
C H A P T E R 10

Storage and File Structure

Practice Exercises

10.1 Answer: This arrangement has the problem that Pi and B4i−3 are on the
same disk. So if that disk fails, reconstruction of B4i−3 is not possible, since
data and parity are both lost.

10.2 Answer:

a. It is stored as an array containing physical page numbers, indexed by
logical page numbers. This representation gives an overhead equal
to the size of the page address for each page.

b. It takes 32 bits for every page or every 4096 bytes of storage. Hence,
it takes 64 megabytes for the 64 gigabyte of flash storage.

c. If the mapping is such that, every p consecutive logical page num-
bers are mapped to p consecutive physical pages, we can store the
mapping of the first page for every p pages. This reduces the in
memory structure by a factor of p. Further, if p is an exponent of
2, we can avoid some of the least significant digits of the addresses
stored.

10.3 Answer:

a. To ensure atomicity, a block write operation is carried out as follows:

i. Write the information onto the first physical block.

ii. When the first write completes successfully, write the same in-
formation onto the second physical block.

iii. The output is declared completed only after the second write
completes successfully.

During recovery, each pair of physical blocks is examined. If both
are identical and there is no detectable partial-write, then no further
actions are necessary. If one block has been partially rewritten, then
we replace its contents with the contents of the other block. If there

1



2 Chapter 10 Storage and File Structure

has been no partial-write, but they differ in content, then we replace
the contents of the first block with the contents of the second, or vice
versa. This recovery procedure ensures that a write to stable storage
either succeeds completely (that is, updates both copies) or results
in no change.
The requirement of comparing every corresponding pair of blocks
during recovery is expensive to meet. We can reduce the cost greatly
by keeping track of block writes that are in progress, using a small
amount of nonvolatile RAM. On recovery, only blocks for which
writes were in progress need to be compared.

b. The idea is similar here. For any block write, the information block is
written first followed by the corresponding parity block. At the time
of recovery, each set consisting of the nth block of each of the disks
is considered. If none of the blocks in the set have been partially-
written, and the parity block contents are consistent with the con-
tents of the information blocks, then no further action need be taken.
If any block has been partially-written, it’s contents are reconstructed
using the other blocks. If no block has been partially-written, but the
parity block contents do not agree with the information block con-
tents, the parity block’s contents are reconstructed.

10.4 Answer:

a. Although moving record 6 to the space for 5, and moving record 7
to the space for 6, is the most straightforward approach, it requires
moving the most records, and involves the most accesses.

b. Moving record 7 to the space for 5 moves fewer records, but destroys
any ordering in the file.

c. Marking the space for 5 as deleted preserves ordering and moves
no records, but requires additional overhead to keep track of all
of the free space in the file. This method may lead to too many
“holes” in the file, which if not compacted from time to time, will
affect performance because of reduced availability of contiguous
free records.

10.5 Answer: (We use “↑ i ” to denote a pointer to record “ i” .)
The original file of Figure 10.7.



Exercises 3

header ↑ 1
record 0 10101 Srinivasan Comp. Sci. 65000
record 1 ↑ 4
record 2 15151 Mozart Music 40000
record 3 22222 Einstein Physics 95000
record 4 ↑ 6
record 5 33456 Gold Physics 87000
record 6
record 7 58583 Califieri History 62000
record 8 76543 Singh Finance 80000
record 9 76766 Crick Biology 72000
record 10 83821 Brandt Comp. Sci. 92000
record 11 98345 Kim Elec. Eng. 80000

a. The file after insert (24556, Turnamian, Finance, 98000).

header ↑ 4
record 0 10101 Srinivasan Comp. Sci. 65000
record 1 24556 Turnamian Finance 98000
record 2 15151 Mozart Music 40000
record 3 22222 Einstein Physics 95000
record 4 ↑ 6
record 5 33456 Gold Physics 87000
record 6
record 7 58583 Califieri History 62000
record 8 76543 Singh Finance 80000
record 9 76766 Crick Biology 72000
record 10 83821 Brandt Comp. Sci. 92000
record 11 98345 Kim Elec. Eng. 80000

b. The file after delete record 2.



