QBE and Datalog, we present fundamental constructs and concepts rather
than a complete users’ guide for these languages. Keep in mind that individual
implementations of a language may differ in details, or may support only a subset
of the full language.

In this chapter we illustrate our concepts using a bank enterprise with the
schema shown in Figure 2.15.

C.1 Query-by-Example

Query-by-Example (QBE) is the name of both a data-manipulation language and
an early database system that included this language.

The QBE data-manipulation language has two distinctive features:

1. Unlike most query languages and programming languages, QBE has a two-
dimensional syntax. Queries look like tables. A query in a one-dimensional
language (for example, SQL) can be written in one (possibly long) line. A two-
dimensional language requires two dimensions for its expression. (There
is a one-dimensional version of QBE, but we shall not consider it in our
discussion.)

1

2 Appendix C Other Relational Query Languages

2. QBE queries are expressed “by example.” Instead of giving a procedure for
obtaining the desired answer, the user gives an example of what is desired.
The system generalizes this example to compute the answer to the query.

Despite these unusual features, there is a close correspondence between QBE and
the domain relational calculus.

There are two flavors of QBE: the original text-based version and a graphical
version developed later that is supported by the Microsoft Access database sys-
tem. In this section we provide a brief overview of the data-manipulation features
of both versions of QBE. We first cover features of the text-based QBE that corre-
spond to the SQL select-from-where clause without aggregation or updates. See
the bibliographical notes for references where you can obtain more information
about how the text-based version of QBE handles sorting of output, aggregation,
and update.

C.1.1 Skeleton Tables

We express queries in QBE by skeleton tables. These tables show the relation
schema, as in Figure C.1. Rather than clutter the display with all skeletons, the
user selects those skeletons needed for a given query and fills in the skeletons
with example rows. An example row consists of constants and example elements,
which are domain variables. To avoid confusion between the two, QBE uses an
underscore character () before domain variables, as in x, and lets constants
appear without any qualification. This convention is in contrast to those in most
other languages, in which constants are quoted and variables appear without any
qualification.

C.1.2 Queries on One Relation

Returning to our ongoing bank example, to find all loan numbers at the Perryridge
branch, we bring up the skeleton for the loan relation, and fill it in as follows:

loan loan_number branch_name amount
P. x Perryridge

This query tells the system to look for tuples in loan that have “Perryridge” as the
value for the branch name attribute. For each such tuple, the system assigns the
value of the loan number attribute to the variable x. It “prints” (actually, displays)
the value of the variable x, because the command P. appears in the loan number
column next to the variable x. Observe that this result is similar to what would
be done to answer the domain-relational-calculus query

{〈x〉 | ∃ b, a (〈x, b, a〉 ∈ loan ∧ b = “Perryridge”)}
QBE assumes that a blank position in a row contains a unique variable. As a

result, if a variable does not appear more than once in a query, it may be omitted.
Our previous query could thus be rewritten as

C.1 Query-by-Example 3

branch branch_name branch_city assets

customer customer_name customer_street customer_city

loan loan_number branch_name amount

borrower customer_name loan_number

account account_number branch_name balance

depositor customer_name account_number

Figure C.1 QBE skeleton tables for the bank example.

loan loan_number branch_name amount
P. Perryridge

QBE (unlike SQL) performs duplicate elimination automatically. To suppress
duplicate elimination, we insert the command ALL. after the P. command:

loan loan_number branch_name amount
P.ALL. Perryridge

To display the entire loan relation, we can create a single row consisting of P.
in every field. Alternatively, we can use a shorthand notation by placing a single
P. in the column headed by the relation name:

4 Appendix C Other Relational Query Languages

loan loan_number branch_name amount
P.

QBE allows queries that involve arithmetic comparisons (for example, >),
rather than equality comparisons, as in “Find the loan numbers of all loans with
a loan amount of more than $700”:

loan loan_number branch_name amount
P. >700

Comparisons can involve only one arithmetic expression on the right-hand
side of the comparison operation (for example, > (x + y − 20)). The expression
can include both variables and constants. The space on the left-hand side of the
comparison operation must be blank. The arithmetic operations that QBE supports
are =, <, ≤, >, ≥, and ¬.

Note that requiring the left-hand side to be blank implies that we cannot
compare two distinct named variables. We shall deal with this difficulty shortly.

As yet another example, consider the query “Find the names of all branches
that are not located in Brooklyn.” This query can be written as follows:

branch branch_name branch_city assets
P. ¬ Brooklyn

The primary purpose of variables in QBE is to force values of certain tuples
to have the same value on certain attributes. Consider the query “Find the loan
numbers of all loans made jointly to Smith and Jones”:

borrower customer_name loan_number
Smith P. x
Jones x

To execute this query, the system finds all pairs of tuples in borrower that agree
on the loan number attribute, where the value for the customer name attribute is
“Smith” for one tuple and “Jones” for the other. The system then displays the
value of the loan number attribute.

In the domain relational calculus, the query would be written as

{〈l〉 | ∃ x (〈x, l〉 ∈ borrower ∧ x = “Smith”)
∧ ∃ x (〈x, l〉 ∈ borrower ∧ x = “Jones”)}

As another example, consider the query “Find all customers who live in the
same city as Jones”:

C.1 Query-by-Example 5

customer customer_name customer_street customer_city
P. x y
Jones y

C.1.3 Queries on Several Relations

QBE allows queries that span several different relations (analogous to Cartesian
product or natural join in the relational algebra). The connections among the
various relations are achieved through variables that force certain tuples to have
the same value on certain attributes. As an illustration, suppose that we want to
find the names of all customers who have a loan from the Perryridge branch. This
query can be written as

loan loan_number branch_name amount
x Perryridge

borrower customer_name loan_number
P. y x

To evaluate the preceding query, the system finds tuples in loan with “Per-
ryridge” as the value for the branch name attribute. For each such tuple, the system
finds tuples in borrower with the same value for the loan number attribute as the
loan tuple. It displays the values for the customer name attribute.

