
C H A P T E R 14

Transactions

Practice Exercises

14.1 Answer: Even in this case the recovery manager is needed to perform
roll-back of aborted transactions.

14.2 Answer: There are several steps in the creation of a file. A storage area
is assigned to the file in the file system, a unique i-number is given to the
file and an i-node entry is inserted into the i-list. Deletion of file involves
exactly opposite steps.
For the file system user in UNIX, durability is important for obvious rea-
sons, but atomicity is not relevant generally as the file system doesn’t
support transactions. To the file system implementor though, many of the
internal file system actions need to have transaction semantics. All the
steps involved in creation/deletion of the file must be atomic, otherwise
there will be unreferenceable files or unusable areas in the file system.

14.3 Answer: Database systems usually perform crucial tasks whose effects
need to be atomic and durable, and whose outcome affects the real world
in a permanent manner. Examples of such tasks are monetary transac-
tions, seat bookings etc. Hence the ACID properties have to be ensured. In
contrast, most users of file systems would not be willing to pay the price
(monetary, disk space, time) of supporting ACID properties.

14.4 Answer: If a transaction is very long or when it fetches data from a
slow disk, it takes a long time to complete. In absence of concurrency,
other transactions will have to wait for longer period of time. Average
responce time will increase. Also when the transaction is reading data from
disk, CPU is idle. So resources are not properly utilized. Hence concurrent
execution becomes important in this case. However, when the transactions
are short or the data is available in memory, these problems do not occur.

14.5 Answer: Most of the concurrency control protocols (protocols for en-
suring that only serializable schedules are generated) used in practice are
based on conflict serializability—they actually permit only a subset of

1

2 Chapter 14 Transactions

conflict serializable schedules. The general form of view serializability is
very expensive to test, and only a very restricted form of it is used for
concurrency control.

14.6 Answer: There is a serializable schedule corresponding to the precedence
graph below, since the graph is acyclic. A possible schedule is obtained
by doing a topological sort, that is, T1, T2, T3, T4, T5.

14.7 Answer: A cascadeless schedule is one where, for each pair of transac-
tions Ti and Tj such that Tj reads data items previously written by Ti , the
commit operation of Ti appears before the read operation of Tj . Cascade-
less schedules are desirable because the failure of a transaction does not
lead to the aborting of any other transaction. Of course this comes at the
cost of less concurrency. If failures occur rarely, so that we can pay the
price of cascading aborts for the increased concurrency, noncascadeless
schedules might be desirable.

14.8 Answer:

a. A schedule showing the Lost Update Anomaly:
T1 T2

read(A)
read(A)
write(A)

write(A)
In the above schedule, the value written by the transaction T2 is lost
because of the write of the transaction T1.

b. Lost Update Anomaly in Read Committed Isolation Level
T1 T2

lock-S(A)
read(A)
unlock(A)

lock-X(A)
read(A)
write(A)
unlock(A)
commit

lock-X(A)
write(A)
unlock(A)
commit

The locking in the above schedule ensures the Read Committed
isolation level. The value written by transaction T2 is lost due to T1’s
write.

c. Lost Update Anomaly is not possible in Repeatable Read isolation
level. In repeatable read isolation level, a transaction T1 reading a

Practice Exercises 3

data item X, holds a shared lock on X till the end. This makes it
impossible for a newer transaction T2 to write the value of X (which
requires X-lock) until T1 finishes. This forces the serialization order
T1, T2 and thus the value written by T2 is not lost.

14.9 Answer:
Suppose that the bank enforces the integrity constraint that the sum of the
balances in the checking and the savings account of a customer must not
be negative. Suppose the checking and savings balances for a customer
are $100 and $200 respectively.
Suppose that transaction T1 withdraws $200 from the checking account
after verifying the integrity constraint by reading both the balances. Sup-
pose that concurrent transaction T2 withdraws $200 from the checking
account after verifying the integrity constraint by reading both the bal-
ances.
Since each of the transactions checks the integrity constraints on its own
snapshot, if they run concurrently each will believe that the sum of the
balances after the withdrawal is $100 and therefore its withdrawal does
not violate the integrity constraint. Since the two transactions update
different data items, they do not have any update conflict, and under
snapshot isolation both of them can commit. This is a non-serializable
execution which results into a serious problem of withdrawal of more
money.

14.10 Answer:
Consider a web-based airline reservation system. There could be many
concurrent requests to see the list of available flights and available seats
in each flight and to book tickets. Suppose, there are two users A and B
concurrently accessing this web application, and only one seat is left on a
flight.
Suppose that both user A and user B execute transactions to book a
seat on the flight, and suppose that each transaction checks the total
number of seats booked on the flight, and inserts a new booking record
if there are enough seats left. Let T3 and T4 be their respective booking
transactions, which run concurrently. Now T3 and T4 will see from their
snapshots that one ticket is available and insert new booking records.
Since the two transactions do not update any common data item (tuple),
snapshot isolation allows both transactions to commit. This results in an
extra booking, beyond the number of seats available on the flight.
However, this situation is usually not very serious since cancellations
often resolve the conflict; even if the conflict is present at the time the
flight is to leave, the airline can arrange a different flight for one of the
passengers on the flight, giving incentives to accept the change. Using
snapshot isolation improves the overall performance in this case since the
booking transactions read the data from their snapshots only and do not
block other concurrent transactions.

4 Chapter 14 Transactions

14.11 Answer:
The given situation will not cause any problem for the definition of con-
flict serializability since the ordering of operations on each data item is
necessary for conflict serializability, whereas the ordering of operations
on different data items is not important.

T1 T2

read(A)
read(B)

write(B)
For the above schedule to be conflict serializable, the only ordering re-
quirement is read(B) -> write(B). read(A) and read(B) can be in any order.
Therefore, as long as the operations on a data item can be totally ordered,
the definition of conflict serializability should hold on the given multi-
processor system.

