
C H A P T E R 8

Relational Database Design

Exercises

8.1 Suppose that we decompose the schema R = (A, B, C , D, E) into

(A, B, C)
(A, D, E).

Show that this decomposition is a lossless-join decomposition if the
following set F of functional dependencies holds:

A → BC
CD → E
B → D
E → A

Answer: A decomposition {R1, R2} is a lossless-join decomposition if
R1 ∩ R2 → R1 or R1 ∩ R2 → R2. Let R1 = (A, B, C), R2 =

(A, D, E), and R1 ∩ R2 = A. Since A is a candidate key (see Practice
Exercise 8.6), Therefore R1 ∩ R2 → R1.

8.2 List all functional dependencies satisfied by the relation of Figure 8.17.
Answer: The nontrivial functional dependencies are: A → B and
C → B, and a dependency they logically imply: AC → B. There are
19 trivial functional dependencies of the form a → b, where b ⊆ a. C
does not functionally determine A because the first and third tuples have
the same C but different A values. The same tuples also show B does not
functionally determine A. Likewise, A does not functionally determine
C because the first two tuples have the same A value and different C
values. The same tuples also show B does not functionally determine C.

8.3 Explain how functional dependencies can be used to indicate the fol-
lowing:

9

10 Chapter 8 Relational Database Design

• A one-to-one relationship set exists between entity sets student and
instructor.

• A many-to-one relationship set exists between entity sets student
and instructor.

Answer: Let Pk(r) denote the primary key attribute of relation r .

• The functional dependencies Pk(student) → Pk (instructor) and
Pk(instructor) → Pk(student) indicate a one-to-one relationship
because any two tuples with the same value for student must have
the same value for instructor, and any two tuples agreeing on
instructor must have the same value for student.

• The functional dependency Pk(student) → Pk(instructor) indicates a
many-to-one relationship since any student value which is repeated
will have the same instructor value, but many student values may
have the same instructor value.

8.4 Use Armstrong’s axioms to prove the soundness of the union rule. (Hint:
Use the augmentation rule to show that, if a → b, then a → ab. Apply the
augmentation rule again, using a → g , and then apply the transitivity
rule.)
Answer: To prove that:

if a → b and a → g then a → bg

Following the hint, we derive:
a → b given
aa → ab augmentation rule
a → ab union of identical sets
a → g given
ab → g b augmentation rule
a → bg transitivity rule and set union commutativity

8.5 Use Armstrong’s axioms to prove the soundness of the pseudotransitiv-
ity rule.
Answer: Proof using Armstrong’s axioms of the Pseudotransitivity Rule:

if a → b and g b → d, then ag → d.

a → b given
ag → g b augmentation rule and set union commutativity
g b → d given
ag → d transitivity rule

8.6 Compute the closure of the following set F of functional dependencies
for relation schema R = (A, B, C, D, E).

Exercises 11

A → BC
CD → E
B → D
E → A

List the candidate keys for R.
Answer: Note: It is not reasonable to expect students to enumerate all
of F +. Some shorthand representation of the result should be acceptable
as long as the nontrivial members of F + are found.

Starting with A → BC , we can conclude: A → B and A → C .

Since A → B and B → D, A → D (decomposition,
transitive)

Since A → C D and C D → E , A → E (union, decom-
position, transi-
tive)

Since A → A, we have (reflexive)
A → ABC DE from the above steps (union)
Since E → A, E → ABC DE (transitive)
Since C D → E , C D → ABC DE (transitive)
Since B → D and BC → C D, BC →

ABC DE
(augmentative,
transitive)

Also, C → C , D → D, B D → D, etc.
Therefore, any functional dependency with A, E , BC , or C D on the left
hand side of the arrow is in F +, no matter which other attributes appear
in the FD. Allow * to represent any set of attributes in R, then F + is
B D → B, B D → D, C → C , D → D, B D → B D, B → D,
B → B, B → B D, and all FDs of the form A ∗ → a, BC ∗ → a,
C D ∗ → a, E ∗ → a where a is any subset of {A, B, C, D, E}. The
candidate keys are A, BC, C D, and E .

8.7 Using the functional dependencies of Practice Exercise 8.6, compute the
canonical
cover Fc .
Answer: The given set of FDs F is:-

A → BC
CD → E
B → D
E → A

The left side of each FD in F is unique. Also none of the attributes in
the left side or right side of any of the FDs is extraneous. Therefore the
canonical cover Fc is equal to F .