4 Chapter 10 Storage and File Structure

header ↑ 2
record 0 10101 Srinivasan Comp. Sci. 65000
record 1 24556 Turnamian Finance 98000
record 2 ↑ 4
record 3 22222 Einstein Physics 95000
record 4 ↑ 6
record 5 33456 Gold Physics 87000
record 6
record 7 58583 Califieri History 62000
record 8 76543 Singh Finance 80000
record 9 76766 Crick Biology 72000
record 10 83821 Brandt Comp. Sci. 92000
record 11 98345 Kim Elec. Eng. 80000

The free record chain could have alternatively been from the header
to 4, from 4 to 2, and finally from 2 to 6.

c. The file after insert (34556, Thompson, Music, 67000).

header ↑ 4
record 0 10101 Srinivasan Comp. Sci. 65000
record 1 24556 Turnamian Finance 98000
record 2 34556 Thompson Music 67000
record 3 22222 Einstein Physics 95000
record 4 ↑ 6
record 5 33456 Gold Physics 87000
record 6
record 7 58583 Califieri History 62000
record 8 76543 Singh Finance 80000
record 9 76766 Crick Biology 72000
record 10 83821 Brandt Comp. Sci. 92000
record 11 98345 Kim Elec. Eng. 80000

10.6 Answer:
The relation section with three tuples is as follows.

course id sec id semester year building room number time slot id

BIO-301 1 Summer 2010 Painter 514 A

CS-101 1 Fall 2009 Packard 101 H

CS-347 1 Fall 2009 Taylor 3128 C

The relation takes with five students for each section is as follows.



Exercises 5

ID course id sec id semester year grade

00128 CS-101 1 Fall 2009 A
00128 CS-347 1 Fall 2009 A-
12345 CS-347 1 Fall 2009 A
12345 CS-101 1 Fall 2009 C
17968 BIO-301 1 Summer 2010 null
23856 CS-347 1 Fall 2009 A
45678 CS-101 1 Fall 2009 F
54321 CS-101 1 Fall 2009 A-
54321 CS-347 1 Fall 2009 A
59762 BIO-301 1 Summer 2010 null
76543 CS-101 1 Fall 2009 A
76543 CS-347 1 Fall 2009 A
78546 BIO-301 1 Summer 2010 null
89729 BIO-301 1 Summer 2010 null
98988 BIO-301 1 Summer 2010 null

The multitable clustering for the above two instances can be taken as:

BIO-301 1 Summer 2010 Painter 514 A
17968 BIO-301 1 Summer 2010 null
59762 BIO-301 1 Summer 2010 null
78546 BIO-301 1 Summer 2010 null
89729 BIO-301 1 Summer 2010 null
98988 BIO-301 1 Summer 2010 null
CS-101 1 Fall 2009 Packard 101 H
00128 CS-101 1 Fall 2009 A
12345 CS-101 1 Fall 2009 C
45678 CS-101 1 Fall 2009 F
54321 CS-101 1 Fall 2009 A-
76543 CS-101 1 Fall 2009 A
CS-347 1 Fall 2009 Taylor 3128 C
00128 CS-347 1 Fall 2009 A-
12345 CS-347 1 Fall 2009 A
23856 CS-347 1 Fall 2009 A
54321 CS-347 1 Fall 2009 A
76543 CS-347 1 Fall 2009 A

10.7 Answer:

a. Everytime a record is inserted/deleted, check if the usage of the
block has changed levels. In that case, update the corresponding



6 Chapter 10 Storage and File Structure

bits. Note that we don’t need to access the bitmaps at all unless
the usage crosses a boundary, so in most of the cases there is no
overhead.

b. When free space for a large record or a set of records is sought, then
multiple free list entries may have to be scanned before finding a
proper sized one, so overheads are much higher. With bitmaps, one
page of bitmap can store free info for many pages, so I/O spent for
finding free space is minimal. Similarly, when a whole block or a
large part of it is deleted, bitmap technique is more convenient for
updating free space information.

10.8 Answer: Hash table is the common option for large database buffers. The
hash function helps in locating the appropriate bucket, on which linear
search is performed.

10.9 Answer:

a. MRU is preferable to LRU where R1 1 R2 is computed by using
a nested-loop processing strategy where each tuple in R2 must be
compared to each block in R1. After the first tuple of R2 is processed,
the next needed block is the first one in R1. However, since it is
the least recently used, the LRU buffer management strategy would
replace that block if a new block was needed by the system.

b. LRU is preferable to MRU where R1 1 R2 is computed by sorting
the relations by join values and then comparing the values by pro-
ceeding through the relations. Due to duplicate join values, it may
be necessary to “back-up” in one of the relations. This “backing-up”
could cross a block boundary into the most recently used block,
which would have been replaced by a system using MRU buffer
management, if a new block was needed.

Under MRU, some unused blocks may remain in memory forever. In
practice, MRU can be used only in special situations like that of the
nested-loop strategy discussed in Exercise 10.9a.