We can use a technique similar to the preceding one to write the query “Find
the names of all customers who have both an account and a loan at the bank”:

depositor customer_name account_number
P. x

borrower customer_name loan_number
x

Now consider the query “Find the names of all customers who have an
account at the bank, but who do not have a loan from the bank.” We express
queries that involve negation in QBE by placing a not sign (¬) under the relation
name and next to an example row:

depositor customer_name account_number
P. x

borrower customer_name loan_number
x¬

6 Appendix C Other Relational Query Languages

Compare the preceding query with our earlier query “Find the names of all
customers who have both an account and a loan at the bank.” The only difference is
the ¬ appearing next to the example row in the borrower skeleton. This difference,
however, has a major effect on the processing of the query. QBE finds all x values
for which

1. There is a tuple in the depositor relation whose customer name is the domain
variable x.

2. There is no tuple in the borrower relation whose customer name is the same
as in the domain variable x.

The ¬ can be read as “there does not exist.”
The fact that we placed the ¬ under the relation name, rather than under an

attribute name, is important. A ¬ under an attribute name is shorthand for 	=.
Thus, to find all customers who have at least two accounts, we write

depositor customer_name account_number
P. x y
x ¬ y

In English, the preceding query reads “Display all customer name values that
appear in at least two tuples, with the second tuple having an account number
different from the first.”

C.1.4 The Condition Box

At times, it is either inconvenient or impossible to express all the constraints on
the domain variables within the skeleton tables. To overcome this difficulty, QBE
includes a condition box feature that allows the expression of general constraints
over any of the domain variables. QBE allows logical expressions to appear in a
condition box. The logical operators are the words and and or, or the symbols
“&” and “|”.

For example, the query “Find the loan numbers of all loans made to Smith, to
Jones (or to both jointly)” can be written as

borrower customer_name loan_number
n P. x

conditions
n = Smith or n = Jones

It is possible to express the above query without using a condition box, by
using P. in multiple rows. However, queries with P. in multiple rows are sometimes
hard to understand, and are best avoided.

C.1 Query-by-Example 7

As yet another example, suppose that we modify the final query in Sec-
tion C.1.3 to be “Find all customers who are not named ‘Jones’ and who have at
least two accounts.” We want to include an “x 	= Jones” constraint in this query.
We do that by bringing up the condition box and entering the constraint “ x ¬ =
Jones”:

conditions
-x ¬ = Jones

Turning to another example, to find all account numbers with a balance
between $1300 and $1500, we write

account account_number branch_name balance
P. x

conditions
x ≥ 1300
x ≤ 1500

As another example, consider the query “Find all branches that have assets
greater than those of at least one branch located in Brooklyn.” This query can be
written as

branch branch_name branch_city assets
P. x y

Brooklyn z

conditions
y > z

QBE allows complex arithmetic expressions to appear in a condition box. We
can write the query “Find all branches that have assets that are at least twice as
large as the assets of one of the branches located in Brooklyn” much as we did in
the preceding query, by modifying the condition box to

conditions
y ≥ 2 * z

To find the account number of accounts with a balance between $1300 and
$2000, but not exactly $1500, we write

8 Appendix C Other Relational Query Languages

account account_number branch_name balance
P. x

x
conditions

(≥ 1300 ≤ 2000 ¬ 1500)and and=

QBE uses the or construct in an unconventional way to allow comparison with
a set of constant values. To find all branches that are located in either Brooklyn or
Queens, we write

branch branch_name branch_city assets
P. x

x = (Brooklyn or Queens)
conditions

C.1.5 The Result Relation

The queries that we have written thus far have one characteristic in common:
The results to be displayed appear in a single relation schema. If the result of a
query includes attributes from several relation schemas, we need a mechanism
to display the desired result in a single table. For this purpose, we can declare a
temporary result relation that includes all the attributes of the result of the query.
We print the desired result by including the command P. in only the result skeleton
table.

As an illustration, consider the query “Find the customer name, account number,
and balance for all accounts at the Perryridge branch.” In relational algebra, we
would construct this query as follows:

1. Join depositor and account.

2. Project customer name, account number, and balance.

To construct the same query in QBE, we proceed as follows:

1. Create a skeleton table, called result, with attributes customer name, account
number, and balance. The name of the newly created skeleton table (that

is, result) must be different from any of the previously existing database
relation names.

2. Write the query.

The resulting query is

C.2 Microsoft Access 9

account account_number branch_name balance
y Perryridge z

depositor customer_name account_number
x y

result customer_name account_number balance
P. x y z

C.2 Microsoft Access

In this section, we survey the QBE version supported by Microsoft Access. While
the original QBE was designed for a text-based display environment, Access QBE is
designed for a graphical display environment, and accordingly is called graphical
query-by-example (GQBE).

Figure C.2 shows a sample GQBE query. The query can be described in English
as “Find the customer name, account number, and balance for all accounts at the
Perryridge branch.” Section C.1.5 showed how it is expressed in QBE.

A minor difference in the GQBE version is that the attributes of a table are
written one below the other, instead of horizontally. A more significant difference

Figure C.2 An example query in Microsoft Access QBE.

10 Appendix C Other Relational Query Languages

is that the graphical version of QBE uses a line linking attributes of two tables,
instead of a shared variable, to specify a join condition.

An interesting feature of QBE in Access is that links between tables are created
automatically, on the basis of the attribute name. In the example in Figure C.2,
the two tables account and depositor were added to the query. The attribute account
number is shared between the two selected tables, and the system automatically

inserts a link between the two tables. In other words, a natural-join condition is
imposed by default between the tables; the link can be deleted if it is not desired.
The link can also be specified to denote a natural outer join, instead of a natural
join.

Another minor difference in Access QBE is that it specifies attributes to be
printed in a separate box, called the design grid, instead of using a P. in the table.
It also specifies selections on attribute values in the design grid.

Queries involving group by and aggregation can be created in Access as
shown in Figure C.3. The query in the figure finds the name, street, and city
of all customers who have more than one account at the bank. The “group by”
attributes as well as the aggregate functions are noted in the design grid.

Note that when a condition appears in a column of the design grid with the
“Total” row set to an aggregate, the condition is applied on the aggregated value;
for example, in Figure C.3, the selection “> 1” on the column account number is
applied on the result of the aggregate “Count.” Such selections correspond to
selections in an SQL having clause.

