
C H A P T E R 25

Advanced Data Types and

New Applications

Practice Exercises

25.1 What are the two types of time, and how are they different? Why does
it make sense to have both types of time associated with a tuple?
Answer: A temporal database models the changing states of some
aspects of the real world. The time intervals related to the data stored
in a temporal database may be of two types - valid time and transaction
time. The valid time for a fact is the set of intervals during which the fact
is true in the real world. The transaction time for a data object is the set of
time intervals during which this object is part of the physical database.
Only the transaction time is system dependent and is generated by the
database system.

Suppose we consider our sample bank database to be bitemporal.
Only the concept of valid time allows the system to answer queries such
as - “What was Smith’s balance two days ago?”. On the other hand,
queries such as - “What did we record as Smith’s balance two days
ago?” can be answered based on the transaction time. The difference
between the two times is important. For example, suppose, three days
ago the teller made a mistake in entering Smith’s balance and corrected
the error only yesterday. This error means that there is a difference
between the results of the two queries (if both of them are executed
today).

25.2 Suppose you have a relation containing the x, y coordinates and names
of restaurants. Suppose also that the only queries that will be asked
are of the following form: The query specifies a point, and asks if there
is a restaurant exactly at that point. Which type of index would be
preferable, R-tree or B-tree? Why?
Answer: The given query is not a range query, since it requires only
searching for a point. This query can be efficiently answered by a B-tree
index on the pair of attributes (x, y).

1



2 Chapter 25 Advanced Data Types and New Applications

25.3 Suppose you have a spatial database that supports region queries (with
circular regions) but not nearest-neighbor queries. Describe an algo-
rithm to find the nearest neighbor by making use of multiple region
queries.
Answer: Suppose that we want to search for the nearest neighbor of a
point P in a database of points in the plane. The idea is to issue multiple
region queries centered at P . Each region query covers a larger area of
points than the previous query. The procedure stops when the result of
a region query is non-empty. The distance from P to each point within
this region is calculated and the set of points at the smallest distance is
reported.

25.4 Suppose you want to store line segments in an R-tree. If a line segment is
not parallel to the axes, the bounding box for it can be large, containing
a large empty area.

• Describe the effect on performance of having large bounding boxes
on queries that ask for line segments intersecting a given region.

• Briefly describe a technique to improve performance for such queries
and give an example of its benefit. Hint: You can divide segments
into smaller pieces.

Answer: Large bounding boxes tend to overlap even where the region
of overlap does not contain any information. The following figure:

R

shows a region R within which we have to locate a segment. Note
that even though none of the four segments lies in R, due to the large
bounding boxes, we have to check each of the four bounding boxes to
confirm this.

A significant improvement is observed in the follwoing figure:



Practice Exercises 3

R

where each segment is split into multiple pieces, each with its own
bounding box. In the second case, the box R is not part of the boxes
indexed by the R-tree. In general, dividing a segment into smaller pieces
causes the bounding boxes to be smaller and less wasteful of area.

25.5 Give a recursive procedure to efficiently compute the spatial join of two
relations with R-tree indices. (Hint: Use bounding boxes to check if leaf
entries under a pair of internal nodes may intersect.)
Answer: Following is a recursive procedure for computing spatial join
of two R-trees.

SpJoin(node n1, node n2)
begin

if(the bounding boxes of n1 and n2 do not intersect)
return;

if(both n1 and n2 are leaves)
output all pairs of entries (e1, e2) such that

e1 ∈ n1 and e2 ∈ n2, and e1 and e2 overlap;
if(n1 is not a leaf)

NS1 = set of children of n1;
else

NS1 = { n1 };
if(n1 is not a leaf)

NS1 = set of children of n1;
else

NS1 = { n1 };
for each ns1 in NS1 and ns2 in NS2;

SpJoin(ns1, ns2);
end

25.6 Describe how the ideas behind the RAID organization (Section 10.3) can
be used in a broadcast-data environment, where there may occasionally
be noise that prevents reception of part of the data being transmitted.



