
C H A P T E R 11

Indexing and Hashing

Practice Exercises

11.1 Answer: Reasons for not keeping indices on every attribute include:

• Every index requires additional CPU time and disk I/O overhead
during inserts and deletions.

• Indices on non-primary keys might have to be changed on updates,
although an index on the primary key might not (this is because
updates typically do not modify the primary key attributes).

• Each extra index requires additional storage space.

• For queries which involve conditions on several search keys, effi-
ciency might not be bad even if only some of the keys have indices
on them. Therefore database performance is improved less by adding
indices when many indices already exist.

11.2 Answer: In general, it is not possible to have two primary indices on
the same relation for different keys because the tuples in a relation would
have to be stored in different order to have same values stored together.
We could accomplish this by storing the relation twice and duplicating all
values, but for a centralized system, this is not efficient.

11.3 Answer: The following were generated by inserting values into the B+-
tree in ascending order. A node (other than the root) was never allowed
to have fewer than ⌈n/2⌉ values/pointers.

a.

1



2 Chapter 11 Indexing and Hashing

5 7 11 17 19 23 29 3132

29

19

115

b.

7 19

2 3 5 7 11 17 19 23 29 31

c.

11

11 17 19 23 29 312 3 5 7

11.4 Answer:

• With structure 11.3.a:

Insert 9:

19

5 119 29

2 3 5 7 11 17 19 23 29 31 

Insert 10:

19

5 9 11 29

2 3 5 7 10 11 17 19 23 29 31 

Insert 8:



Exercises 3

19

5 9 11 29

2 3 5 7 10 11 17 19 23 29 31 

Delete 23:

11

195 9

2 3 5 7 8 9 10 11 17 19 29 31

Delete 19:

11

5 9 29

2 3 5 7 8 9 10 11 17 29 31

• With structure 11.3.b:

Insert 9:

2 3 5

7

7 9 11 17 19 23 29 31

19

Insert 10:

2 3 5

7 19

97 10 11 17 19 23 29 31

Insert 8:



4 Chapter 11 Indexing and Hashing

7 10 19

2 3 5 7 8 9 10 11 17 9 23 29 31

Delete 23:

7 10 19

2 3 5 7 8 9 10 1711 19 29 31

Delete 19:

10

10 11 17 3129

7

7 8 92 3 5

• With structure 11.3.c:

Insert 9:

11

2 3 5 7 9 11 17 19 23 29 31

Insert 10:

11

2 3 5 7 9 10 11 17 19 23 29 31

Insert 8:

11

2 3 5 7 8 9 10 11 17 19 23 29 31

Delete 23:

11

2 3 5 7 8 9 10 11 17 19 29 31

Delete 19:



Exercises 5

11

2 3 5 7 8 9 10 11 17 29 31

11.5 Answer: If there are K search-key values and m− 1 siblings are involved
in the redistribution, the expected height of the tree is: log⌊(m−1)n/m⌋(K )

11.6 Answer: Extendable hash structure

000 

001 

010 

011 

100

101 

110 

111

3 3

2

2

2

3

17

11

29

23

31

19

2

3

5

7

11.7 Answer:

a. Delete 11: From the answer to Exercise 11.6, change the third bucket
to:

3

19

3

At this stage, it is possible to coalesce the second and third buckets.
Then it is enough if the bucket address table has just four entries
instead of eight. For the purpose of this answer, we do not do the
coalescing.

b. Delete 31: From the answer to 11.6, change the last bucket to:



6 Chapter 11 Indexing and Hashing

2

23

7

c. Insert 1: From the answer to 11.6, change the first bucket to:

2

17

1

d. Insert 15: From the answer to 11.6, change the last bucket to:

2

15

23

7

11.8 Answer: The pseudocode is shown in Figure 11.1.

11.9 Answer: Let i denote the number of bits of the hash value used in the
hash table. Let bsize denote the maximum capacity of each bucket. The
pseudocode is shown in Figure 11.2.
Note that we can only merge two buckets at a time. The common hash
prefix of the resultant bucket will have length one less than the two buckets
merged. Hence we look at the buddy bucket of bucket j differing from it
only at the last bit. If the common hash prefix of this bucket is not i j , then
this implies that the buddy bucket has been further split and merge is not
possible.

When merge is successful, further merging may be possible, which is
handled by a recursive call to coalesce at the end of the function.