12 Chapter 8 Relational Database Design

8.8 Consider the algorithm in Figure 8.18 to compute a+. Show that this
algorithm is more efficient than the one presented in Figure 8.8 (Sec-
tion 8.4.2) and that it computes a+ correctly.
Answer: The algorithm is correct because:

• If A is added to result then there is a proof that a → A. To see this,
observe that a → a trivially so a is correctly part of result. If
A 6∈ a is added to result there must be some FD b → g such that
A ∈ g and b is already a subset of result. (Otherwise f dcount
would be nonzero and the if condition would be false.) A full proof
can be given by induction on the depth of recursion for an execution
of addin, but such a proof can be expected only from students with
a good mathematical background.

• If A ∈ a+, then A is eventually added to result. We prove this by
induction on the length of the proof of a → A using Armstrong’s
axioms. First observe that if procedure addin is called with some
argument b, all the attributes in b will be added to result. Also if a
particular FD’s fdcount becomes 0, all the attributes in its tail will
definitely be added to result. The base case of the proof,
A ∈ a ⇒ A ∈ a+, is obviously true because the first call to addin
has the argument a. The inductive hypotheses is that if a → A can
be proved in n steps or less then A ∈ result. If there is a proof in
n + 1 steps that a → A, then the last step was an application of
either reflexivity, augmentation or transitivity on a fact a → b

proved in n or fewer steps. If reflexivity or augmentation was used
in the (n + 1)st step, A must have been in result by the end of the nth

step itself. Otherwise, by the inductive hypothesis b ⊆ result.
Therefore the dependency used in proving b → g , A ∈ g will
have f dcount set to 0 by the end of the nth step. Hence A will be
added to result.

To see that this algorithm is more efficient than the one presented in
the chapter note that we scan each FD once in the main program. The
resulting array a ppears has size proportional to the size of the given
FDs. The recursive calls to addin result in processing linear in the size
of a ppears. Hence the algorithm has time complexity which is linear in
the size of the given FDs. On the other hand, the algorithm given in the
text has quadratic time complexity, as it may perform the loop as many
times as the number of FDs, in each loop scanning all of them once.

8.9 Given the database schema R(a , b, c), and a relation r on the schema R,
write an SQL query to test whether the functional dependency b → c
holds on relation r . Also write an SQL assertion that enforces the func-
tional dependency. Assume that no null values are present. (Although
part of the SQL standard, such assertions are not supported by any
database implementation currently.)
Answer:

Exercises 13

a. The query is given below. Its result is non-empty if and only if
b → c does not hold on r .

select b
from r
group by b
having count(distinct c) > 1

b.

create assertion b to c check
(not exists

(select b
from r
group by b
having count(distinct c) > 1
)

)

8.10 Our discussion of lossless-join decomposition implicitly assumed that
attributes on the left-hand side of a functional dependency cannot take
on null values. What could go wrong on decomposition, if this property
is violated?
Answer: The natural join operator is defined in terms of the cartesian
product and the selection operator. The selection operator, gives unknown
for any query on a null value. Thus, the natural join excludes all tuples
with null values on the common attributes from the final result. Thus,
the decomposition would be lossy (in a manner different from the usual
case of lossy decomposition), if null values occur in the left-hand side of
the functional dependency used to decompose the relation. (Null values
in attributes that occur only in the right-hand side of the functional
dependency do not cause any problems.)

8.11 In the BCNF decomposition algorithm, suppose you use a functional de-
pendency a → b to decompose a relation schema r (a, b, g) into r1(a, b)
and r2(a, g).

a. What primary and foreign-key constraint do you expect to hold
on the decomposed relations?

b. Give an example of an inconsistency that can arise due to an
erroneous update, if the foreign-key constraint were not enforced
on the decomposed relations above.

c. When a relation is decomposed into 3NF using the algorithm in
Section 8.5.2, what primary and foreign key dependencies would
you expect will hold on the decomposed schema?

14 Chapter 8 Relational Database Design

Answer:

a. a should be a primary key for r1, and a should be the foreign key
from r2, referencing r1.

b. If the foreign key constraint is not enforced, then a deletion of a
tuple from r1 would not have a corresponding deletion from the
referencing tuples in r2. Instead of deleting a tuple from r , this
would amount to simply setting the value of a to null in some
tuples.

c. For every schema ri (ab) added to the schema because of a rule
a → b, a should be made the primary key. Also, a candidate key g

for the original relation is located in some newly created relation
rk , and is a primary key for that relation.
Foreign key constraints are created as follows: for each relation
ri created above, if the primary key attributes of ri also occur in
any other relation r j , then a foreign key constraint is created from
those attributes in r j , referencing (the primary key of) ri .

