
CHAP T E R 30
XML

The Extensible Markup Language (XML) was not designed for database applications.
In fact, like the Hyper-Text Markup Language (HTML) on which the World Wide Web
is based, XML has its roots in document management and is derived from a language
for structuring large documents known as the Standard Generalized Markup Language
(SGML). However, unlike SGML and HTML, XML is designed to represent data. It
is particularly useful as a data format when an application must communicate with
another application or integrate information from several other applications. When
XML is used in these contexts, many database issues arise, including how to organize,
manipulate, and query the XML data. In this chapter, we introduce XML and discuss
both the management of XML data with database techniques and the exchange of data
formatted as XML documents.

30.1 Motivation

To understand XML, it is important to understand its roots as a document markup
language. The term markup refers to anything in a document that is not intended to
be part of the printed output. For example, a writer creating text that will eventually
be typeset in a magazine may want to make notes about how the typesetting should be
done. It would be important to type these notes in a way that they could be distinguished
from the actual content, so that a note like “set this word in large size, bold font” or
“insert a line break here” does not end up printed in the magazine. Such notes convey
extra information about the text. In electronic document processing, a markup language
is a formal description of what part of the document is content, what part is markup,
and what the markup means.

Just as database systems evolved from physical file processing to provide a separate
logical view, markup languages evolved from specifying instructions for how to print
parts of the document to specifying the function of the content. For instance, with func-
tional markup, text representing section headings (for this section, the word Motivation
would be marked up as being a section heading, instead of being marked up as text

1

2 Chapter 30 XML

to be printed in large size, bold font). From the viewpoint of typesetting, such func-
tional markup allows the document to be formatted differently in different situations.
It also helps different parts of a large document, or different pages in a large web site,
to be formatted in a uniform manner. More importantly, functional markup also helps
record what each part of the text represents semantically, and correspondingly helps
automate extraction of key parts of documents.

For the family of markup languages that includes HTML, SGML, and XML, the
markup takes the form of tags enclosed in angle brackets, <>. Tags are used in pairs,
with <tag> and </tag> delimiting the beginning and the end of the portion of the
document to which the tag refers. For example, the title of a document might be marked
up as follows:

<title>Database System Concepts</title>

<university>
<department>

<dept name> Comp. Sci. </dept name>
<building> Taylor </building>
<budget> 100000 </budget>

</department>
<department>

<dept name> Biology </dept name>
<building> Watson </building>
<budget> 90000 </budget>

</department>
<course>

<course id> CS-101 </course id>
<title> Intro. to Computer Science </title>
<dept name> Comp. Sci </dept name>
<credits> 4 </credits>

</course>
<course>

<course id> BIO-301 </course id>
<title> Genetics </title>
<dept name> Biology </dept name>
<credits> 4 </credits>

</course>

continued in Figure Figure 30.2

Figure 30.1 XML representation of (part of) university information.

30.1 Motivation 3

Unlike HTML, XML does not prescribe the set of tags allowed, and the set may
be chosen as needed by each application. This feature is the key to XML’s major role
in data representation and exchange, whereas HTML is used primarily for document
formatting.

For example, in our running university application, department, course and in-
structor information can be represented as part of an XML document as in Figure
30.1 and Figure 30.2. Observe the use of tags such as department, course, instructor,
and teaches. To keep the example short, we use a simplified version of the university

<instructor>
<IID> 10101 </IID>
<name> Srinivasan </name>
<dept name> Comp. Sci. </dept name>
<salary> 65000 </salary>

</instructor>
<instructor>

<IID> 83821 </IID>
<name> Brandt </name>
<dept name> Comp. Sci. </dept name>
<salary> 92000 </salary>

</instructor>
<instructor>

<IID> 76766 </IID>
<name> Crick </name>
<dept name> Biology </dept name>
<salary> 72000 </salary>

</instructor>
<teaches>

<IID> 10101 </IID>
<course id> CS-101 </course id>

</teaches>
<teaches>

<IID> 83821 </IID>
<course id> CS-101 </course id>

</teaches>
<teaches>

<IID> 76766 </IID>
<course id> BIO-301 </course id>

</teaches>
</university>

Figure 30.2 Continuation of Figure 30.1.

4 Chapter 30 XML

schema that ignores section information for courses. We have also used the tag IID to
denote the identifier of the instructor, for reasons we shall see later.

These tags provide context for each value and allow the semantics of the value
to be identified. For this example, the XML data representation does not provide any
significant benefit over the traditional relational data representation; however, we use
this example as our running example because of its simplicity.

Figure 30.3, which shows how information about a purchase order can be repre-
sented in XML, illustrates a more realistic use of XML. Purchase orders are typically
generated by one organization and sent to another. Traditionally they were printed on
paper by the purchaser and sent to the supplier; the data would be manually re-entered

<purchase order>
<identifier> P-101 </identifier>
<purchaser>

<name> Cray Z. Coyote </name>
<address> Mesa Flats, Route 66, Arizona 12345, USA </address>

</purchaser>
<supplier>

<name> Acme Supplies </name>
<address> 1 Broadway, New York, NY, USA </address>

</supplier>
<itemlist>

<item>

<identifier> RS1 </identifier>
<description> Atom powered rocket sled </description>
<quantity> 2 </quantity>
<price> 199.95 </price>

</item>

<item>

<identifier> SG2 </identifier>
<description> Superb glue </description>
<quantity> 1 </quantity>
<unit-of-measure> liter </unit-of-measure>
<price> 29.95 </price>

</item>

</itemlist>
<total cost> 429.85 </total cost>
<payment terms> Cash-on-delivery </payment terms>
<shipping mode> 1-second-delivery </shipping mode>

</purchaseorder>

Figure 30.3 XML representation of a purchase order.

30.1 Motivation 5

into a computer system by the supplier. This slow process can be greatly sped up by
sending the information electronically between the purchaser and supplier. The nested
representation allows all information in a purchase order to be represented naturally
in a single document. (Real purchase orders have considerably more information than
that depicted in this simplified example.) XML provides a standard way of tagging the
data; the two organizations must agree on what tags appear in the purchase order, and
what they mean.

