
C H A P T E R 5

Advanced SQL

Practice Exercises

5.1 Describe the circumstances in which you would choose to use embed-
ded SQL rather than SQL alone or only a general-purpose programming
language.
Answer: Writing queries in SQL is typically much easier than coding
the same queries in a general-purpose programming language. However
not all kinds of queries can be written in SQL. Also nondeclarative actions
such as printing a report, interacting with a user, or sending the results
of a query to a graphical user interface cannot be done from within SQL.
Under circumstances in which we want the best of both worlds, we can
choose embedded SQL or dynamic SQL, rather than using SQL alone or
using only a general-purpose programming language.
Embedded SQL has the advantage of programs being less complicated
since it avoids the clutter of the ODBC or JDBC function calls, but requires
a specialized preprocessor.

5.2 Write a Java function using JDBC metadata features that takes a Result-
Set as an input parameter, and prints out the result in tabular form, with
appropriate names as column headings.
Answer:

public class ResultSetTable implements TabelModel {
ResultSet result;
ResultSetMetaData metadata;
int num cols;

ResultSetTable(ResultSet result) throws SQLException {
this.result = result;
metadata = result.getMetaData();
num cols = metadata.getColumnCount();

for(int i = 1; i <= num cols; i++) {
System.out.print(metadata.getColumnName(i) + ‘‘ ‘‘);

1

2 Chapter 5 Advanced SQL

}
System.out.println();
while(result.next()) {

for(int i = 1; i <= num cols; i++) {
System.out.print(result.getString(

metadata.getColumnName(i) + ‘‘ ‘‘));
}
System.out.println();

}
}

}

5.3 Write a Java function using JDBC metadata features that prints a list of
all relations in the database, displaying for each relation the names and
types of its attributes.
Answer:

DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rs = dbmd.getTables();
while (rs.next()) {

System.out.println(rs.getString(‘‘TABLE NAME’’);
ResultSet rs1 = dbmd.getColumns(null, ‘‘schema-name’’,

rs.getString(‘‘TABLE NAME’’), ‘‘%’’);
while (rs1.next()) {

System.out.println(rs1.getString(‘‘COLUMN NAME’’),
rs.getString(‘‘TYPE NAME’’);

}
}

5.4 Show how to enforce the constraint “an instructor cannot teach in two
different classrooms in a semester in the same time slot.” using a trigger
(remember that the constraint can be violated by changes to the teaches
relation as well as to the section relation).
Answer: FILL

5.5 Write triggers to enforce the referential integrity constraint from section
to time slot, on updates to section, and time slot. Note that the ones we
wrote in Figure 5.8 do not cover the update operation.
Answer: FILL

5.6 To maintain the tot cred attribute of the student relation, carry out the
following:

a. Modify the trigger on updates of takes, to handle all updates that
can affect the value of tot cred.

b. Write a trigger to handle inserts to the takes relation.

Exercises 3

c. Under what assumptions is it reasonable not to create triggers on
the course relation?

Answer: FILL

5.7 Consider the bank database of Figure 5.25. Let us define a view branch cust
as follows:

create view branch cust as
select branch name, customer name
from depositor, account
where depositor.account number = account.account number

Suppose that the view is materialized; that is, the view is computed and
stored. Write triggers to maintain the view, that is, to keep it up-to-date
on insertions to and deletions from depositor or account. Do not bother
about updates.
Answer: For inserting into the materialized view branch cust we must
set a database trigger on an insert into depositor and account. We assume
that the database system uses immediate binding for rule execution. Fur-
ther, assume that the current version of a relation is denoted by the
relation name itself, while the set of newly inserted tuples is denoted by
qualifying the relation name with the prefix – inserted.
The active rules for this insertion are given below –

define trigger insert into branch cust via depositor
after insert on depositor
referencing new table as inserted for each statement
insert into branch cust

select branch name, customer name
from inserted, account
where inserted.account number = account.account number

define trigger insert into branch cust via account
after insert on account
referencing new table as inserted for each statement
insert into branch cust

select branch name, customer name
from depositor, inserted
where depositor.account number = inserted.account number

Note that if the execution binding was deferred (instead of immediate),
then the result of the join of the set of new tuples of account with the set
of new tuples of depositor would have been inserted by both active rules,
leading to duplication of the corresponding tuples in branch cust.
The deletion of a tuple from branch cust is similar to insertion, exce pt
that a deletion from either depositor or account will cause the natural join
of these relations to have a lesser number of tuples. We denote the newly

4 Chapter 5 Advanced SQL

deleted set of tuples by qualifying the relation name with the keyword
deleted.

define trigger delete from branch cust via depositor
after delete on depositor
referencing old table as deleted for each statement
delete from branch cust

select branch name, customer name
from deleted, account
where deleted.account number = account.account number

define trigger delete from branch cust via account
after delete on account
referencing old table as deleted for each statement
delete from branch cust

select branch name, customer name
from depositor, deleted
where depositor.account number = deleted.account number

5.8 Consider the bank database of Figure 5.25. Write an SQL trigger to carry
out the following action: On delete of an account, for each owner of the
account, check if the owner has any remaining accounts, and if she does
not, delete her from the depositor relation.
Answer:

create trigger check-delete-trigger after delete on account
referencing old row as orow
for each row
delete from depositor
where depositor.customer name not in

(select customer name from depositor
where account number <> orow.account number)

end

5.9 Show how to express group by cube(a , b, c, d) using rollup; your answer
should have only one group by clause.
Answer:

groupby rollup(a), rollup(b), rollup(c), rollup(d)

5.10 Given a relation S(student, sub ject, marks), write a query to find the top
n students by total marks, by using ranking.
Answer: We assume that multiple students do not have the same marks
since otherwise the question is not deterministic; the query below deter-
ministically returns all students with the same marks as the n student,
so it may return more than n students.

Exercises 5

select student, sum(marks) as total,
rank() over (order by (total) desc) as trank

from S
groupby student
having trank ≤ n

5.11 Consider the sales relation from Section 5.6. Write an SQL query to com-
pute the cube operation on the relation, giving the relation in Figure 5.21.
Do not use the cube construct.
Answer:

(select color, size, sum(number)
from sales
groupby color, size

)
union
(select color, ’all’, sum(number)
from sales
groupby color

)
union
(select ’all’, size, sum(number)
from sales
groupby size

)
union
(select ’all’, size, sum(number)
from sales
groupby size

)
union
(select ’all’, ’all’, sum(number)
from sales

)