Selection conditions can be applied on columns of the design grid that are
neither grouped by nor aggregated; such attributes must be marked as “Where”

Figure C.3 An aggregation query in Microsoft Access QBE.

C.3 Datalog 11

in the row “Total.” Such “Where” selections are applied before aggregation, and
correspond to selections in an SQL where clause. However, such columns cannot
be printed (marked as “Show”). Only columns where the “Total” row specifies
either “group by,” or an aggregate function can be printed.

Queries are created through a graphical user interface, by first selecting tables.
Attributes can then be added to the design grid by dragging and dropping them
from the tables. Selection conditions, grouping, and aggregation can then be
specified on the attributes in the design grid. Access QBE supports a number of
other features too, including queries to modify the database through insertion,
deletion, or update.

C.3 Datalog

Datalog is a nonprocedural query language based on the logic-programming
language Prolog. As in the relational calculus, a user describes the information
desired without giving a specific procedure for obtaining that information. The
syntax of Datalog resembles that of Prolog. However, the meaning of Datalog
programs is defined in a purely declarative manner, unlike the more procedural
semantics of Prolog, so Datalog simplifies writing simple queries and makes
query optimization easier.

C.3.1 Basic Structure

A Datalog program consists of a set of rules. Before presenting a formal definition
of Datalog rules and their formal meaning, we consider examples. Consider a
Datalog rule to define a view relation v1 containing account numbers and balances
for accounts at the Perryridge branch with a balance of over $700:

v1(A, B) :– account(A, “Perryridge”, B), B > 700

Datalog rules define views; the preceding rule uses the relation account, and
defines the view relation v1. The symbol :– is read as “if,” and the comma
separating the “account(A, “Perryridge”, B)” from “B > 700” is read as “and.”
Intuitively, the rule is understood as follows:

for all A, B
if (A, “Perryridge”, B) ∈ account and B > 700
then (A, B) ∈ v1

Suppose that the relation account is as shown in Figure C.4. Then, the view
relation v1 contains the tuples in Figure C.5.

To retrieve the balance of account number A-217 in the view relation v1, we
can write the following query:

? v1(“A-217”, B)

12 Appendix C Other Relational Query Languages

account_number branch_name balance
A-101 Downtown 500
A-215 Mianus 700
A-102 Perryridge

Perryridge

Perryridge

400
A-305 Round Hill 350
A-201 900
A-222 Redwood 700
A-217 750

Figure C.4 The account relation.

The answer to the query is

(A-217, 750)

To get the account number and balance of all accounts in relation v1, where the
balance is greater than 800, we can write

? v1(A, B), B > 800

The answer to this query is

(A-201, 900)

In general, we need more than one rule to define a view relation. Each rule
defines a set of tuples that the view relation must contain. The set of tuples in the
view relation is then defined as the union of all these sets of tuples. The following
Datalog program specifies the interest rates for accounts:

interest rate(A, 5) :– account(A, N, B), B < 10000
interest rate(A, 6) :– account(A, N, B), B >= 10000

The program has two rules defining a view relation interest rate, whose attributes
are the account number and the interest rate. The rules say that, if the balance is
less than $10,000, then the interest rate is 5 percent, and if the balance is greater
than or equal to $10,000, the interest rate is 6 percent.

account_number balance
A-201 900
A-217 750

Figure C.5 The v1 relation.

C.3 Datalog 13

Datalog rules can also use negation. The following rules define a view relation
c that contains the names of all customers who have a deposit, but have no loan,
at the bank:

c(N) :– depositor(N,A), not is borrower(N)
is borrower(N) :– borrower(N, L)

Prolog and most Datalog implementations recognize attributes of a relation
by position and omit attribute names. Thus, Datalog rules are compact, compared
to SQL queries. However, when relations have a large number of attributes, or the
order or number of attributes of relations may change, the positional notation
can be cumbersome and error prone. It is not hard to create a variant of Datalog
syntax using named attributes, rather than positional attributes. In such a system,
the Datalog rule defining v1 can be written as

v1(account number A, balance B) :–
account(account number A, branch name “Perryridge”, balance B),
B > 700

Translation between the two forms can be done without significant effort, given
the relation schema.

C.3.2 Syntax of Datalog Rules

Now that we have informally explained rules and queries, we can formally define
their syntax; we discuss their meaning in Section C.3.3. We use the same conven-
tions as in the relational algebra for denoting relation names, attribute names, and
constants (such as numbers or quoted strings). We use uppercase (capital) letters
and words starting with uppercase letters to denote variable names, and lower-
case letters and words starting with lowercase letters to denote relation names
and attribute names. Examples of constants are 4, which is a number, and “John,”
which is a string; X and Name are variables. A positive literal has the form

p(t1, t2, . . . , tn)

where p is the name of a relation with n attributes, and t1, t2, . . . , tn are either
constants or variables. A negative literal has the form

not p(t1, t2, . . . , tn)

where relation p has n attributes. Here is an example of a literal:

account(A, “Perryridge”, B)

Literals involving arithmetic operations are treated specially. For example,
the literal B > 700, although not in the syntax just described, can be conceptually

14 Appendix C Other Relational Query Languages

interest(A, I) :– account(A, “Perryridge”, B),
interest rate(A, R), I = B ∗ R/100

interest rate(A, 5) :– account(A, N, B), B < 10000
interest rate(A, 6) :– account(A, N, B), B >= 10000

Figure C.6 Datalog program that defines interest on Perryridge accounts.

understood to stand for > (B, 700), which is in the required syntax, and where >

is a relation.
But what does this notation mean for arithmetic operations such as “>”? The

relation > (conceptually) contains tuples of the form (x, y) for every possible pair
of values x, y such that x > y. Thus, (2, 1) and (5, −33) are both tuples in >.
Clearly, the (conceptual) relation > is infinite. Other arithmetic operations (such
as >, =, +, and −) are also treated conceptually as relations. For example, A = B
+ C stands conceptually for +(B, C, A), where the relation + contains every tuple
(x, y, z) such that z = x + y.