Compared to storage of data in a relational database, the XML representation may
be inefficient, since tag names are repeated throughout the document. However, in
spite of this disadvantage, an XML representation has significant advantages when it
is used to exchange data between organizations, and for storing complex structured
information in files:

• First, the presence of the tags makes the message self-documenting; that is, a
schema need not be consulted to understand the meaning of the text. We can
readily read the fragment in Figure 30.1 and Figure 30.2, for example.

• Second, the format of the document is not rigid. For example, if some sender adds
additional information, such as a tag last accessed noting the last date on which
an account was accessed, the recipient of the XML data may simply ignore the tag.
As another example, in Figure 30.3, the item with identifier SG2 has a tag called
unit-of-measure specified, which the first item does not. The tag is required for
items that are ordered by weight or volume and may be omitted for items that are
simply ordered by number.

The ability to recognize and ignore unexpected tags allows the format of the
data to evolve over time, without invalidating existing applications. Similarly, the
ability to have multiple occurrences of the same tag makes it easy to represent
multivalued attributes.

• Third, XML allows nested structures. The purchase order shown in Figure 30.3
illustrates the benefits of having a nested structure. Each purchase order has a
purchaser and a list of items as two of its nested structures. Each item in turn has
an item identifier, description, and a price nested within it, while the purchaser
has a name and address nested within it.

Such information would have been split into multiple relations in a relational
schema. Item information would have been stored in one relation, purchaser in-
formation in a second relation, purchase orders in a third, and the relationship be-
tween purchase orders, purchasers, and items would have been stored in a fourth
relation.

The relational representation helps to avoid redundancy; for example, item
descriptions would be stored only once for each item identifier in a normalized
relational schema. In the XML purchase order, however, the descriptions may be
repeated in multiple purchase orders that order the same item. However, gathering
all information related to a purchase order into a single nested structure, even at

6 Chapter 30 XML

the cost of redundancy, is attractive when information has to be exchanged with
external parties.

• Finally, since the XML format is widely accepted, a wide variety of tools are avail-
able to assist in its processing, including programming language APIs to create and
to read XML data, browser software, and database tools.

We describe several applications for XML data in Section 30.7. Just as SQL is the
dominant language for querying relational data, XML has become the dominant format
for data exchange.

30.2 Structure of XML Data

The fundamental construct in an XML document is the element. An element is simply
a pair of matching start- and end-tags and all the text that appears between them.

XML documents must have a single root element that encompasses all other ele-
ments in the document. In the example in Figure 30.1, the <university> element forms
the root element. Further, elements in an XML document must nest properly. For in-
stance,

<course> … <title> … </title> … </course>

is properly nested, whereas

<course> … <title> … </course> … </title>

is not properly nested.
While proper nesting is an intuitive property, we may define it more formally. Text

is said to appear in the context of an element if it appears between the start-tag and end-

…
<course>

This course is being offered for the first time in 2009.
<course id> BIO-399 </course id>
<title> Computational Biology </title>
<dept name> Biology </dept name>
<credits> 3 </credits>

</course>
…

Figure 30.4 Mixture of text with subelements.

30.2 Structure of XML Data 7

tag of that element. Tags are properly nested if every start-tag has a unique matching
end-tag that is in the context of the same parent element.

Note that text may be mixed with the subelements of an element, as in Figure 30.4.
As with several other features of XML, this freedom makes more sense in a document-
processing context than in a data-processing context, and it is not particularly useful
for representing more-structured data such as database content in XML.

<university-1>
<department>

<dept name> Comp. Sci. </dept name>
<building> Taylor </building>
<budget> 100000 </budget>
<course>

<course id> CS-101 </course id>
<title> Intro. to Computer Science </title>
<credits> 4 </credits>

</course>
<course>

<course id> CS-347 </course id>
<title> Database System Concepts </title>
<credits> 3 </credits>

</course>
</department>
<department>

<dept name> Biology </dept name>
<building> Watson </building>
<budget> 90000 </budget>
<course>

<course id> BIO-301 </course id>
<title> Genetics </title>
<credits> 4 </credits>

</course>
</department>
<instructor>

<IID> 10101 </IID>
<name> Srinivasan </name>
<dept name> Comp. Sci. </dept name>
<salary> 65000. </salary>
<course id> CS-101 </course id>

</instructor>
</university-1>

Figure 30.5 Nested XML representation of university information.

8 Chapter 30 XML

<university-2>
<instructor>

<ID> 10101 </ID>
<name> Srinivasan </name>
<dept name> Comp. Sci.</dept name>
<salary> 65000 </salary>
<teaches>

<course>
<course id> CS-101 </course id>
<title> Intro. to Computer Science </title>
<dept name> Comp. Sci. </dept name>
<credits> 4 </credits>

</course>
</teaches>

</instructor>

<instructor>
<ID> 83821 </ID>
<name> Brandt </name>
<dept name> Comp. Sci.</dept name>
<salary> 92000 </salary>
<teaches>

<course>
<course id> CS-101 </course id>
<title> Intro. to Computer Science </title>
<dept name> Comp. Sci. </dept name>
<credits> 4 </credits>

</course>
</teaches>

</instructor>
</university-2>

Figure 30.6 Redundancy in nested XML representation.

The ability to nest elements within other elements provides an alternative way to
represent information. Figure 30.5 shows a representation of part of the university
information from Figure 30.1, but with course elements nested within department
elements. The nested representation makes it easy to find all courses offered by a de-
partment. Similarly, identifiers of courses taught by an instructor are nested within the
instructor elements. If an instructor teaches more than one course, there would be
multiple course id elements within the corresponding instructor element. Details of

30.2 Structure of XML Data 9

instructors Brandt and Crick are omitted from Figure 30.5 for lack of space but are
similar in structure to that for Srinivasan.

Although nested representations are natural in XML, they may lead to redundant
storage of data. For example, suppose details of courses taught by an instructor are
stored nested within the instructor element as shown in Figure 30.6. If a course is
taught by more than one instructor, course information such as title, department, and
credits would be stored redundantly with every instructor associated with the course.

