
C H A P T E R 18

Parallel Databases

Practice Exercises

18.1 In a range selection on a range-partitioned attribute, it is possible that
only one disk may need to be accessed. Describe the benefits and draw-
backs of this property.
Answer: If there are few tuples in the queried range, then each query
can be processed quickly on a single disk. This allows parallel execution
of queries with reduced overhead of initiating queries on multiple
disks.
On the other hand, if there are many tuples in the queried range, each
query takes a long time to execute as there is no parallelism within
its execution. Also, some of the disks can become hot-spots, further
increasing response time.
Hybrid range partitioning, in which small ranges (a few blocks each)
are partitioned in a round-robin fashion, provides the benefits of range
partitioning without its drawbacks.

18.2 What form of parallelism (interquery, interoperation, or intraoperation)
is likely to be the most important for each of the following tasks?

a. Increasing the throughput of a system with many small queries

b. Increasing the throughput of a system with a few large queries,
when the number of disks and processors is large

Answer:

a. When there are many small queries, inter-query parallelism gives
good throughput. Parallelizing each of these small queries would
increase the initiation overhead, without any significant reduction
in response time.

b. With a few large queries, intra-query parallelism is essential to
get fast response times. Given that there are large number of
processors and disks, only intra-operation parallelism can take
advantage of the parallel hardware – for queries typically have

21

22 Chapter 18 Parallel Databases

few operations, but each one needs to process a large number of
tuples.

18.3 With pipelined parallelism, it is often a good idea to perform several op-
erations in a pipeline on a single processor, even when many processors
are available.

a. Explain why.

b. Would the arguments you advanced in part a hold if the machine
has a shared-memory architecture? Explain why or why not.

c. Would the arguments in part a hold with independent paral-
lelism? (That is, are there cases where, even if the operations are
not pipelined and there are many processors available, it is still a
good idea to perform several operations on the same processor?)

Answer:

a. The speed-up obtained by parallelizing the operations would be
offset by the data transfer overhead, as each tuple produced by
an operator would have to be transferred to its consumer, which
is running on a different processor.

b. In a shared-memory architecture, transferring the tuples is very
efficient. So the above argument does not hold to any significant
degree.

c. Even if two operations are independent, it may be that they both
supply their outputs to a common third operator. In that case,
running all three on the same processor may be better than trans-
ferring tuples across processors.

18.4 Consider join processing using symmetric fragment and replicate with
range partitioning. How can you optimize the evaluation if the join
condition is of the form | r.A− s.B | ≤ k, where k is a small constant?
Here, | x | denotes the absolute value of x. A join with such a join
condition is called a band join.
Answer: Relation r is partitioned into n partitions, r0, r1, . . . , rn−1, and
s is also partitioned into n partitions, s0, s1, . . . , sn−1. The partitions are
replicated and assigned to processors as shown below.

Practice Exercises 23

. . . .

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

s0 s1 s2 s3 sn 1

r0

r1

r2

rn 1

P0,0 P0,1

P1,0 P1,1 P1,2

P2,1 P2,2 P2,3

Pn 1,
n 1

Each fragment is replicated on 3 processors only, unlike in the general
case where it is replicated on n processors. The number of processors
required is now approximately 3n, instead of n2 in the general case.
Therefore given the same number of processors, we can partition the
relations into more fragments with this optimization, thus making each
local join faster.

18.5 Recall that histograms are used for constructing load-balanced range
partitions.

a. Suppose you have a histogram where values are between 1 and
100, and are partitioned into 10 ranges, 1–10, 11–20, . . . , 91–100,
with frequencies 15, 5, 20, 10, 10, 5, 5, 20, 5, and 5, respectively.
Give a load-balanced range partitioning function to divide the
values into 5 partitions.

b. Write an algorithm for computing a balanced range partition with
p partitions, given a histogram of frequency distributions contain-
ing n ranges.

Answer:

a. A partitioning vector which gives 5 partitions with 20 tuples in
each partition is: [21, 31, 51, 76]. The 5 partitions obtained are
1−20, 21−30, 31−50, 51−75 and 76−100. The assumption made
in arriving at this partitioning vector is that within a histogram
range, each value is equally likely.

b. Let the histogram ranges be called h1, h2, . . . , hh , and the parti-
tions
p1, p2, . . . , pp. Let the frequencies of the histogram ranges be

24 Chapter 18 Parallel Databases

n1, n2, . . . , nh . Each partition should contain N/p tuples, where
N = 6h

i=1ni .
To construct the load balanced partitioning vector, we need to
determine the value of the kth

1 tuple, the value of the kth
2 tuple and

so on, where k1 = N/p, k2 = 2N/p etc, until kp−1. The partitioning
vector will then be [k1, k2, . . . , kp−1]. The value of the kth

i tuple is
determined as follows. First determine the histogram range h j in
which it falls. Assuming all values in a range are equally likely,
the kth

i value will be

s j +
(

e j − s j

)

∗
ki j

n j

where
s j : first value in h j

e j : last value in h j

ki j : ki − 6
j−1

l=1 nl

18.6 Large-scale parallel database systems store an extra copy of each data
item on disks attached to a different processor, to avoid loss of data if
one of the processors fails.

a. Instead of keeping the extra copy of data items from a processor
at a single backup processor, it is a good idea to partition the
copies of the data items of a processor across multiple processors.
Explain why.

b. Explain how virtual-processor partitioning can be used to ef-
ficiently implement the partitioning of the copies as described
above.

c. What are the benefits and drawbacks of using RAID storage in-
stead of storing an extra copy of each data item?

Answer: FILL

18.7 Suppose we wish to index a large relation that is partitioned. Can
the idea of partitioning (including virtual processor partitioning) be
applied to indices? Explain your answer, considering the following
two cases (assuming for simplicity that partitioning as well as indexing
are on single attributes):

a. Where the index is on the partitioning attribute of the relation.

b. Where the index is on an attribute other than the partitioning
attribute of the relation.

Answer: FILL

18.8 Suppose a well-balanced range-partitioning vector had been chosen
for a relation, but the relation is subsequently updated, making the
partitioning unbalanced. Even if virtual-processor partitioning is used,

Practice Exercises 25

a particular virtual processor may end up with a very large number of
tuples after the update, and repartitioning would then be required.

a. Suppose a virtual processor has a significant excess of tuples (say,
twice the average). Explain how repartitioning can be done by
splitting the partition, thereby increasing the number of virtual
processors.

b. If, instead of round-robin allocation of virtual processors, virtual
partitions can be allocated to processors in an arbitrary fashion,
with a mapping table tracking the allocation. If a particular node
has excess load (compared to the others), explain how load can
be balanced.

c. Assuming there are no updates, does query processing have to be
stopped while repartitioning, or reallocation of virtual processors,
is carried out? Explain your answer.

Answer: FILL