A fact is written in the form

p(v1, v2, . . . , vn)

and denotes that the tuple (v1, v2, . . . , vn) is in relation p. A set of facts for a relation
can also be written in the usual tabular notation. A set of facts for the relations in
a database schema is equivalent to an instance of the database schema. Rules are
built out of literals and have the form

p(t1, t2, . . . , tn) :– L1, L2, . . . , Ln

where each Li is a (positive or negative) literal. The literal p(t1, t2, . . . , tn) is referred
to as the head of the rule, and the rest of the literals in the rule constitute the body
of the rule.

A Datalog program consists of a set of rules; the order in which the rules
are written has no significance. As mentioned earlier, there may be several rules
defining a relation.

Figure C.6 shows a Datalog program that defines the interest on each account
in the Perryridge branch. The first rule of the program defines a view relation
interest, whose attributes are the account number and the interest earned on the
account. It uses the relation account and the view relation interest rate. The last
two rules of the program are rules that we saw earlier.

A view relation v1 is said to depend directly on a view relation v2 if v2 is
used in the expression defining v1. In the above program, view relation interest
depends directly on relations interest rate and account. Relation interest rate in turn
depends directly on account.

A view relation v1 is said to depend indirectly on view relation v2 if there is a
sequence of intermediate relations i1, i2, . . . , in, for some n, such that v1 depends
directly on i1, i1 depends directly on i2, and so on until in−1 depends on in.

C.3 Datalog 15

empl(X, Y) :– manager(X, Y)
empl(X, Y) :– manager(X, Z), empl(Z, Y)

Figure C.7 Recursive Datalog program.

In the example in Figure C.6, since we have a chain of dependencies from in-
terest to interest rate to account, relation interest also depends indirectly on account.

Finally, a view relation v1 is said to depend on view relation v2 if v1 depends
either directly or indirectly on v2.

A view relation v is said to be recursive if it depends on itself. A view relation
that is not recursive is said to be nonrecursive.

Consider the program in Figure C.7. Here, the view relation empl depends
on itself (because of the second rule), and is therefore recursive. In contrast, the
program in Figure C.6 is nonrecursive.

C.3.3 Semantics of Nonrecursive Datalog

We consider the formal semantics of Datalog programs. For now, we consider only
programs that are nonrecursive. The semantics of recursive programs is somewhat
more complicated; it is discussed in Section C.3.6. We define the semantics of a
program by starting with the semantics of a single rule.

C.3.3.1 Semantics of a Rule

A ground instantiation of a rule is the result of replacing each variable in the
rule by some constant. If a variable occurs multiple times in a rule, all occurrences
of the variable must be replaced by the same constant. Ground instantiations are
often simply called instantiations.

Our example rule defining v1, and an instantiation of the rule, are:

v1(A, B) :– account(A, “Perryridge”, B), B > 700
v1(“A-217”, 750) :– account(“A-217”, “Perryridge”, 750), 750 > 700

Here, variable A was replaced by “A-217” and variable B by 750.
A rule usually has many possible instantiations. These instantiations corre-

spond to the various ways of assigning values to each variable in the rule.
Suppose that we are given a rule R,

p(t1, t2, . . . , tn) :– L1, L2, . . . , Ln

and a set of facts I for the relations used in the rule (I can also be thought of as a
database instance). Consider any instantiation R′ of rule R:

p(v1, v2, . . . , vn) :– l1, l2, . . . , ln

16 Appendix C Other Relational Query Languages

account_number balance
A-201 900
A-217 750

Figure C.8 Result of infer(R, I).

where each literal li is either of the form qi (vi,1, v1,2, . . . , vi,ni) or of the form
not qi (vi,1, vi,2, . . . , vi,ni), and where each vi and each vi, j is a constant.

We say that the body of rule instantiation R′ is satisfied in I if

1. For each positive literal qi (vi,1, . . . , vi,ni) in the body of R′, the set of facts I
contains the fact q (vi,1, . . . , vi,ni).

2. For each negative literal not q j (v j,1, . . . , v j,n j) in the body of R′, the set of
facts I does not contain the fact q j (v j,1, . . . , v j,n j).

We define the set of facts that can be inferred from a given set of facts I using
rule R as

infer(R, I) = {p(t1, . . . , tni) | there is an instantiation R′ of R,
where p(t1, . . . , tni) is the head of R′, and
the body of R′ is satisfied in I }.

Given a set of rules R = {R1, R2, . . . , Rn}, we define

infer(R, I) = infer(R1, I) ∪ infer (R2, I) ∪ . . . ∪ infer(Rn, I)

Suppose that we are given a set of facts I containing the tuples for relation
account in Figure C.4. One possible instantiation of our running-example rule R
is

v1(“A-217”, 750) :– account(“A-217”, “Perryridge”, 750), 750 > 700

The fact account(“A-217”, “Perryridge”, 750) is in the set of facts I . Further, 750 is
greater than 700, and hence conceptually (750, 700) is in the relation “>”. Hence,
the body of the rule instantiation is satisfied in I . There are other possible instan-
tiations of R, and using them we find that infer(R, I) has exactly the set of facts
for v1 that appears in Figure C.8.

C.3.3.2 Semantics of a Program

When a view relation is defined in terms of another view relation, the set of facts
in the first view depends on the set of facts in the second one. We have assumed, in
this section, that the definition is nonrecursive; that is, no view relation depends

C.3 Datalog 17

interest

account

interest_rate
perryridge_account

layer 2

layer 1

database

Figure C.9 Layering of view relations.

(directly or indirectly) on itself. Hence, we can layer the view relations in the
following way, and can use the layering to define the semantics of the program:

• A relation is in layer 1 if all relations used in the bodies of rules defining it
are stored in the database.

• A relation is in layer 2 if all relations used in the bodies of rules defining it
either are stored in the database or are in layer 1.

• In general, a relation p is in layer i + 1 if (1) it is not in layers 1, 2, . . . , i and
(2) all relations used in the bodies of rules defining p either are stored in the
database or are in layers 1, 2, . . . , i .