Nested representations are widely used in XML data interchange applications to
avoid joins. For instance, a purchase order would store the full address of sender and
receiver redundantly on multiple purchase orders, whereas a normalized representation
may require a join of purchase order records with a company address relation to get
address information.

In addition to elements, XML specifies the notion of an attribute. For instance,
the course identifier of a course can be represented as an attribute, as shown in Figure
30.7. The attributes of an element appear as name=value pairs before the closing “>”
of a tag. Attributes are strings and do not contain markup. Furthermore, attributes can
appear only once in a given tag, unlike subelements, which may be repeated.

Note that in a document construction context, the distinction between subelement
and attribute is important—an attribute is implicitly text that does not appear in the
printed or displayed document. However, in database and data exchange applications of
XML, this distinction is less relevant, and the choice of representing data as an attribute
or a subelement is frequently arbitrary. In general, it is advisable to use attributes only
to represent identifiers, and to store all other data as subelements.

One final syntactic note is that an element of the form <element></element>
that contains no subelements or text can be abbreviated as <element/>; abbreviated
elements may, however, contain attributes.

Since XML documents are designed to be exchanged between applications, a name-
space mechanism has been introduced to allow organizations to specify globally unique
names to be used as element tags in documents. The idea of a namespace is to prepend
each tag or attribute with a universal resource identifier (e.g., a web address). Thus,
for example, if Yale University wanted to ensure that XML documents it created would

…
<course course id= “CS-101”>

<title> Intro. to Computer Science</title>
<dept name> Comp. Sci. </dept name>
<credits> 4 </credits>

</course>
…

Figure 30.7 Use of attributes.

10 Chapter 30 XML

<university xmlns:yale=“http://www.yale.edu”>
…
<yale:course>

<yale:course id> CS-101 </yale:course id>
<yale:title> Intro. to Computer Science</yale:title>
<yale:dept name> Comp. Sci. </yale:dept name>
<yale:credits> 4 </yale:credits>

</yale:course>
…

</university>

Figure 30.8 Unique tag names can be assigned by using namespaces.

not duplicate tags used by any business partner’s XML documents, it could prepend
a unique identifier with a colon to each tag name. The university may use a web URL
such as

http://www.yale.edu

as a unique identifier. Using long unique identifiers in every tag would be rather in-
convenient, so the namespace standard provides a way to define an abbreviation for
identifiers.

In Figure 30.8, the root element (university) has an attribute xmlns:yale, which de-
clares that yale is defined as an abbreviation for the URL given above. The abbreviation
can then be used in various element tags, as illustrated in the figure.

A document can have more than one namespace, declared as part of the root ele-
ment. Different elements can then be associated with different namespaces. A default
namespace can be defined by using the attribute xmlns instead of xmlns:yale in the
root element. Elements without an explicit namespace prefix would then belong to the
default namespace.

Sometimes we need to store values containing tags without having the tags inter-
preted as XML tags. So that we can do so, XML allows this construct:

<![CDATA[<course> ⋯</course>]]>

Because it is enclosed within CDATA, the text <course> is treated as normal text
data, not as a tag. The term CDATA stands for character data.

30.3 XML Document Schema

Databases have schemas, which are used to constrain what information can be stored
in the database and to constrain the data types of the stored information. In contrast,

30.3 XML Document Schema 11

<!DOCTYPE university [
<!ELEMENT university ((department|course|instructor|teaches)+)>
<!ELEMENT department (dept name, building, budget)>
<!ELEMENT course (course id, title, dept name, credits)>
<!ELEMENT instructor (IID, name, dept name, salary)>
<!ELEMENT teaches (IID, course id)>
<!ELEMENT dept name(#PCDATA)>
<!ELEMENT building(#PCDATA)>
<!ELEMENT budget(#PCDATA)>
<!ELEMENT course id (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT credits(#PCDATA)>
<!ELEMENT IID(#PCDATA)>
<!ELEMENT name(#PCDATA)>
<!ELEMENT salary(#PCDATA)>

] >

Figure 30.9 Example of a DTD.

by default, XML documents can be created without any associated schema: an element
may then have any subelement or attribute. While such freedom may occasionally be
acceptable given the self-describing nature of the data format, it is not generally useful
when XML documents must be processed automatically as part of an application, or
even when large amounts of related data are to be formatted in XML.

Here, we describe the first schema-definition language included as part of the XML
standard, the document type definition, as well as its more recently defined replacement,
XML Schema. Another XML schema-definition language called Relax NG is also in use,
but we do not cover it here; for more information on Relax NG, see the references in
the bibliographical notes section.

30.3.1 Document Type Definition

The document type definition (DTD) is an optional part of an XML document. The main
purpose of a DTD is much like that of a schema: to constrain and type the information
present in the document. However, the DTD does not in fact constrain types in the
sense of basic types like integer or string. Instead, it constrains only the appearance
of subelements and attributes within an element. The DTD is primarily a list of rules
for what pattern of subelements may appear within an element. Figure 30.9 shows a
part of an example DTD for a university information document; the XML document in
Figure 30.1 conforms to this DTD.

Each declaration is in the form of a regular expression for the subelements of an
element. Thus, in the DTD in Figure 30.9, a university element consists of one or more
course, department, or instructor elements; the | operator specifies “or” while the +

12 Chapter 30 XML

operator specifies “one or more.” Although not shown here, the ∗ operator is used to
specify “zero or more,” while the ? operator is used to specify an optional element (i.e.,
“zero or one”).

The course element contains subelements course id, title, dept name, and cred-
its (in that order). Similarly, department and instructor have the attributes of their
relational schema defined as subelements in the DTD.

Finally, the elements course id, title, dept name, credits, building, budget, IID,
name, and salary are all declared to be of type #PCDATA. The keyword #PCDATA
indicates text data; it derives its name, historically, from “parsed character data.” Two
other special type declarations are empty, which says that the element has no contents,
and any, which says that there is no constraint on the subelements of the element; that
is, any elements, even those not mentioned in the DTD, can occur as subelements of
the element. The absence of a declaration for an element is equivalent to explicitly
declaring the type as any.