8.12 Let R1, R2, . . . , Rn be a decomposition of schema U. Let u(U) be a rela-
tion, and let ri = 5RI

(u). Show that

u ⊆ r1 1 r2 1 · · · 1 rn

Answer: Consider some tuple t in u.
Note that ri = 5Ri

(u) implies that t[Ri] ∈ ri , 1 ≤ i ≤ n. Thus,

t[R1] 1 t[R2] 1 . . . 1 t[Rn] ∈ r1 1 r2 1 . . . 1 rn

By the definition of natural join,

t[R1] 1 t[R2] 1 . . . 1 t[Rn] = 5a (sb (t[R1] × t[R2] × . . . × t[Rn]))

where the condition b is satisfied if values of attributes with the same
name in a tuple are equal and where a = U. The cartesian product
of single tuples generates one tuple. The selection process is satisfied
because all attributes with the same name must have the same value
since they are projections from the same tuple. Finally, the projection
clause removes duplicate attribute names.
By the definition of decomposition, U = R1 ∪ R2 ∪ . . .∪ Rn, which means
that all attributes of t are in t[R1] 1 t[R2] 1 . . . 1 t[Rn]. That is, t is equal
to the result of this join.
Since t is any arbitrary tuple in u,

u ⊆ r1 1 r2 1 . . . 1 rn

8.13 Show that the decomposition in Practice Exercise 8.1 is not a dependency-
preserving decomposition.
Answer: The dependency B → D is not preserved. F1, the restriction
of F to (A, B, C) is A → ABC , A → AB, A → AC , A → BC ,

Exercises 15

A → B, A → C , A → A, B → B, C → C , AB → AC , AB → ABC ,
AB → BC , AB → AB, AB → A, AB → B, AB → C , AC (same
as AB), BC (same as AB), ABC (same as AB). F2, the restriction of F to
(C, D, E) is A → ADE , A → AD, A → AE , A → DE , A → A,
A → D, A → E , D → D, E (same as A), AD, AE , DE , ADE (same
as A). (F1 ∪ F2)+ is easily seen not to contain B → D since the only FD

in F1 ∪ F2 with B as the left side is B → B, a trivial FD. We shall see in
Practice Exercise 8.15 that B → D is indeed in F +. Thus B → D is not
preserved. Note that C D → ABC DE is also not preserved.

A simpler argument is as follows: F1 contains no dependencies with D
on the right side of the arrow. F2 contains no dependencies with B on the
left side of the arrow. Therefore for B → D to be preserved there must
be an FD B → a in F +

1 and a → D in F +
2 (so B → D would follow

by transitivity). Since the intersection of the two schemes is A, a = A.
Observe that B → A is not in F +

1 since B+ = B D.

8.14 Show that it is possible to ensure that a dependency-preserving decom-
position into 3NF is a lossless-join decomposition by guaranteeing that at
least one schema contains a candidate key for the schema being decom-
posed. (Hint: Show that the join of all the projections onto the schemas of
the decomposition cannot have more tuples than the original relation.)
Answer: Let F be a set of functional dependencies that hold on a schema
R. Let s = {R1, R2, . . . , Rn} be a dependency-preserving 3NF decompo-
sition of R. Let X be a candidate key for R.
Consider a legal instance r of R. Let j = 5X(r) 1 5R1 (r) 1 5R2 (r) . . . 1

5Rn
(r). We want to prove that r = j .

We claim that if t1 and t2 are two tuples in j such that t1[X] = t2[X], then
t1 = t2. To prove this claim, we use the following inductive argument –
Let F ′ = F1 ∪ F2 ∪ . . . ∪ Fn, where each Fi is the restriction of F to the
schema Ri in s. Consider the use of the algorithm given in Figure 8.8 to
compute the closure of X under F ′. We use induction on the number of
times that the f or loop in this algorithm is executed.

• Basis : In the first step of the algorithm, result is assigned to X, and
hence given that t1[X] = t2[X], we know that t1[result] = t2[result]
is true.

• Induction Step : Let t1[result] = t2[result] be true at the end of the
k th execution of the f or loop.
Suppose the functional dependency considered in the k + 1 th
execution of the f or loop is b → g , and that b ⊆ result. b ⊆ result
implies that t1[b] = t2[b] is true. The facts that b → g holds for
some attribute set Ri in s, and that t1[Ri] and t2[Ri] are in 5Ri

(r)
imply that t1[g] = t2[g] is also true. Since g is now added to result
by the algorithm, we know that t1[result] = t2[result] is true at the
end of the k + 1 th execution of the f or loop.

16 Chapter 8 Relational Database Design

Since s is dependency-preserving and X is a key for R, all attributes in R
are in result when the algorithm terminates. Thus, t1[R] = t2[R] is true,
that is, t1 = t2 – as claimed earlier.
Our claim implies that the size of 5X(j) is equal to the size of j . Note
also that 5X(j) = 5X(r) = r (since X is a key for R). Thus we have
proved that the size of j equals that of r . Using the result of Practice
Exercise 8.12, we know that r ⊆ j . Hence we conclude that r = j .
Note that since X is trivially in 3NF, s ∪ {X} is a dependency-preserving
lossless-join decomposition into 3NF.