Consider the program in Figure C.6 with the additional rule:

perryridge account(X, Y) :– account(X, “Perryridge”, Y)

The layering of view relations in the program appears in Figure C.9. The relation
account is in the database. Relation interest rate is in layer 1, since all the relations
used in the two rules defining it are in the database. Relation perryridge account
is similarly in layer 1. Finally, relation interest is in layer 2, since it is not in layer
1 and all the relations used in the rule defining it are in the database or in layers
lower than 2.

We can now define the semantics of a Datalog program in terms of the layering
of view relations. Let the layers in a given program be 1, 2, . . . , n. Let Ri denote
the set of all rules defining view relations in layer i .

• We define I0 to be the set of facts stored in the database, and define I1 as

I1 = I0 ∪ infer (R1, I0)

18 Appendix C Other Relational Query Languages

• We proceed in a similar fashion, defining I2 in terms of I1 and R2, and so on,
using the following definition:

Ii+1 = Ii ∪ infer (Ri+1, Ii)

• Finally, the set of facts in the view relations defined by the program (also called
the semantics of the program) is given by the set of facts In corresponding to
the highest layer n.

For the program in Figure C.6, I0 is the set of facts in the database, and I1 is the
set of facts in the database along with all facts that we can infer from I0 using
the rules for relations interest rate and perryridge account. Finally, I2 contains the
facts in I1 along with the facts for relation interest that we can infer from the facts
in I1 by the rule defining interest. The semantics of the program—that is, the set
of those facts that are in each of the view relations—is defined as the set of facts
I2.

C.3.4 Safety

It is possible to write rules that generate an infinite number of answers. Consider
the rule

gt(X, Y) :– X > Y

Since the relation defining > is infinite, this rule would generate an infinite num-
ber of facts for the relation gt, which calculation would, correspondingly, take an
infinite amount of time and space.

The use of negation can also cause similar problems. Consider the rule:

not in loan(L, B, A) :– not loan(L, B, A)

The idea is that a tuple (loan number, branch name, amount) is in view relation
not in loan if the tuple is not present in the loan relation. However, if the set of
possible loan numbers, branch names, and balances is infinite, the relation not in
loan would be infinite as well.

Finally, if we have a variable in the head that does not appear in the body, we
may get an infinite number of facts where the variable is instantiated to different
values.

So that these possibilities are avoided, Datalog rules are required to satisfy
the following safety conditions:

1. Every variable that appears in the head of the rule also appears in a nonar-
ithmetic positive literal in the body of the rule.

2. Every variable appearing in a negative literal in the body of the rule also
appears in some positive literal in the body of the rule.

C.3 Datalog 19

If all the rules in a nonrecursive Datalog program satisfy the preceding safety
conditions, then all the view relations defined in the program can be shown
to be finite, as long as all the database relations are finite. The conditions can be
weakened somewhat to allow variables in the head to appear only in an arithmetic
literal in the body in some cases. For example, in the rule

p(A) :– q(B), A = B + 1

we can see that if relation q is finite, then so is p, according to the properties of
addition, even though variable A appears in only an arithmetic literal.

C.3.5 Relational Operations in Datalog

Nonrecursive Datalog expressions without arithmetic operations are equivalent
in expressive power to expressions using the basic operations in relational algebra
(∪, −, ×, �, �, and �). We shall not formally prove this assertion here. Rather,
we shall show through examples how the various relational-algebra operations
can be expressed in Datalog. In all cases, we define a view relation called query to
illustrate the operations.

We have already seen how to do selection by using Datalog rules. We perform
projections simply by using only the required attributes in the head of the rule.
To project attribute account name from account, we use

query(A) :– account(A, N, B)

We can obtain the Cartesian product of two relations r1 and r2 in Datalog as
follows:

query(X1, X2, . . . , Xn, Y1, Y2, . . . , Ym) :– r1(X1, X2, . . . , Xn), r2(Y1, Y2, . . . , Ym)

where r1 is of arity n, and r2 is of arity m, and the X1, X2, . . . , Xn, Y1, Y2, . . . , Ym
are all distinct variable names.

We form the union of two relations r1 and r2 (both of arity n) in this way:

query(X1, X2, . . . , Xn) :– r1(X1, X2, . . . , Xn)
query(X1, X2, . . . , Xn) :– r2(X1, X2, . . . , Xn)

We form the set difference of two relations r1 and r2 in this way:

query(X1, X2, . . . , Xn) :– r1(X1, X2, . . . , Xn), not r2(X1, X2, . . . , Xn)

Finally, we note that with the positional notation used in Datalog, the renaming
operator � is not needed. A relation can occur more than once in the rule body,
but instead of renaming to give distinct names to the relation occurrences, we can
use different variable names in the different occurrences.

20 Appendix C Other Relational Query Languages

It is possible to show that we can express any nonrecursive Datalog query
without arithmetic by using the relational-algebra operations. We leave this
demonstration as an exercise for you to carry out. You can thus establish the
equivalence of the basic operations of relational algebra and nonrecursive Data-
log without arithmetic operations.

Certain extensions to Datalog support the relational update operations (in-
sertion, deletion, and update). The syntax for such operations varies from im-
plementation to implementation. Some systems allow the use of + or − in rule
heads to denote relational insertion and deletion. For example, we can move all
accounts at the Perryridge branch to the Johnstown branch by executing

+ account(A, “Johnstown”, B) :– account(A, “Perryridge”, B)
− account(A, “Perryridge”, B) :– account(A, “Perryridge”, B)

Some implementations of Datalog also support the aggregation operation of
extended relational algebra. Again, there is no standard syntax for this operation.

C.3.6 Recursion in Datalog

Several database applications deal with structures that are similar to tree data
structures. For example, consider employees in an organization. Some of the
employees are managers. Each manager manages a set of people who report to
him or her. But each of these people may in turn be managers, and they in turn
may have other people who report to them. Thus employees may be organized
in a structure similar to a tree.