The allowable attributes for each element are also declared in the DTD. Unlike
subelements, no order is imposed on attributes. Attributes may be specified to be of
type CDATA, ID, IDREF, or IDREFS; the type CDATA simply says that the attribute
contains character data, while the other three are not so simple; they are explained in
more detail shortly. For instance, the following line from a DTD specifies that element
course has an attribute of type course id, and a value must be present for this attribute:

<!ATTLIST course course id CDATA #REQUIRED>

Attributes must have a type declaration and a default declaration. The default dec-
laration can consist of a default value for the attribute or #REQUIRED, meaning that a
value must be specified for the attribute in each element, or #IMPLIED, meaning that
no default value has been provided, and the document may omit this attribute. If an
attribute has a default value, for every element that does not specify a value for the
attribute, the default value is filled in automatically when the XML document is read.

An attribute of type ID provides a unique identifier for the element; a value that
occurs in an ID attribute of an element must not occur in any other element in the
same document. At most one attribute of an element is permitted to be of type ID. (We
renamed the attribute ID of the instructor relation to IID in the XML representation, in
order to avoid confusion with the type ID.)

An attribute of type IDREF is a reference to an element; the attribute must contain
a value that appears in the ID attribute of some element in the document. The type
IDREFS allows a list of references, separated by spaces.

Figure 30.10 shows an example DTD in which identifiers of course, department,
and instructor are represented by ID attributes, and relationships between them are rep-
resented by IDREF and IDREFS attributes. The course elements use course id as their
identifier attribute; to do so, course id has been made an attribute of course instead
of a subelement. Additionally, each course element also contains an IDREF of the de-
partment corresponding to the course and an IDREFS attribute instructors identifying

30.3 XML Document Schema 13

<!DOCTYPE university-3 [
<!ELEMENT university ((department|course|instructor)+)>
<!ELEMENT department (building, budget)>
<!ATTLIST department

dept name ID #REQUIRED >

<!ELEMENT course (title, credits)>
<!ATTLIST course

course id ID #REQUIRED
dept name IDREF #REQUIRED
instructors IDREFS #IMPLIED >

<!ELEMENT instructor (name, salary)>
<!ATTLIST instructor

IID ID #REQUIRED
dept name IDREF #REQUIRED >

⋯ declarations for title, credits, building,
budget, name and salary ⋯

] >

Figure 30.10 DTD with ID and IDREFS attribute types.

the instructors who teach the course. The department elements have an identifier at-
tribute called dept name. The instructor elements have an identifier attribute called
IID and an IDREF attribute dept name identifying the department to which the instruc-
tor belongs.

Figure 30.11 shows an example XML document based on the DTD in Figure 30.10.
The ID and IDREF attributes serve the same role as reference mechanisms in object-

oriented and object-relational databases, permitting the construction of complex data
relationships.

Document type definitions are strongly connected to the document formatting her-
itage of XML. Because of this, they are unsuitable in many ways for serving as the type
structure of XML for data-processing applications. Nevertheless, a number of data ex-
change formats have been defined in terms of DTDs, since they were part of the original
standard. Here are some of the limitations of DTDs as a schema mechanism:

• Individual text elements and attributes cannot be typed further. For instance, the
element balance cannot be constrained to be a positive number. The lack of such
constraints is problematic for data processing and exchange applications, which
must then contain code to verify the types of elements and attributes.

• It is difficult to use the DTD mechanism to specify unordered sets of subelements.
Order is seldom important for data exchange (unlike document layout, where it is
crucial). While the combination of alternation (the | operation) and the ∗ or the

14 Chapter 30 XML

<university-3>
<department dept name=“Comp. Sci.”>

<building> Taylor </building>
<budget> 100000 </budget>

</department>
<department dept name=“Biology”>

<building> Watson </building>
<budget> 90000 </budget>

</department>
<course course id=“CS-101” dept name=“Comp. Sci”

instructors=“10101 83821”>
<title> Intro. to Computer Science </title>
<credits> 4 </credits>

</course>
<course course id=“BIO-301” dept name=“Biology”

instructors=“76766”>
<title> Genetics </title>
<credits> 4 </credits>

</course>
<instructor IID=“10101” dept name=“Comp. Sci.”>

<name> Srinivasan </name>
<salary> 65000 </salary>

</instructor>
<instructor IID=“83821” dept name=“Comp. Sci.”>

<name> Brandt </name>
<salary> 72000 </salary>

</instructor>
<instructor IID=“76766” dept name=“Biology”>

<name> Crick </name>
<salary> 72000 </salary>

</instructor>
</university-3>

Figure 30.11 XML data with ID and IDREF attributes.

+ operation as in Figure 30.9 permits the specification of unordered collections
of tags, it is much more difficult to specify that each tag may only appear once.

• There is a lack of typing in IDs and IDREFSs. Thus, there is no way to specify the
type of element to which an IDREF or IDREFS attribute should refer. As a result,
the DTD in Figure 30.10 does not prevent the “dept name” attribute of a course
element from referring to other courses, even though this makes no sense.

30.3 XML Document Schema 15

30.3.2 XML Schema

An effort to redress the deficiencies of the DTD mechanism resulted in the development
of a more sophisticated schema language, XML Schema. We provide a brief overview
of XML Schema, and then we list some areas in which it improves DTDs.

XML Schema defines a number of built-in types such as string, integer, decimal
date, and boolean. In addition, it allows user-defined types; these may be simple types

<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>
<xs:element name=“university” type=“universityType” />
<xs:element name=“department”>

<xs:complexType>
<xs:sequence>

<xs:element name=“dept name” type=“xs:string”/>
<xs:element name=“building” type=“xs:string”/>
<xs:element name=“budget” type=“xs:decimal”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=“course”>

<xs:complexType>
<xs:sequence>

<xs:element name=“course id” type=“xs:string”/>
<xs:element name=“title” type=“xs:string”/>
<xs:element name=“dept name” type=“xs:string”/>
<xs:element name=“credits” type=“xs:decimal”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name=“instructor”>

<xs:complexType>
<xs:sequence>

<xs:element name=“IID” type=“xs:string”/>
<xs:element name=“name” type=“xs:string”/>
<xs:element name=“dept name” type=“xs:string”/>
<xs:element name=“salary” type=“xs:decimal”/>

</xs:sequence>
</xs:complexType>

</xs:element>
continued in Figure 30.13.