11.10 Answer: If the hash table is currently using i bits of the hash value, then
maintain a count of buckets for which the length of common hash prefix
is exactly i .
Consider a bucket j with length of common hash prefix i j . If the bucket
is being split, and i j is equal to i , then reset the count to 1. If the bucket
is being split and i j is one less that i , then increase the count by 1. It the
bucket if being coalesced, and i j is equal to i then decrease the count by
1. If the count becomes 0, then the bucket address table can be reduced in
size at that point.
However, note that if the bucket address table is not reduced at that point,
then the count has no significance afterwards. If we want to postpone the
reduction, we have to keep an array of counts, i.e. a count for each value of



Exercises 7

function findIterator(value V) {
/* Returns an iterator for the search on the value V */

Iterator i ter ();
Set i ter.value = V;
Set C = root node
while (C is not a leaf node) begin

Let i = samllest number such that V <= C.K i

if there is no such number i then begin
Let Pm = last non-null pointer in the node
Set C = C.Pm;

end
else Set C = C.Pi ;

end
/* C is a leaf node */
Let i be the least value such that K i = V
if there is such a value i then begin

Set i ter.index = i ;
Set i ter.page = C ;
Set i ter.active = TRUE ;

end
else if (V is the greater than the largest value in the leaf) then begin

if (C.Pn.K1 = V) then begin
Set i ter.page = C.Pn;
Set i ter.index = 1;
Set i ter.active = TRUE ;

end
else Set i ter.active = F ALSE ;

end
else Set i ter.active = F ALSE ;
return (i ter )

}
Class Iterator {

variables:
value V /* The value on which the index is searched */
boolean active /* Stores the current state of the iterator (TRUE or FALSE)*/
int index /* Index of the next matching entry (if active is TRUE) */
PageID page /* Page Number of the next matching entry (if active is TRUE)*/

function next() {
if (active) then begin

Set retPage = page;
Set ret Index = index;
if (index + 1 = page.size) then begin

page = page.Pn
index = 0

end
else index = index + 1;
if (page.K index 6= V)

then active=F ALSE ;
return(retPage, ret Index)

end
else return null ;

}
}

Figure 11.1 Pseudocode for findIterator and the Iterator class



8 Chapter 11 Indexing and Hashing

delete(value Kl)
begin

j = first i high-order bits of h(Kl);
delete value Kl from bucket j ;
coalesce(bucket j );

end

coalesce(bucket j )
begin

i j = bits used in bucket j ;
k = any bucket with first (i j − 1) bits same as that

of bucket j while the bit i j is reversed;
ik = bits used in bucket k;
if(i j 6= ik)

return; /* buckets cannot be merged */
if(entries in j + entries in k > bsize)

return; /* buckets cannot be merged */
move entries of bucket k into bucket j ;

decrease the value of i j by 1;
make all the bucket-address-table entries,
which pointed to bucket k, point to j ;

coalesce(bucket j );
end

Figure 11.2 Pseudocode for deletion

common hash prefix. The array has to be updated in a similar fashion. The
bucket address table can be reduced if the i th entry of the array is 0, where
i is the number of bits the table is using. Since bucket table reduction is
an expensive operation, it is not always advisable to reduce the table. It
should be reduced only when sufficient number of entries at the end of
count array become 0.

11.11 Answer: We reproduce the instructor relation below.



Exercises 9

ID name dept name salary

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

a. Bitmap for salary, with S1, S2, S3 and S4 representing the given inter-
vals in the same order

S1 0 0 1 0 0 0 0 0 0 0 0 0

S2 0 0 0 0 0 0 0 0 0 0 0 0

S3 1 0 0 0 1 0 0 1 0 0 0 0

S4 0 1 0 1 0 1 1 0 1 1 1 1

b. The question is a bit trivial if there is no bitmap on the dept name
attribute. The bitmap for the dept name attribute is:

Comp. Sci 1 0 0 0 0 0 1 0 0 0 1 0

Finance 0 1 0 0 0 0 0 0 1 0 0 0

Music 0 0 1 0 0 0 0 0 0 0 0 0

Physics 0 0 0 1 0 1 0 0 0 0 0 0

History 0 0 0 0 1 0 0 1 0 0 0 0

Biology 0 0 0 0 0 0 0 0 0 1 0 0

Elec. Eng. 0 0 0 0 0 0 0 0 0 0 0 1

To find all instructors in the Finance department with salary of 80000
or more, we first find the intersection of the Finance department
bitmap and S4 bitmap of salary and then scan on these records for
salary of 80000 or more.
Intersection of Finance department bitmap and S4 bitmap of salary.

S4 0 1 0 1 0 1 1 0 1 1 1 1

Finance 0 1 0 0 0 0 0 0 1 0 0 0

S4∩ Finance 0 1 0 0 0 0 0 0 1 0 0 0



10 Chapter 11 Indexing and Hashing

Scan on these records with salary 80000 or more gives Wu and Singh
as the instructors who satisfy the given query.