Suppose that we have a relation schema

Manager schema = (employee name, manager name)

Let manager be a relation on the preceding schema.
Suppose now that we want to find out which employees are supervised,

directly or indirectly by a given manager—say, Jones. Thus, if the manager of Alon
is Barinsky, and the manager of Barinsky is Estovar, and the manager of Estovar
is Jones, then Alon, Barinsky, and Estovar are the employees controlled by Jones.
People often write programs to manipulate tree data structures by recursion.
Using the idea of recursion, we can define the set of employees controlled by
Jones as follows: The people supervised by Jones are (1) people whose manager
is Jones and (2) people whose manager is supervised by Jones. Note that case (2)
is recursive.

We can encode the preceding recursive definition as a recursive Datalog view,
called empl jones:

empl jones(X) :– manager(X, “Jones”)
empl jones(X) :– manager(X, Y), empl jones(Y)

C.3 Datalog 21

procedure Datalog-Fixpoint
I = set of facts in the database
repeat

Old I = I
I = I ∪ infer(R, I)

until I = Old I

Figure C.10 Datalog-Fixpoint procedure.

The first rule corresponds to case (1); the second rule corresponds to case (2). The
view empl jones depends on itself because of the second rule; hence, the preced-
ing Datalog program is recursive. We assume that recursive Datalog programs
contain no rules with negative literals. The reason will become clear later. The
bibliographical notes refer to papers that describe where negation can be used in
recursive Datalog programs.

The view relations of a recursive program that contains a set of rules R are
defined to contain exactly the set of facts I computed by the iterative procedure
Datalog-Fixpoint in Figure C.10. The recursion in the Datalog program has been
turned into an iteration in the procedure. At the end of the procedure, infer(R, I)∪
D = I , where D is the set of facts in the database, and I is called a fixed point of
the program.

Consider the program defining empl jones, with the relation manager, as in
Figure C.11. The set of facts computed for the view relation empl jones in each
iteration appears in Figure C.12. In each iteration, the program computes one more
level of employees under Jones and adds it to the set empl jones. The procedure
terminates when there is no change to the set empl jones, which the system detects
by finding I = Old I . Such a termination point must be reached, since the set of
managers and employees is finite. On the given manager relation, the procedure
Datalog-Fixpoint terminates after iteration 4, when it detects that no new facts
have been inferred.

You should verify that, at the end of the iteration, the view relation empl jones
contains exactly those employees who work under Jones. To print out the names

employee_name manager_name
Alon Barinsky
Barinsky Estovar
Corbin Duarte
Duarte Jones
Estovar Jones
Jones Klinger
Rensal Klinger

Figure C.11 The manager relation.

22 Appendix C Other Relational Query Languages

Iteration number Tuples in empl_jones
0
1 (Duarte), (Estovar)
2 (Duarte), (Estovar), (Barinsky), (Corbin)
3 (Duarte), (Estovar), (Barinsky), (Corbin), (Alon)
4 (Duarte), (Estovar), (Barinsky), (Corbin), (Alon)

Figure C.12 Employees of Jones in iterations of procedure Datalog-Fixpoint.

of the employees supervised by Jones defined by the view, you can use the query

? empl jones(N)

To understand procedure Datalog-Fixpoint, we recall that a rule infers new
facts from a given set of facts. Iteration starts with a set of facts I set to the facts in
the database. These facts are all known to be true, but there may be other facts that
are true as well.1 Next, the set of rules R in the given Datalog program is used
to infer what facts are true, given that facts in I are true. The inferred facts are
added to I , and the rules are used again to make further inferences. This process
is repeated until no new facts can be inferred.

For safe Datalog programs, we can show that there will be some point where
no more new facts can be derived; that is, for some k, Ik+1 = Ik . At this point,
then, we have the final set of true facts. Further, given a Datalog program and a
database, the fixed-point procedure infers all the facts that can be inferred to be
true.

If a recursive program contains a rule with a negative literal, the following
problem can arise. Recall that when we make an inference by using a ground
instantiation of a rule, for each negative literal not q in the rule body we check
that q is not present in the set of facts I . This test assumes that q cannot be
inferred later. However, in the fixed-point iteration, the set of facts I grows in
each iteration, and even if q is not present in I at one iteration, it may appear in
I later. Thus, we may have made an inference in one iteration that can no longer
be made at an earlier iteration, and the inference was incorrect. We require that
a recursive program should not contain negative literals, in order to avoid such
problems.

Instead of creating a view for the employees supervised by a specific manager
Jones, we can create a more general view relation empl that contains every tuple

1The word “fact” is used in a technical sense to note membership of a tuple in a relation. Thus, in the Datalog sense of
“fact,” a fact may be true (the tuple is indeed in the relation) or false (the tuple is not in the relation).

C.3 Datalog 23

(X, Y) such that X is directly or indirectly managed by Y, using the following
program (also shown in Figure C.7):

empl(X, Y) :– manager(X, Y)
empl(X, Y) :– manager(X, Z), empl(Z, Y)

To find the direct and indirect subordinates of Jones, we simply use the query

? empl(X, “Jones”)

which gives the same set of values for X as the view empl jones. Most Datalog
implementations have sophisticated query optimizers and evaluation engines
that can run the preceding query at about the same speed they could evaluate the
view empl jones.

The view empl defined previously is called the transitive closure of the relation
manager. If the relation manager were replaced by any other binary relation R, the
preceding program would define the transitive closure of R.

C.3.7 The Power of Recursion

Datalog with recursion has more expressive power than Datalog without recur-
sion. In other words, there are queries on the database that we can answer by
using recursion, but cannot answer without using it. For example, we cannot
express transitive closure in Datalog without using recursion (or for that matter,
in SQL or QBE without recursion). Consider the transitive closure of the relation
manager. Intuitively, a fixed number of joins can find only those employees that
are some (other) fixed number of levels down from any manager (we will not
attempt to prove this result here). Since any given nonrecursive query has a fixed
number of joins, there is a limit on how many levels of employees the query
can find. If the number of levels of employees in the manager relation is more
than the limit of the query, the query will miss some levels of employees. Thus, a
nonrecursive Datalog program cannot express transitive closure.

An alternative to recursion is to use an external mechanism, such as embedded
SQL, to iterate on a nonrecursive query. The iteration in effect implements the
fixed-point loop of Figure C.10. In fact, that is how such queries are implemented
on database systems that do not support recursion. However, writing such queries
by iteration is more complicated than using recursion, and evaluation by recursion
can be optimized to run faster than evaluation by iteration.

