
C H A P T E R 15

Concurrency Control

Practice Exercises

15.1 Answer: Suppose two-phase locking does not ensure serializability. Then
there exists a set of transactions T0, T1 ... Tn−1 which obey 2PL and which
produce a nonserializable schedule. A non-serializable schedule implies a
cycle in the precedence graph, and we shall show that 2PL cannot produce
such cycles. Without loss of generality, assume the following cycle exists
in the precedence graph: T0 → T1 → T2 → ... → Tn−1 → T0. Let ai be
the time at which Ti obtains its last lock (i.e. Ti ’s lock point). Then for all
transactions such that Ti → Tj , ai < a j . Then for the cycle we have

a0 < a1 < a2 < ... < an−1 < a0

Since a0 < a0 is a contradiction, no such cycle can exist. Hence 2PL
cannot produce non-serializable schedules. Because of the property that
for all transactions such that Ti → Tj , ai < a j , the lock point ordering
of the transactions is also a topological sort ordering of the precedence
graph. Thus transactions can be serialized according to their lock points.

15.2 Answer:

a. Lock and unlock instructions:

T34: lock-S(A)
read(A)
lock-X(B)
read(B)
if A = 0
then B := B + 1
write(B)
unlock(A)
unlock(B)

1

2 Chapter 15 Concurrency Control

T35: lock-S(B)
read(B)
lock-X(A)
read(A)
if B = 0
then A := A + 1
write(A)
unlock(B)
unlock(A)

b. Execution of these transactions can result in deadlock. For example,
consider the following partial schedule:

T31 T32

lock-S(A)

lock-S(B)

read(B)

read(A)

lock-X (B)

lock-X (A)

The transactions are now deadlocked.

15.3 Answer: Rigorous two-phase locking has the advantages of strict 2PL.
In addition it has the property that for two conflicting transactions, their
commit order is their serializability order. In some systems users might
expect this behavior.

15.4 Answer:
Consider two nodes Aand B, where A is a parent of B. Let dummy vertex
D be added between Aand B. Consider a case where transaction T2 has a
lock on B, and T1, which has a lock on Awishes to lock B, and T3 wishes
to lock A. With the original tree, T1 cannot release the lock on A until it
gets the lock on B. With the modified tree, T1 can get a lock on D, and
release the lock on A, which allows T3 to proceed while T1 waits for T2.
Thus, the protocol allows locks on vertices to be released earlier to other
transactions, instead of holding them when waiting for a lock on a child.
A generalization of idea based on edge locks is described in Buckley
and Silberschatz, “Concurrency Control in Graph Protocols by Using
Edge Locks,” Proc. ACM SIGACT-SIGMOD Symposium on the Principles
of Database Systems, 1984.

15.5 Answer: Consider the tree-structured database graph given below.

Practice Exercises 3

cA

cB

cC

Schedule possible under tree protocol but not under 2PL:

T1 T2

lock (A)
lock (B)
unlock (A)

lock (A)
lock (C)
unlock (B)

lock (B)
unlock (A)
unlock (B)

unlock (C)

Schedule possible under 2PL but not under tree protocol:

T1 T2

lock (A)
lock (B)

lock (C)
unlock (B)

unlock (A)
unlock (C)

15.6 Answer:
The proof is in Kedem and Silberschatz, “Locking Protocols: From Exclu-
sive to Shared Locks,” JACM Vol. 30, 4, 1983. (The proof of serializability
and deadlock freedom of the original tree protocol may be found in Sil-
berschatz and Kedem, “Consistency in Hierarchical Database Systems” ,
JACM Vol. 27, 1, Jan 1980.)
It is worth noting that if the protocol were modified to allow update
transactions to lock any data item first, non-serializable executions can
occur. Intuitively, a long running readonly transaction T0 may precede an
update transaction T1 on node a , but continues to holds a lock on child
node b. After T1 updates a and commits, readonly transaction T2 reads a ,
and thus T1 precedes T2. However, T2 now overtakes T1, share locking b
and its child c (not possible with only exclusive locks), and reads c and

4 Chapter 15 Concurrency Control

commits. Subsequently, transaction T3 updates c and commits, after which
T0 share locks and reads c. Thus, there is a cycle