8.15 Give an example of a relation schema R′ and set F ′ of functional depen-
dencies such that there are at least three distinct lossless-join decompo-
sitions of R′ into BCNF.
Answer: Given the relation R′ = (A, B, C, D) the set of functional
dependencies F ′ = A → B, C → D, B → C allows three distinct
BCNF decompositions.

R1 = {(A, B), (C, D), (B, C)}

is in BCNF as is

R2 = {(A, B), (C, D), (A, C)}

R2 = {(A, B), (C, D), (A, C)}

R3 = {(B, C), (A, D), (A, B)}

8.16 Let a prime attribute be one that appears in at least one candidate key.
Let a and b be sets of attributes such that a → b holds, but b → a

does not hold. Let A be an attribute that is not in a, is not in b, and for
which b → A holds. We say that A is transitively dependent on a. We
can restate our definition of 3NF as follows: A relation schema R is in
3NF with respect to a set F of functional dependencies if there are no
nonprime attributes A in R for which A is transitively dependent on a
key for R.
Show that this new definition is equivalent to the original one.
Answer: Suppose R is in 3NF according to the textbook definition. We
show that it is in 3NF according to the definition in the exercise. Let A be
a nonprime attribute in R that is transitively dependent on a key a for
R. Then there exists b ⊆ R such that b → A, a → b, A 6∈ a, A 6∈

b, and b → a does not hold. But then b → A violates the textbook
definition of 3NF since

• A 6∈ b implies b → A is nontrivial

• Since b → a does not hold, b is not a superkey

• A is not any candidate key, since A is nonprime

Exercises 17

Now we show that if R is in 3NF according to the exercise definition, it
is in 3NF according to the textbook definition. Suppose R is not in 3NF

according the the textbook definition. Then there is an FD a → b that
fails all three conditions. Thus

• a → b is nontrivial.

• a is not a superkey for R.

• Some A in b − a is not in any candidate key.

This implies that A is nonprime and a → A. Let g be a candidate key
for R. Then g → a, a → g does not hold (since a is not a superkey),
A 6∈ a, and A 6∈ g (since A is nonprime). Thus A is transitively
dependent on g , violating the exercise definition.

8.17 A functional dependency a → b is called a partial dependency if there
is a proper subset g of a such that g → b. We say that b is partially
dependent on a. A relation schema R is in second normal form (2NF) if
each attribute A in R meets one of the following criteria:

• It appears in a candidate key.

• It is not partially dependent on a candidate key.

Show that every 3NF schema is in 2NF. (Hint: Show that every partial
dependency is a transitive dependency.)
Answer: Referring to the definitions in Practice Exercise 8.16, a relation
schema R is said to be in 3NF if there is no non-prime attribute A in R
for which A is transitively dependent on a key for R.
We can also rewrite the definition of 2NF given here as :
“A relation schema R is in 2NF if no non-prime attribute A is partially
dependent on any candidate key for R.”
To prove that every 3NF schema is in 2NF, it suffices to show that if a
non-prime attribute A is partially dependent on a candidate key a, then
A is also transitively dependent on the key a.
Let A be a non-prime attribute in R. Let a be a candidate key for R.
Suppose A is partially dependent on a.

• From the definition of a partial dependency, we know that for some
proper subset b of a, b → A.

• Since b ⊂ a, a → b. Also, b → a does not hold, since a is a
candidate key.

• Finally, since A is non-prime, it cannot be in either b or a.

Thus we conclude that a → A is a transitive dependency. Hence we
have proved that every 3NF schema is also in 2NF.

8.18 Give an example of a relation schema R and a set of dependencies such
that R is in BCNF but is not in 4NF.

18 Chapter 8 Relational Database Design

Answer:

R(A, B, C)
A →→ B

Exercises 19

result := ∅;
/* fdcount is an array whose ith element contains the number

of attributes on the left side of the ith FD that are
not yet known to be in a+ */

for i := 1 to |F | do
begin

let b → g denote the ith FD;
fdcount [i] := |b|;

end
/* appears is an array with one entry for each attribute. The

entry for attribute A is a list of integers. Each integer
i on the list indicates that A appears on the left side
of the ith FD */

for each attribute A do
begin

appears [A] := NI L;
for i := 1 to |F | do

begin
let b → g denote the ith FD;
if A ∈ b then add i to appears [A];

end
end

addin (a);
return (result);

procedure addin (a);
for each attribute A in a do

begin
if A 6∈ result then

begin
result := result ∪ {A};
for each element i of appears[A] do

begin
fdcount [i] := fdcount [i] − 1;
if fdcount [i] := 0 then

begin
let b → g denote the ith FD;
addin (g);

end
end

end
end

Figure 8.18. An algorithm to compute a+.