Figure 30.12 XML Schema version of DTD from Figure 30.9.

16 Chapter 30 XML

<xs:element name=“teaches”>
<xs:complexType>

<xs:sequence>
<xs:element name=“IID” type=“xs:string”/>
<xs:element name=“course id” type=“xs:string”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name=“UniversityType”>

<xs:sequence>
<xs:element ref=“department” minOccurs=“0”

maxOccurs=“unbounded”/>
<xs:element ref=“course” minOccurs=“0”

maxOccurs=“unbounded”/>
<xs:element ref=“instructor” minOccurs=“0”

maxOccurs=“unbounded”/>
<xs:element ref=“teaches” minOccurs=“0”

maxOccurs=“unbounded”/>
</xs:sequence>

</xs:complexType>
</xs:schema>

Figure 30.13 Continuation of Figure 30.12.

with added restrictions, or complex types constructed using constructors such as com-
plexType and sequence.

Figure 30.12 and Figure 30.13 show how the DTD in Figure 30.9 can be represented
by XML Schema; we describe next XML Schema features illustrated by the figures.

The first thing to note is that schema definitions in XML Schema are themselves
specified in XML syntax, using a variety of tags defined by XML Schema. To avoid
conflicts with user-defined tags, we prefix the XML Schema tag with the namespace
prefix “xs:”; this prefix is associated with the XML Schema namespace by the xmlns:xs
specification in the root element:

<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”>

Note that any namespace prefix could be used in place of xs; thus, we could replace all
occurrences of “xs:” in the schema definition with “xsd:” without changing the meaning
of the schema definition. All types defined by XML Schema must be prefixed by this
namespace prefix.

The first element is the root element university, whose type is specified to be Uni-
versityType, which is declared later. The example then defines the types of elements
department, course, instructor, and teaches.

30.3 XML Document Schema 17

Note that each of these is specified by an element with tag xs:element, whose body
contains the type definition.

The type of department is defined to be a complex type, which is further specified
to consist of a sequence of elements dept name, building, and budget. Any type that
has either attributes or nested subelements must be specified to be a complex type.

Alternatively, the type of an element can be specified to be a predefined type by
the attribute type; observe how the XML Schema types xs:string and xs:decimal are
used to constrain the types of data elements such as dept name and credits.

Finally the example defines the type UniversityType as containing zero or more
occurrences of each of department, course, instructor, and teaches. Note the use of
ref to specify the occurrence of an element defined earlier. XML Schema can define
the minimum and maximum number of occurrences of subelements by using minOc-
curs and maxOccurs. The default for both minimum and maximum occurrences is 1,
so these have to be specified explicitly to allow zero or more department, course,
instructor, and teaches elements.

Attributes are specified using the xs:attribute tag. For example, we could have
defined dept name as an attribute by adding

<xs:attribute name = “dept name”/>

within the declaration of the department element. Adding the attribute use = “re-
quired” to the above attribute specification declares that the attribute must be speci-
fied, whereas the default value of use is optional. Attribute specifications would appear
directly under the enclosing complexType specification, even if elements are nested
within a sequence specification.

We can use the xs:complexType element to create named complex types; the syn-
tax is the same as that used for the xs:complexType element in Figure 30.12, except
that we add an attribute name = typeName to the xs:complexType element, where
typeName is the name we wish to give to the type. We can then use the named type
to specify the type of an element using the type attribute, just as we used xs:decimal
and xs:string in our example.

In addition to defining types, a relational schema also allows the specification of
constraints. XML Schema allows the specification of keys and key references, corre-
sponding to the primary-key and foreign-key definition in SQL. In SQL, a primary-key
constraint or unique constraint ensures that the attribute values do not recur within
the relation. In the context of XML, we need to specify a scope within which values
are unique and form a key. The selector is a path expression that defines the scope
for the constraint, and field declarations specify the elements or attributes that form
the key.1 To specify that dept name forms a key for department elements under the
root university element, we add the following constraint specification to the schema
definition:

1We use simple path expressions here that are in a familiar syntax. XML has a rich syntax for path expressions, called
XPath, which we explore in Section 30.4.2.

18 Chapter 30 XML

<xs:key name = “deptKey”>
<xs:selector xpath = “/university/department”/>
<xs:field xpath = “dept name”/>

</xs:key>

Correspondingly a foreign-key constraint from course to department may be defined
as follows:

<xs: name = “courseDeptFKey” refer=“deptKey”>
<xs:selector xpath = “/university/course”/>
<xs:field xpath = “dept name”/>

</xs:keyref>

Note that the refer attribute specifies the name of the key declaration that is being
referenced, while the field specification identifies the referring attributes.

XML Schema offers several benefits over DTDs and is widely used today. Among
the benefits that we have seen in the preceding examples are these:

• It allows the text that appears in elements to be constrained to specific types, such
as numeric types in specific formats or complex types such as sequences of ele-
ments of other types.

• It allows user-defined types to be created.

• It allows uniqueness and foreign-key constraints.

• It is integrated with namespaces to allow different parts of a document to conform
to different schemas.

In addition to the features we have seen, XML Schema supports several other features
that DTDs do not, such as these:

• It allows types to be restricted to create specialized types, for instance by specifying
minimum and maximum values.

• It allows complex types to be extended by using a form of inheritance.

Our description of XML Schema is just an overview; to learn more about XML Schema,
see the references in the bibliographical notes.

30.4 Querying and Transformation

Given the increasing number of applications that use XML to exchange, mediate, and
store data, tools for effective management of XML data are becoming increasingly im-
portant. In particular, tools for querying and transformation of XML data are essential

30.4 Querying and Transformation 19

to extract information from large bodies of XML data and to convert data between dif-
ferent representations (schemas) in XML. Just as the output of a relational query is a
relation, the output of an XML query can be an XML document. As a result, querying
and transformation can be combined into a single tool.

In this section, we describe the XPath and XQuery languages:

• XPath is a language for path expressions and is actually a building block for XQuery.

• XQuery is the standard language for querying XML data. It is modeled after SQL
but is significantly different, since it has to deal with nested XML data. XQuery
also incorporates XPath expressions.