T0 → T1 → T2 → T3 → T0

In effect, two readonly transactions see two different orderings of the same
two update transactions. By requiring update transactions to always start
at the root, the protocol ensures that the above situation cannot occur. In
the above example T3 would be forced to start from the root, and thus T0

cannot be serialized after T3.
The formal proof is by induction on the number of read-only transactions
(and, we must admit, not very intuitive). We present it after introducing
some notation first:
QX : the set of update transactions.
QS :the set of Read-only transactions.
L(Ti) : the set of data items locked by transaction Ti
Let Q the new protocol. Suppose Ti and Tk are update transactions, and
Tj a read only transaction; then if Tj overlaps with Ti and Tk in the set of
data items it accesses, since Ti and Tk both start from the root, Ti and Tk
must also overlap on the set of data items accessed. Formally,
∀Ti ∈ QX∀Tj ∈ QS∀Tk ∈ QX

[((L(Ti)
⋂

L(Tj)) 6= f ∧ (L(Tj)
⋂

L(Tk)) 6= f) ⇒ (L(Ti)
⋂

L(Tk)) 6= f]
Consider an arbitrary schedule of transactions in protocol Q. Let k be the
number of Read-only transactions which participate in this schedule. We
show by induction that there exist no minimal cycles in (T , →), where
Ti → Tj denotes that Ti precedes Tj due to a conflict on some data item.
Let the cycle without loss of generality be,

T0 → T1... → Tm−1 → T0

Here, we know that m ≥ 2k, as there must be an Update transaction
on each side of a Read-only transaction, otherwise the cycle will not be
formed.

• k = 0: In this case each Ti is in QX, so Q becomes the original tree
protocol which ensures the serializability and deadlock freedom.

• k = 1: Let Ti be the unique transaction in QS. We can replace Ti by
T X
i . The resulting schedule follows the original tree protocol which

ensures serializability and deadlock freedom.

• k > 1: Let Ti ∧QS, then {Ti−1, Ti+1 } ∈ QX. As,m ≥ 2k ≥ 4, i−1 6= i+1
(modulo m). By the assumption of the given protocol’s definition,

L(Ti−1)
⋂

L(Ti+1) 6= f

Thus, Ti−1 → Ti+1 or Ti+1 → Ti−1; in either case, the original cycle
was not minimal (in the first case, Ti can be deleted from the cycle, in
the second case there is a cycle involving Ti−i , Ti and Ti+1.

By contradiction, there can be no such cycle, and thus the new protocol
ensures serializability.

Practice Exercises 5

To show deadlock freedom, consider the waits for graph. If there is any
edge from an update transaction Tj to another update transaction Ti , it is
easy to see that Ti locks the root before Tj . Similarly if there is an edge
from an update txn Tj to any readonly transaction Tk , which in turn can
only wait for an update transaction Ti , it can be seen that Ti must have
locked the root before Tj . In other words, an older update transaction
cannot wait (directly or indirectly) on a younger update transaction, and
thus, there can be no cycle in the waits for graph.

15.7 Answer:
The proof is in Kedem and Silberschatz, “Controlling Concurrency Using
Locking Protocols,” Proc. Annual IEEE Symposium on Foundations of
Computer Science, 1979. The proof is quite non-trivial, and you may skip
the details if you wish.
Consider,

• G(V, A) : the directed acyclic graph of the data items.

• T0, T1, T2,.......,Tm are the participating transactions.

• E(Ti) is the first vertex locked by transaction Ti .

• h : V → {1,2,3,.... } such that for each u, w ∈ V if < u, w >∈ A then
h(u) < h(w)

• F (Ti , Tj) is that v ∈ L(Ti)
⋂

L(Tj) for which h(v) is minimal

• For each e ∈ V, define a relation ve ⊆ T × T such that TiveTj for
e ∈ L(Ti)

⋂
L(Tj) iff Ti successfully locked e and Tj either never

(successfully) locked e or locked e , only after Ti unlocked it.

• Define also, TivTj = ∃e[TiveTj]

a. Lemma 1 We first show that, for the given protocol,
If L(Ti)

⋂
L(Tj) 6= f then F (Ti , Tj) ∈ {E(Ti), E(Tj)}

Assume by contradiction that,
F (Ti , Tj) /∈ {E(Ti), E(Tj)}

But then, by the locking protocol (as both Ti and Tj) had to lock
more than half of the predecessors of F (Ti , Tj)), it follows that
some predecessor of F (Ti , Tj) is in L(Ti)

⋂
L(Tj) contradicting the

definition of F (Ti , Tj).

b. Lemma 2 Now we show that,
TivuTj for all u ∈ L(Ti)

⋂
L(Tj) iff TivF (Ti ,Tj)Tj .