The expressive power provided by recursion must be used with care. It is
relatively easy to write recursive programs that will generate an infinite number
of facts, as this program illustrates:

number(0)
number(A) :– number(B), A = B + 1

24 Appendix C Other Relational Query Languages

The program generates number (n) for all positive integers n, which is clearly
infinite, and will not terminate. The second rule of the program does not satisfy
the safety condition in Section C.3.4. Programs that satisfy the safety condition
will terminate, even if they are recursive, provided that all database relations
are finite. For such programs, tuples in view relations can contain only constants
from the database, and hence the view relations must be finite. The converse is
not true; that is, there are programs that do not satisfy the safety conditions, but
that do terminate.

The procedure Datalog-Fixpoint iteratively uses the function infer(R, I) to
compute what facts are true, given a recursive Datalog program. Although we
considered only the case of Datalog programs without negative literals, the pro-
cedure can also be used on views defined in other languages, such as SQL or
relational algebra, provided that the views satisfy the conditions described next.
Regardless of the language used to define a view V, the view can be thought of as
being defined by an expression EV that, given a set of facts I, returns a set of facts
EV(I) for the view relation V. Given a set of view definitions R (in any language),
we can define a function infer(R, I) that returns I ∪ ⋃

V∈R EV(I). The preceding
function has the same form as the infer function for Datalog.

A view V is said to be monotonic if, given any two sets of facts I1 and I2 such
that I1 ⊆ I2, then EV(I1) ⊆ EV(I2), where EV is the expression used to define V.
Similarly, the function infer is said to be monotonic if

I1 ⊆ I2 ⇒ infer(R, I1) ⊆ infer(R, I2)

Thus, if infer is monotonic, given a set of facts I0 that is a subset of the true facts,
we can be sure that all facts in infer(R, I0) are also true. Using the same reasoning
as in Section C.3.6, we can then show that procedure Datalog-Fixpoint is sound
(that is, it computes only true facts), provided that the function infer is monotonic.

Relational-algebra expressions that use only the operators �, �, ×, �, ∪, ∩, or
� are monotonic. Recursive views can be defined by using such expressions.

However, relational expressions that use the operator − are not monotonic.
For example, let manager 1 and manager 2 be relations with the same schema as
the manager relation. Let

I1 = { manager 1(“Alon”, “Barinsky”), manager 1(“Barinsky”, “Estovar”),
manager 2(“Alon”, “Barinsky”) }

and let

I2 = { manager 1(“Alon”, “Barinsky”), manager 1(“Barinsky”, “Estovar”),
manager 2(“Alon”, “Barinsky”), manager 2(“Barinsky”, “Estovar”)}

C.4 Summary 25

Consider the expression manager 1 − manager 2. Now the result of the preceding
expression on I1 is (“Barinsky”, “Estovar”), whereas the result of the expression
on I2 is the empty relation. But I1 ⊆ I2; hence, the expression is not monotonic.
Expressions using the grouping operation of extended relational algebra are also
nonmonotonic.

The fixed-point technique does not work on recursive views defined with
nonmonotonic expressions. However, there are instances where such views are
useful, particularly for defining aggregates on “part–subpart” relationships. Such
relationships define what subparts make up each part. Subparts themselves may
have further subparts, and so on; hence, the relationships, like the manager rela-
tionship, have a natural recursive structure. An example of an aggregate query
on such a structure would be to compute the total number of subparts of each
part. Writing this query in Datalog or in SQL (without procedural extensions)
would require the use of a recursive view on a nonmonotonic expression. The
bibliographical notes provide references to research on defining such views.

It is possible to define some kinds of recursive queries without using views.
For example, extended relational operations have been proposed to define tran-
sitive closure, and extensions to the SQL syntax to specify (generalized) transitive
closure have been proposed. However, recursive view definitions provide more
expressive power than do the other forms of recursive queries.

C.4 Summary

• The tuple relational calculus and the domain relational calculus are terse,
formal languages that are inappropriate for casual users of a database system.
Commercial database systems, therefore, use languages with more “syntactic
sugar.” We have considered two query languages: QBE and Datalog.

• QBE is based on a visual paradigm: The queries look much like tables.

• QBE and its variants have become popular with nonexpert database users
because of the intuitive simplicity of the visual paradigm. The widely used
Microsoft Access database system supports a graphical version of QBE, called
GQBE.

• Datalog is derived from Prolog, but unlike Prolog, it has a declarative se-
mantics, making simple queries easier to write and query evaluation easier
to optimize.

• Defining views is particularly easy in Datalog, and the recursive views that
Datalog supports make it possible to write queries, such as transitive-closure
queries, that cannot be written without recursion or iteration. However, no
accepted standards exist for important features, such as grouping and aggre-
gation, in Datalog. Datalog remains mainly a research language.

26 Appendix C Other Relational Query Languages

Review Terms

• Tuple relational calculus
• Domain relational calculus
• Safety of expressions
• Expressive power of languages
• Query-by-Example (QBE)
• Two-dimensional syntax
• Skeleton tables
• Example rows
• Condition box
• Result relation
• Microsoft Access
• Graphical Query-By-Example

(GQBE)
• Design grid
• Datalog
• Rules
• Uses
• Defines
• Positive literal
• Negative literal
• Fact

• Rule

◦ Head

◦ Body

• Datalog program
• Depend on

◦ Directly

◦ Indirectly

• Recursive view
• Nonrecursive view
• Instantiation

◦ Ground instantiation

◦ Satisfied

• Infer
• Semantics

◦ Of a rule

◦ Of a program

• Safety
• Fixed point
• Transitive closure
• Monotonic view definition

Practice Exercises

C.1 Let the following relation schemas be given:

R = (A, B, C)
S = (D, E, F)

Let relations r(R) and s(S) be given. Give an expression in the tuple rela-
tional calculus that is equivalent to each of the following:

a. �A(r)

b. �B = 17 (r)

c. r × s

Practice Exercises 27

d. �A,F (�C = D(r × s))