The XSLT language is another language designed for transforming XML. However, it is
used primarily in document-formatting applications, rather in data-management appli-
cations, so we do not discuss it in this book.

The tools section at the end of this chapter provides references to software that
can be used to execute queries written in XPath and XQuery.

30.4.1 Tree Model of XML

A tree model of XML data are used in all these languages. An XML document is modeled
as a tree, with nodes corresponding to elements and attributes. Element nodes can have
child nodes, which can be subelements or attributes of the element. Correspondingly,
each node (whether attribute or element), other than the root element, has a parent
node, which is an element. The order of elements and attributes in the XML document
is modeled by the ordering of children of nodes of the tree. The terms parent, child,
ancestor, descendant, and siblings are used in the tree model of XML data.

The text content of an element can be modeled as a text-node child of the ele-
ment. Elements containing text broken up by intervening subelements can have multi-
ple text-node children. For instance, an element containing “this is a <bold> wonder-
ful </bold> book” would have a subelement child corresponding to the element bold
and two text node children corresponding to “this is a” and “book.” Since such struc-
tures are not commonly used in data representation, we shall assume that elements do
not contain both text and subelements.

30.4.2 XPath

XPath addresses parts of an XML document by means of path expressions. The lan-
guage can be viewed as an extension of the simple path expressions in object-oriented
and object-relational databases. The current version of the XPath standard is XPath 2.0,
and our description is based on this version.

A path expression in XPath is a sequence of location steps separated by “/” (instead
of the “.” operator that separates location steps in SQL). The result of a path expression
is a set of nodes. For instance, on the document in Figure 30.11, the XPath expression

20 Chapter 30 XML

/university-3/instructor/name

returns these elements:

<name>Srinivasan</name>
<name>Brandt</name>

The expression

/university-3/instructor/name/text()

returns the same names, but without the enclosing tags.
Path expressions are evaluated from left to right. Like a directory hierarchy, the

initial '/' indicates the root of the document. Note that this is an abstract root “above”
<university-3> that is the document tag.

As a path expression is evaluated, the result of the path at any point consists of
an ordered set of nodes from the document. Initially, the “current” set of elements
contains only one node, the abstract root. When the next step in a path expression
is an element name, such as instructor, the result of the step consists of the nodes
corresponding to elements of the specified name that are children of elements in the
current element set. These nodes then become the current element set for the next step
of the path expression evaluation. Thus, the expression

/university-3

returns a single node corresponding to the

<university-3>

tag, while

/university-3/instructor

returns the two nodes corresponding to the

instructor

elements that are children of the

university-3

node.

30.4 Querying and Transformation 21

The result of a path expression is then the set of nodes after the last step of path
expression evaluation. The nodes returned by each step appear in the same order as
their appearance in the document.

Since multiple children can have the same name, the number of nodes in the node
set can increase or decrease with each step. Attribute values may also be accessed,
using the “@” symbol. For instance, /university-3/course/@course id returns a set of
all values of course id attributes of course elements. By default, IDREF links are not
followed; we shall see how to deal with IDREFs later.

XPath supports a number of other features:

• Selection predicates may follow any step in a path and are contained in square
brackets. For example,

/university-3/course[credits >= 4]

returns course elements with a credits value greater than or equal to 4, while

/university-3/course[credits >= 4]/@course id

returns the course identifiers of those courses.
We can test the existence of a subelement by listing it without any comparison

operation; for instance, if we removed just “>= 4” from the above, the expres-
sion would return course identifiers of all courses that have a credits subelement,
regardless of its value.

• XPath provides several functions that can be used as part of predicates, including
testing the position of the current node in the sibling order and the aggregate
function count(), which counts the number of nodes matched by the expression
to which it is applied. For example, on the XML representation in Figure 30.6, the
path expression

/university-2/instructor[count(./teaches/course)> 2]

returns instructors who teach more than two courses. Boolean connectives and
and or can be used in predicates, while the function not(…) can be used for nega-
tion.

• The function id(“foo”) returns the node (if any) with an attribute of type ID and
value “foo”. The function id can even be applied on sets of references, or even
strings containing multiple references separated by blanks, such as IDREFS. For
instance, the path

/university-3/course/id(@dept name)

22 Chapter 30 XML

returns all department elements referred to from the dept name attribute of
course elements, while

/university-3/course/id(@instructors)

returns the instructor elements referred to in the instructors attribute of course
elements.

• The | operator allows expression results to be unioned. For example, given data
using the schema from Figure 30.11, we could find the union of Computer Science
and Biology courses using the expression:

/university-3/course[@dept name=“Comp. Sci”] |

/university-3/course[@dept name=“Biology”]

However, the | operator cannot be nested inside other operators. It is also worth
noting that the nodes in the union are returned in the order in which they appear
in the document.

• An XPath expression can skip multiple levels of nodes by using “//”. For instance,
the expression /university-3//name finds all name elements anywhere under the
/university-3 element, regardless of the elements in which they are contained,
and regardless of how many levels of enclosing elements are present between the
university-3 and name elements. This example illustrates the ability to find re-
quired data without full knowledge of the schema.

• A step in the path need not just select from the children of the nodes in the cur-
rent node set. In fact, this is just one of several directions along which a step in
the path may proceed, such as parents, siblings, ancestors, and descendants. We
omit details, but note that “//”, described above, is a short form for specifying “all
descendants,” while “..” specifies the parent.

• The built-in function doc(name) returns the root of a named document; the name
could be a file name or a URL. The root returned by the function can then be
used in a path expression to access the contents of the document. Thus, a path
expression can be applied on a specified document, instead of being applied on
the current default document.

For example, if the university data in our university example are contained in
a file “university.xml”, the following path expression would return all departments
at the university:

doc(“university.xml”)/university/department

The function collection(name) is similar to doc but returns a collection of doc-
uments identified by name. The function collection can be used, for example, to

30.4 Querying and Transformation 23

open an XML database, which can be viewed as a collection of documents; the fol-
lowing element in the XPath expression would select the appropriate document(s)
from the collection.