If u = F (Ti , Tj) then TivF (Ti ,Tj)Tj . is trivially true. If u 6= F (Ti , Tj),
then u /∈ {E(Ti), E(Tj)}. It thus follows that some predecessor of
w of u was successfully locked by both Ti and Tj and this u was

6 Chapter 15 Concurrency Control

locked by Ti and Tj when they issued the instructions to lock u.
Thus, TivwTj ⇔ TivuTj (and TjvwTi ⇔ TjvuTi).
Now by induction: TivF (Ti ,Tj)Tj ⇔ TivwTj and the result follows.

Now, we prove that the given protocol ensures serializability and deadlock
freedom by induction on the length of minimal cycle.

a. m = 2 : The protocol ensures no minimal cycles as shown in the
above Lemma 2

b. m > 2 : Assume by contradiction that
T0vT1vT2......vTm−1vT0 is a minimal cycle of length m. We will con-
sider two cases:

i. F (Ti , Ti+1)’s are not all distinct. It follows that,

L(Ti)
⋂

L(Tj)
⋂

L(Tk) 6= f for 0 ≤ i ≤ j ≤ k ≤ m − 1

A. Assume < i, j, k >=< i, i + 1, i + 2 >. Then it easily follows
that TivTi+2 and (*) is not a minimal cycle.

B. Assume < i, j, k > 6=< i, i + 1, i + 2 >. If say | j − i | > 1
then as either TivTj or TjvTi and (*) is not a minimal cycle. If
| j − i | = 1 and |k − j | > 1 then the proof is analogous..

ii. All F (Ti , Ti+1)’s are distinct. Then for some i

h(F (Ti , Ti+1)) < h(F (Ti+1, Ti+2)) (**)

and h(F (Ti+1, Ti+2)) > h(F (Ti+2, Ti+3)) (***)

By (**), E(Ti+1) 6= F (Ti+1, Ti+2) and by (***), E(Ti+2) 6= F (Ti+1, Ti+2).

Thus, F (Ti+1, Ti+2) /∈ {E(Ti+1), E(Ti+2)}, a contradiction to Lemma
1.

We have thus shown that the given protocol ensures serializability and
deadlock freedom.

15.8 Answer:
The proof is Silberschatz and Kedem, “A Family of Locking Protocols for
Database Systems that Are Modeled by Directed Graphs” , IEEE Trans. on
Software Engg. Vol. SE-8, No. 6, Nov 1982.
The proof is rather complex; we omit details, which may be found in the
above paper.

Practice Exercises 7

15.9 Answer: The access protection mechanism can be used to implement page
level locking. Consider reads first. A process is allowed to read a page only
after it read-locks the page. This is implemented by using mprotect to
initially turn off read permissions to all pages, for the process. When the
process tries to access an address in a page, a protection violation occurs.
The handler associated with protection violation then requests a read lock
on the page, and after the lock is acquired, it uses mprotect to allow
read access to the page by the process, and finally allows the process to
continue. Write access is handled similarly.

15.10 Answer:

a. Serializability can be shown by observing that if two transactions
have an I mode lock on the same item, the increment operations
can be swapped, just like read operations. However, any pair of
conflicting operations must be serialized in the order of the lock
points of the corresponding transactions, as shown in Exercise 15.1.

b. The increment lock mode being compatible with itself allows multi-
ple incrementing transactions to take the lock simultaneously thereby
improving the concurrency of the protocol. In the absence of this
mode, an exclusive mode will have to be taken on a data item by
each transaction that wants to increment the value of this data item.
An exclusive lock being incompatible with itself adds to the lock
waiting time and obstructs the overall progress of the concurrent
schedule.
In general, increasing the true entries in the compatibility matrix
increases the concurrency and improves the throughput.

The proof is in Korth, “Locking Primitives in a Database System,” JACM

Vol. 30, 1983.

15.11 Answer: It would make no difference. The write protocol is such that the
most recent transaction to write an item is also the one with the largest
timestamp to have done so.