C.2 Let R = (A, B, C), and let r1 and r2 both be relations on schema R. Give
an expression in the domain relational calculus that is equivalent to each
of the following:

a. �A(r1)

b. �B = 17 (r1)

c. r1 ∪ r2

d. r1 ∩ r2

e. r1 − r2

f. �A,B (r1) � �B,C (r2)

C.3 Let R = (A, B) and S = (A, C), and let r (R) and s(S) be relations. Write
expressions in QBE and Datalog for each of the following queries:

a. {< a > | ∃ b (< a , b > ∈ r ∧ b = 7)}
b. {< a , b, c > | < a , b > ∈ r ∧ < a , c > ∈ s}
c. {< a > | ∃ c (< a , c > ∈ s ∧ ∃ b1, b2 (< a , b1 > ∈ r ∧ < c, b2 > ∈

r ∧ b1 > b2))}

C.4 Consider the relational database of Figure C.13 where the primary keys
are underlined. Give an expression in Datalog for each of the following
queries:

a. Find all employees who work (directly or indirectly) under the man-
ager “Jones.”

b. Find all cities of residence of all employees who work (directly or
indirectly) under the manager “Jones.”

c. Find all pairs of employees who have a (direct or indirect) manager
in common.

d. Find all pairs of employees who have a (direct or indirect) manager in
common, and are at the same number of levels of supervision below
the common manager.

C.5 Describe how an arbitrary Datalog rule can be expressed as an extended
relational-algebra view.

28 Appendix C Other Relational Query Languages

employee (person name, street, city)
works (person name, company name, salary)
company (company name, city)
manages (person name, manager name)

Figure C.13 Employee database.

Exercises

C.6 Consider the employee database of Figure C.13. Give expressions in tuple
relational calculus and domain relational calculus for each of the following
queries:

a. Find the names of all employees who work for First Bank Corpora-
tion.

b. Find the names and cities of residence of all employees who work
for First Bank Corporation.

c. Find the names, street addresses, and cities of residence of all em-
ployees who work for First Bank Corporation and earn more than
$10,000 per annum.

d. Find all employees who live in the same city as that in which the
company for which they work is located.

e. Find all employees who live in the same city and on the same street
as their managers.

f. Find all employees in the database who do not work for First Bank
Corporation.

g. Find all employees who earn more than every employee of Small
Bank Corporation.

h. Assume that the companies may be located in several cities. Find all
companies located in every city in which Small Bank Corporation is
located.

C.7 Let R = (A, B) and S = (A, C), and let r (R) and s(S) be relations.
Write relational-algebra expressions equivalent to the following domain-
relational-calculus expressions:

a. {< a > | ∃ b (< a , b > ∈ r ∧ b = 17)}
b. {< a , b, c > | < a , b > ∈ r ∧ < a , c > ∈ s}
c. {< a > | ∃ b (< a , b > ∈ r) ∨ ∀ c (∃ d (< d, c > ∈ s) ⇒ < a , c > ∈ s)}
d. {< a > | ∃ c (< a , c > ∈ s ∧ ∃ b1, b2 (< a , b1 > ∈ r ∧ < c, b2 >

∈ r ∧ b1 > b2))}

Exercises 29

person (driver id, name, address)
car (license, model, year)
accident (report number, date, location)
owns (driver id, license)
participated (driver id, license, report number, damage amount)

Figure C.14 Insurance database.

C.8 Repeat Exercise C.7, writing SQL queries instead of relational-algebra ex-
pressions.

C.9 Let R = (A, B) and S = (A, C), and let r (R) and s(S) be relations.
Using the special constant null, write tuple-relational-calculus expressions
equivalent to each of the following:

a. r � s

b. r � s

c. r � s

C.10 Consider the insurance database of Figure C.14, where the primary keys
are underlined. Construct the following GQBE queries for this relational
database.

a. Find the total number of people who owned cars that were involved
in accidents in 1989.

b. Find the number of accidents in which the cars belonging to “John
Smith” were involved.

C.11 Give a tuple-relational-calculus expression to find the maximum value in
relation r (A).

C.12 Repeat Exercise C.6 using QBE and Datalog.

C.13 Let R = (A, B, C), and let r1 and r2 both be relations on schema R. Give
expressions in QBE and Datalog equivalent to each of the following queries:

a. r1 ∪ r2

b. r1 ∩ r2

c. r1 − r2

d. �AB(r1) � �BC (r2)

C.14 Write an extended relational-algebra view equivalent to the Datalog rule

p(A, C, D) :– q1 (A, B), q2 (B, C), q3 (4, B), D = B + 1

30 Appendix C Other Relational Query Languages

Tools

The Microsoft Access QBE is currently the most widely available implementation
of QBE. The QMF and Everywhere editions of IBM DB2 also support QBE.

The Coral system from the University of Wisconsin–Madison (www.cs.wisc.edu/-
coral) is an implementation of Datalog. The XSB system from the State University of
New York (SUNY) Stony Brook (xsb.sourceforge.net) is a widely used Prolog imple-
mentation that supports database querying; recall that Datalog is a nonprocedural
subset of Prolog.

Bibliographical Notes

The original definition of tuple relational calculus is in Codd [1972]. A formal
proof of the equivalence of tuple relational calculus and relational algebra is in
Codd [1972]. Several extensions to the relational calculus have been proposed.
Klug [1982] and Escobar-Molano et al. [1993] describe extensions to scalar aggre-
gate functions.

The QBE database system was developed at IBM’s T. J. Watson Research Center
in the early 1970s. The QBE data-manipulation language was later used in IBM’s
Query Management Facility (QMF). The original version of Query-by-Example is
described in Zloof [1977]. Other QBE implementations include Microsoft Access,
and Borland Paradox (which is no longer supported).

Datalog programs that have both recursion and negation can be assigned a
simple semantics if the negation is “stratified”—that is, if there is no recursion
through negation. Chandra and Harel [1982] and Apt and Pugin [1987] discuss
stratified negation. An important extension, called the modular-stratification se-
mantics, which handles a class of recursive programs with negative literals, is
discussed in Ross [1990]; an evaluation technique for such programs is described
by Ramakrishnan et al. [1992].

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