In most of our examples, we assume that the expressions are evaluated in the
context of a database, which implicitly provides a collection of “documents” on
which XPath expressions are evaluated. In such cases, we do not need to use the
functions doc and collection.

30.4.3 XQuery

The World Wide Web Consortium (W3C) has developed XQuery as the standard query
language for XML. Our discussion is based on XQuery 1.0, which was released as a W3C
recommendation on 23 January 2007.

30.4.3.1 FLWOR Expressions

XQuery queries are modeled after SQL queries but differ significantly from SQL. They
are organized into five sections: for, let, where, order by, and return. They are referred to
as “FLWOR” (pronounced “flower”) expressions, with the letters in FLWOR denoting
the five sections.

A simple FLWOR expression that returns course identifiers of courses with greater
than three credits, shown below, is based on the XML document of Figure 30.11, which
uses ID and IDREFS:

for $x in /university-3/course
let $courseId := $x/@course id
where $x/credits > 3
return <course id> { $courseId } </course id>

The for clause is like the from clause of SQL and specifies variables that range over
the results of XPath expressions. When more than one variable is specified, the results
include the Cartesian product of the possible values the variables can take, just as the
SQL from clause does.

The let clause simply allows the results of XPath expressions to be assigned to
variable names for simplicity of representation. The where clause, like the SQL where
clause, performs additional tests on the joined tuples from the for clause. The order
by clause, like the SQL order by clause, allows sorting of the output. Finally, the return
clause allows the construction of results in XML.

A FLWOR query need not contain all the clauses; for example a query may con-
tain just the for and return clauses, and omit the let, where, and order by clauses. The
preceding XQuery query did not contain an order by clause. In fact, since this query
is simple, we can easily do away with the let clause, and the variable $courseId in the
return clause could be replaced with $x/@course id. Note further that, since the for
clause uses XPath expressions, selections may occur within the XPath expression. Thus,
an equivalent query may have only for and return clauses:

24 Chapter 30 XML

for $x in /university-3/course[credits > 3]
return <course id> { $x/@course id } </course id>

However, the let clause helps simplify complex queries. Note also that variables as-
signed by let clauses may contain sequences with multiple elements or values, if the
path expression on the right-hand side returns a sequence of multiple elements or val-
ues.

Observe the use of curly brackets (“{}”) in the return clause. When XQuery finds
an element such as <course id> starting an expression, it treats its contents as regu-
lar XML text, except for portions enclosed within curly brackets, which are evaluated
as expressions. Thus, if we omitted the curly brackets in the above return clause, the
result would contain several copies of the string “$x/@course id” each enclosed in a
course id tag. The contents within the curly brackets are, however, treated as expres-
sions to be evaluated. Note that this convention applies even if the curly brackets appear
within quotes. Thus, we could modify the preceding query to return an element with
tag course, with the course identifier as an attribute, by replacing the return clause with
the following:

return <course course id=“{$x/@course id}” />

XQuery provides another way of constructing elements using the element and at-
tribute constructors. For example, if the return clause in the previous query is replaced
by the following return clause, the query would return course elements with course id
and dept name as attributes and title and credits as subelements.

return element course {
attribute course id {$x/@course id},
attribute dept name {$x/dept name},
element title {$x/title},
element credits {$x/credits}

}

Note that, as before, the curly brackets are required to treat a string as an expression
to be evaluated.

30.4.3.2 Joins

Joins are specified in XQuery much as they are in SQL. The join of course, instructor,
and teaches elements in Figure 30.1 can be written in XQuery this way:

30.4 Querying and Transformation 25

for $c in /university/course,
$i in /university/instructor,
$t in /university/teaches

where $c/course id= $t/course id
and $t/IID = $i/IID

return <course instructor> { $c $i } </course instructor>

The same query can be expressed with the selections specified as XPath selections:

for $c in /university/course,
$i in /university/instructor,
$t in /university/teaches[$c/course id= $t/course id

and $t/IID = $i/IID]
return <course instructor> { $c $i } </course instructor>

Path expressions in XQuery are the same as path expressions in XPath 2.0. Path
expressions may return a single value or element, or a sequence of values or elements.
In the absence of schema information, it may not be possible to infer whether a path
expression returns a single value or a sequence of values. Such path expressions may
participate in comparison operations such as =,<, and >=.

XQuery has an interesting definition of comparison operations on sequences. For
example, the expression $x/credits > 3 would have the usual interpretation if the re-
sult of $x/credits is a single value, but if the result is a sequence containing multiple
values, the expression evaluates to true if at least one of the values is greater than 3.
Similarly, the expression $x/credits = $y/credits evaluates to true if any one of the
values returned by the first expression is equal to any one of the values returned by the
second expression. If this behavior is not appropriate, the operators eq, ne, lt, gt, le,
ge can be used instead. These raise an error if either of their inputs is a sequence with
multiple values.

30.4.3.3 Nested Queries

XQuery FLWOR expressions can be nested in the return clause in order to generate ele-
ment nestings that do not appear in the source document. For instance, the XML struc-
ture shown in Figure 30.5, with course elements nested within department elements,
can be generated from the structure in Figure 30.1 by the query shown in Figure 30.14.

The query also introduces the syntax $d/*, which refers to all the children of the
node (or sequence of nodes) bound to the variable $d. Similarly, $d/text() gives the
text content of an element, without the tags.

XQuery provides a variety of aggregate functions such as sum() and count() that
can be applied on sequences of elements or values. The function distinct-values() ap-
plied on a sequence returns a sequence without duplication. The sequence (collection)

26 Chapter 30 XML

<university-1>
{

for $d in /university/department
return

<department>
{ $d/* }
{ for $c in /university/course[dept name = $d/dept name]

return $c }
</department>

}
{

for $i in /university/instructor
return

<instructor>
{ $i/* }
{ for $c in /university/teaches[IID = $i/IID]

return $c/course id }
</instructor>

}
</university-1>

Figure 30.14 Creating nested structures in XQuery.

of values returned by a path expression may have some values repeated because they
are repeated in the document, although an XPath expression result can contain at most
one occurrence of each node in the document. XQuery supports many other functions;
see the references in the bibliographical notes for more information. These functions
are actually common to XPath 2.0 and XQuery and can be used in any XPath path
expression.