15.12 Answer: If a transaction needs to access a large a set of items, multiple
granularity locking requires fewer locks, whereas if only one item needs
to be accessed, the single lock granularity system allows this with just
one lock. Because all the desired data items are locked and unlocked
together in the multiple granularity scheme, the locking overhead is low,
but concurrency is also reduced.

15.13 Answer: In the concurrency control scheme of Section 15.5 choosing
Start(Ti) as the timestamp of Ti gives a subset of the schedules allowed
by choosing Validation(Ti) as the timestamp. Using Start(Ti) means that
whoever started first must finish first. Clearly transactions could enter
the validation phase in the same order in which they began executing,

8 Chapter 15 Concurrency Control

but this is overly restrictive. Since choosing Validation(Ti) causes fewer
nonconflicting transactions to restart, it gives the better response times.

15.14 Answer:

• Two-phase locking: Use for simple applications where a single granu-
larity is acceptable. If there are large read-only transactions, multiver-
sion protocols would do better. Also, if deadlocks must be avoided at
all costs, the tree protocol would be preferable.

• Two-phase locking with multiple granularity locking: Use for an ap-
plication mix where some applications access individual records and
others access whole relations or substantial parts thereof. The draw-
backs of 2PL mentioned above also apply to this one.

• The tree protocol: Use if all applications tend to access data items in
an order consistent with a particular partial order. This protocol is
free of deadlocks, but transactions will often have to lock unwanted
nodes in order to access the desired nodes.

• Timestamp ordering: Use if the application demands a concurrent
execution that is equivalent to a particular serial ordering (say, the
order of arrival), rather than any serial ordering. But conflicts are han-
dled by roll-back of transactions rather than waiting, and schedules
are not recoverable. To make them recoverable, additional overheads
and increased response time have to be tolerated. Not suitable if there
are long read-only transactions, since they will starve. Deadlocks are
absent.

• Validation: If the probability that two concurrently executing trans-
actions conflict is low, this protocol can be used advantageously to
get better concurrency and good response times with low overheads.
Not suitable under high contention, when a lot of wasted work will
be done.

• Multiversion timestamp ordering: Use if timestamp ordering is ap-
propriate but it is desirable for read requests to never wait. Shares the
other disadvantages of the timestamp ordering protocol.

• Multiversion two-phase locking: This protocol allows read-only trans-
actions to always commit without ever waiting. Update transactions
follow 2PL, thus allowing recoverable schedules with conflicts solved
by waiting rather than roll-back. But the problem of deadlocks comes
back, though read-only transactions cannot get involved in them.
Keeping multiple versions adds space and time overheads though,
therefore plain 2PL may be preferable in low conflict situations.

15.15 Answer: A transaction waits on a. disk I/O and b. lock acquisition.
Transactions generally wait on disk reads and not on disk writes as disk

Practice Exercises 9

writes are handled by the buffering mechanism in asynchronous fashion
and transactions update only the in-memory copy of the disk blocks.

The technique proposed essentially separates the waiting times into two
phases. The first phase – where transaction is executed without acquiring
any locks and without performing any writes to the database – accounts
for almost all the waiting time on disk I/O as it reads all the data blocks
it needs from disk if they are not already in memory. The second phase—
the transaction re-execution with strict two-phase locking—accounts for
all the waiting time on acquiring locks. The second phase may, though
rarely, involve a small waiting time on disk I/O if a disk block that the
transaction needs is flushed to memory (by buffer manager) before the
second phase starts.

The technique may increase concurrency as transactions spend almost
no time on disk I/O with locks held and hence locks are held for shorter
time. In the first phase the transaction reads all the data items required
—and not already in memory—from disk. The locks are acquired in the
second phase and the transaction does almost no disk I/O in this phase.
Thus the transaction avoids spending time in disk I/O with locks held.

The technique may even increase disk throughput as the disk I/O is
not stalled for want of a lock. Consider the following scenario with strict
two-phase locking protocol: A transaction is waiting for a lock, the disk is
idle and there are some item to be read from disk. In such a situation disk
bandwidth is wasted. But in the proposed technique, the transaction will
read all the required item from the disk without acquiring any lock and
the disk bandwidth may be properly utilized.