4 Chapter 25 Advanced Data Types and New Applications

Answer: The concepts of RAID can be used to improve reliability of
the broadcast of data over wireless systems. Each block of data that is
to be broadcast is split into units of equal size. A checksum value is
calculated for each unit and appended to the unit. Now, parity data for
these units is calculated. A checksum for the parity data is appended
to it to form a parity unit. Both the data units and the parity unit are
then broadcast one after the other as a single transmission.

On reception of the broadcast, the receiver uses the checksums to
verify whether each unit is received without error. If one unit is found
to be in error, it can be reconstructed from the other units.

The size of a unit must be chosen carefully. Small units not only require
more checksums to be computed, but the chance that a burst of noise
corrupts more than one unit is also higher. The problem with using
large units is that the probability of noise affecting a unit increases;
thus there is a tradeoff to be made.

25.7 Define a model of repeatedly broadcast data in which the broadcast
medium is modeled as a virtual disk. Describe how access time and
data-transfer rate for this virtual disk differ from the corresponding
values for a typical hard disk.
Answer: We can distinguish two models of broadcast data. In the case
of a pure broadcast medium, where the receiver cannot communicate
with the broadcaster, the broadcaster transmits data with periodic cy-
cles of retransmission of the entire data, so that new receivers can catch
up with all the broadcast information. Thus, the data is broadcast in a
continuous cycle. This period of the cycle can be considered akin to the
worst case rotational latency in a disk drive. There is no concept of seek
time here. The value for the cycle latency depends on the application,
but is likely to be at least of the order of seconds, which is much higher
than the latency in a disk drive.

In an alternative model, the receiver can send requests back to the
broadcaster. In this model, we can also add an equivalent of disk access
latency, between the receiver sending a request, and the broadcaster
receiving the request and responding to it. The latency is a function of
the volume of requests and the bandwidth of the broadcast medium.
Further, queries may get satisfied without even sending a request, since
the broadcaster happened to send the data either in a cycle or based
on some other receivers request. Regardless, latency is likely to be at
least of the order of seconds, again much higher than the corresponding
values for a hard disk.

A typical hard disk can transfer data at the rate of 1 to 5 megabytes per
second. In contrast, the bandwidth of a broadcast channel is typically
only a few kilobytes per second. Total latency is likely to be of the order
of seconds to hundreds or even thousands of seconds, compared to a
few milliseconds for a hard disk.

25.8 Consider a database of documents in which all documents are kept
in a central database. Copies of some documents are kept on mobile



Practice Exercises 5

computers. Suppose that mobile computer A updates a copy of docu-
ment 1 while it is disconnected, and, at the same time, mobile computer
B updates a copy of document 2 while it is disconnected. Show how
the version-vector scheme can ensure proper updating of the central
database and mobile computers when a mobile computer reconnects.
Answer: Let C be the computer onto which the central database is
loaded. Each mobile computer (host) i stores, with its copy of each
document d, a version-vector – that is a set of version numbers Vd,i, j ,
with one entry for each other host j that stores a copy of the document
d, which it could possibly update.

Host A updates document 1 while it is disconnected from C. Thus,
according to the version vector scheme, the version number V1,A,A is
incremented by one.

Now, suppose host A re-connects to C. This pair exchanges version-
vectors and finds that the version number V1,A,A is greater than V1,C,A

by 1, (assuming that the copy of document 1 stored host A was updated
most recently only by host A). Following the version-vector scheme,
the version of document 1 at C is updated and the change is reflected
by an increment in the version number V1,C,A. Note that these are the
only changes made by either host.

Similarly, when host B connects to host C, they exchange version-
vectors, and host B finds that V1,B,A is one less than V1,C,A. Thus, the
version number V1,B,A is incremented by one, and the copy of docu-
ment 1 at host B is updated.

Thus, we see that the version-vector scheme ensures proper updating
of the central database for the case just considered. This argument can
be very easily generalized for the case where multiple off-line updates
are made to copies of document 1 at host A as well as host B and host
C. The argument for off-line updates to document 2 is similar.