11.12 Answer: If the index entries are inserted in ascending order, the new
entries get directed to the last leaf node. When this leaf node gets filled,
it is split into two. Of the two nodes generated by the split, the left node
is left untouched and the insertions takes place on the right node. This
makes the occupancy of the leaf nodes to about 50 percent, except the last
leaf.
If keys that are inserted are sorted in descending order, the above situation
would still occur, but symmetrically, with the right node of a split never
getting touched again, and occupancy would again be 50 percent for all
nodes other than the first leaf.

11.13 Answer:

a. The cost to locate the page number of the required leaf page for
an insertion is negligible since the non-leaf nodes are in memory.
On the leaf level it takes one random disk access to read and one
random disk access to update it along with the cost to write one
page. Insertions which lead to splitting of leaf nodes require an
additional page write. Hence to build a B+-tree with nr entries it
takes a maximum of 2 ∗ nr random disk accesses and nr + 2 ∗ (nr/ f )
page writes. The second part of the cost comes from the fact that in
the worst case each leaf is half filled, so the number of splits that
occur is twice nr/ f .
The above formula ignores the cost of writing non-leaf nodes, since
we assume they are in memory, but in reality they would also be
written eventually. This cost is closely approximated by 2∗ (nr/ f )/ f ,
which is the number of internal nodes just above the leaf; we can
add further terms to account for higher levels of nodes, but these are
much smaller than the number of leaves and can be ignored.

b. Substituting the values in the above formula and neglecting the cost
for page writes, it takes about 10, 000, 000 ∗ 20 milliseconds, or 56
hours, since each insertion costs 20 milliseconds.



Exercises 11

c.
function insert in leaf(value K , pointer P)

if(tree is empty) create an empty leaf node L, which is also the root
else Find the last leaf node in the leaf nodes chain L
if (L has less than n − 1 key values)

then insert (K ,P) at the first available location in L
else begin

Create leaf node L1
Set L .Pn = L1;
Set K1 = last value from page L
insert in parent(1, L, K1, L1)
insert (K ,P) at the first location in L1

end

function insert in parent(level l, pointer P , value K , pointer P1)
if (level l is empty) then begin

Create an empty non-leaf node N, which is also the root
insert(P , K , P1) at the starting of the node N
return

else begin
Find the right most node N at level l
if (N has less than n pointers)

then insert(K , P1) at the first available location in N
else begin

Create a new non-leaf page N1
insert (P1) at the starting of the node N
insert in parent(l + 1, pointer N, value K , pointer N1)

end
end

The insert in leaf function is called for each of the value, pointer
pairs in ascending order. Similar function can also be build for de-
scending order. The search for the last leaf or non-leaf node at any
level can be avoided by storing the current last page details in an
array.
The last node in each level might be less than half filled. To make
this index structure meet the requirements of a B+-tree, we can re-
distribute the keys of the last two pages at each level. Since the last
but one node is always full, redistribution makes sure that both of
then are at least half filled.

11.14 Answer: In a B+-tree index or file organization, leaf nodes that are
adjacent to each other in the tree may be located at different places on
disk. When a file organization is newly created on a set of records, it is
possible to allocate blocks that are mostly contiguous on disk to leafs
nodes that are contiguous in the tree. As insertions and deletions occur



12 Chapter 11 Indexing and Hashing

on the tree, sequentiality is increasingly lost, and sequential access has to
wait for disk seeks increasingly often.

a. One way to solve this problem is to rebuild the index to restore
sequentiality.

b. i. In the worst case each n-block unit and each node of the B+-tree
is half filled. This gives the worst case occupancy as 25 percent.

ii. No. While splitting the n-block unit the first n/2 leaf pages are
placed in one n-block unit, and the remaining in the second n-
block unit. That is, everyn-block split maintains the order. Hence,
the nodes in the n-block units are consecutive.

iii. In the regular B+-tree construction, the leaf pages might not be
sequential and hence in the worst case, it takes one seek per leaf
page. Using the block at a time method, for each n-node block,
we will have at least n/2 leaf nodes in it. Each n-node block can
be read using one seek. Hence the worst case seeks comes down
by a factor of n/2.

iv. Allowing redistribution among the nodes of the same block, does
not require additional seeks, where as, in regular B+-tree we
require as many seeks as the number of leaf pages involved
in the redistribution. This makes redistribution for leaf blocks
efficient with this scheme. Also the worst case occupancy comes
back to nearly 50 percent. (Splitting of leaf nodes is preferred
when the participating leaf nodes are nearly full. Hence nearly
50 percent instead of exact 50 percent)