Note that the proposed technique is most useful if the computation
involved in the transactions is less and most of the time is spent in disk
I/O and waiting on locks, as is usually the case in disk-resident databases.
If the transaction is computation intensive, there may be wasted work. An
optimization is to save the updates of transactions in a temporary buffer,
and instead of reexecuting the transaction, to compare the data values of
items when they are locked with the values used earlier. If the two values
are the same for all items, then the buffered updates of the transaction are
executed, instead of reexecuting the entire transaction.

15.16 Answer: Consider two transactions T1 and T2 shown below.

T1 T2

write(p)
read(p)
read(q)

write(q)

10 Chapter 15 Concurrency Control

Let TS(T1) < TS(T2) and let the timestamp test at each operation except
write(q) be successful. When transaction T1 does the timestamp test for
write(q) it finds that TS(T1) < R-timestamp(q), since TS(T1) < TS(T2) and
R-timestamp(q) = TS(T2). Hence the writeoperation fails and transaction
T1 rolls back. The cascading results in transaction T2 also being rolled back
as it uses the value for item p that is written by transaction T1.
If this scenario is exactly repeated every time the transactions are restarted,
this could result in starvation of both transactions.

15.17 Answer: In the text, we considered two approaches to dealing with
the phantom phenomenon by means of locking. The coarser granularity
approach obviously works for timestamps as well. The B+-tree index
based approach can be adapted to timestamping by treating index buckets
as data items with timestamps associated with them, and requiring that all
read accesses use an index. We now show that this simple method works.
Suppose a transaction Ti wants to access all tuples with a particular range
of search-key values, using a B+-tree index on that search-key. Ti will need
to read all the buckets in that index which have key values in that range.
It can be seen that any delete or insert of a tuple with a key-value in the
same range will need to write one of the index buckets read by Ti . Thus
the logical conflict is converted to a conflict on an index bucket, and the
phantom phenomenon is avoided.

15.18 Answer: Note: The tree-protocol of Section 15.1.5 which is referred to
in this question, is different from the multigranularity protocol of Sec-
tion 15.3 and the B+-tree concurrency protocol of Section 15.10.

One strategy for early lock releasing is given here. Going down the
tree from the root, if the currently visited node’s child is not full, release
locks held on all nodes except the current node, request an X-lock on
the child node, after getting it release the lock on the current node, and
then descend to the child. On the other hand, if the child is full, retain all
locks held, request an X-lock on the child, and descend to it after getting
the lock. On reaching the leaf node, start the insertion procedure. This
strategy results in holding locks only on the full index tree nodes from the
leaf upwards, until and including the first non-full node.

An optimization to the above strategy is possible. Even if the current
node’s child is full, we can still release the locks on all nodes but the
current one. But after getting the X-lock on the child node, we split it right
away. Releasing the lock on the current node and retaining just the lock
on the appropriate split child, we descend into it making it the current
node. With this optimization, at any time at most two locks are held, of a
parent and a child node.

15.19 Answer:

a. validation test for first-committer-wins scheme: Let Start(Ti), Commit(Ti)
and be the timestamps associated with a transaction Ti and the up-
date set for Ti be update set(Ti). Then for all transactions Tk with

Practice Exercises 11

Commit(Tk) < Commit(Ti), one of the following two conditions must
hold:

• If Commit(Tk) < Start(Tk), Tk completes its execution before Ti
started, the serializability is maintained.

• If Start(Ti) < Commit(Tk) < Commit(Ti) and update set(Ti) and
update set(Tk) do not intersect

b. Validation test for first-committer-wins scheme with W-timestamps
for data items: If a transaction Ti writes a data item Q, then the
W-timestamp(Q) is set to Commit(Ti). For the validation test of a
transaction Ti to pass, following condition must hold:

• For each data item Q written by Ti , W-timestamp(Q) < Start(Ti)

c. First-updater-wins scheme:

i. For a data item Q written by Ti , the W-timestamp is assigned the
timestamp when the write occurred in Ti

ii. Since the validation is done after acquiring the exclusive locks
and the exclusive locks are held till the end of the transaction,
the data item cannot be modified inbetween the lock acquisition
and commit time. So, the result of validation test for a transaction
would be the same at the commit time as that at the update time.

iii. Because of the exclusive locking, at the most one transaction can
acquire the lock on a data item at a time and do the validation
testing. Thus, two or more transactions can not do validation
testing for the same data item simultaneously.