To avoid namespace conflicts, functions are associated with a namespace:

http://www.w3.org/2005/xpath-functions

which has a default namespace prefix of fn. Thus, these functions can be referred to
unambiguously as fn:sum or fn:count.

While XQuery does not provide a group by construct, aggregate queries can be
written by using the aggregate functions on path or FLWOR expressions nested within
the return clause. For example, the following query on the university XML schema finds
the total salary of all instructors in each department:

http://http://www.w3.org/2005/xpath-functions

30.4 Querying and Transformation 27

for $d in /university/department
return

<department-total-salary>
<dept name> { $d/dept name } </dept name>
<total salary> { fn:sum(

for $i in /university/instructor[dept name = $d/dept name]
return $i/salary

) } </total salary>
</department-total-salary>

30.4.3.4 Sorting of Results

Results can be sorted in XQuery by using the order by clause. For instance, this query
outputs all instructor elements sorted by the name subelement:

for $i in /university/instructor
order by $i/name
return <instructor> { $i/* } </instructor>

To sort in descending order, we can use order by $i/name descending.
Sorting can be done at multiple levels of nesting. For instance, we can get a nested

representation of university information with departments sorted in department name
order, with courses sorted by course identifiers, as follows:

<university-1> {
for $d in /university/department
order by $d/dept name
return

<department>
{ $d/* }
{ for $c in /university/course[dept name = $d/dept name]
order by $c/course id
return <course> { $c/* } </course> }

</department>
} </university-1>

30.4.3.5 Functions and Types

XQuery provides a variety of built-in functions, such as numeric functions and string
matching and manipulation functions. In addition, XQuery supports user-defined func-
tions. The following user-defined function takes as input an instructor identifier and
returns a list of all courses offered by the department to which the instructor belongs:

28 Chapter 30 XML

declare function local:dept courses($iid as xs:string) as element(course)* {
for $i in /university/instructor[IID = $iid],

$c in /university/courses[dept name = $i/dept name]
return $c

}

The namespace prefix xs: used in the above example is predefined by XQuery to be
associated with the XML Schema namespace, while the namespace local: is predefined
to be associated with XQuery local functions.

The type specifications for function arguments and return values are optional, and
may be omitted. XQuery uses the type system of XML Schema. The type element allows
elements with any tag, while element(course) allows elements with the tag course.
Types can be suffixed with a * to indicate a sequence of values of that type; for exam-
ple, the definition of function dept courses specifies the return value as a sequence of
course elements.

The following query, which illustrates function invocation, prints out the depart-
ment courses for the instructor(s) named Srinivasan:

for $i in /university/instructor[name = “Srinivasan”],
return local:inst dept courses($i/IID)

XQuery performs type conversion automatically whenever required. For example,
if a numeric value represented by a string is compared to a numeric type, type con-
version from string to the numeric type is done automatically. When an element is
passed to a function that expects a string value, type conversion to a string is done
by concatenating all the text values contained (nested) within the element. Thus, the
function contains(a,b), which checks if string a contains string b, can be used with its
first argument set to an element, in which case it checks if the element a contains the
string b nested anywhere inside it. XQuery also provides functions to convert between
types. For instance, number(x) converts a string to a number.

30.4.3.6 Other Features

XQuery offers a variety of other features, such as if-then-else constructs that can be used
within return clauses, and existential and universal quantification that can be used in
predicates in where clauses. For example, existential quantification can be expressed in
the where clause by using:

some $e in path satisfies P

where path is a path expression and P is a predicate that can use $e. Universal quan-
tification can be expressed by using every in place of some.

For example, to find departments where every instructor has a salary greater than
$50,000, we can use the following query:

30.5 Application Program Interfaces to XML 29

for $d in /university/department
where every $i in /university/instructor[dept name=$d/dept name]

satisfies $i/salary > 50000
return $d

Note, however, that if a department has no instructor, it will trivially satisfy the above
condition. An extra clause:

and fn:exists(/university/instructor[dept name=$d/dept name])

can be used to ensure that there is at least one instructor in the department. The built-in
function exists() used in the clause returns true if its input argument is nonempty.

The XQJ standard provides an API to submit XQuery queries to an XML database
system and to retrieve the XML results. Its functionality is similar to the JDBC API.

30.5 Application Program Interfaces to XML

With the wide acceptance of XML as a data representation and exchange format, soft-
ware tools are widely available for manipulation of XML data. There are two standard
models for programmatic manipulation of XML, each available for use with a num-
ber of popular programming languages. Both these APIs can be used to parse an XML
document and create an in-memory representation of the document. They are used for
applications that deal with individual XML documents. Note, however, that they are not
suitable for querying large collections of XML data; declarative querying mechanisms
such as XPath and XQuery are better suited to this task.

One of the standard APIs for manipulating XML is based on the document object
model (DOM), which treats XML content as a tree, with each element represented by a
node, called a DOMNode. Programs may access parts of the document in a navigational
fashion, beginning with the root.

DOM libraries are available for most common programming languages and are
even present in web browsers, where they may be used to manipulate the document
displayed to the user. We outline here some of the interfaces and methods in the Java
API for DOM, to give a flavor of DOM.

• The Java DOM API provides an interface called Node, and interfaces Element and
Attribute, which inherit from the Node interface.

• The Node interface provides methods such as getParentNode(), getFirstChild(),
and getNextSibling(), to navigate the DOM tree, starting with the root node.

• Subelements of an element can be accessed by name, using getElementsByTag-
Name(name), which returns a list of all child elements with a specified tag name;
individual members of the list can be accessed by the method item(i), which re-
turns the ith element in the list.

30 Chapter 30 XML

• Attribute values of an element can be accessed by name, using the method getAt-
tribute(name).

• The text value of an element is modeled as a Text node, which is a child of the
element node; an element node with no subelements has only one such child node.
The method getData() on the Text node returns the text contents.

DOM also provides a variety of functions for updating the document by adding and
deleting attribute and element children of a node, setting node values, and so on.

Many more details are required for writing an actual DOM program; see the biblio-
graphical notes for references to further information.

DOM can be used to access XML data stored in databases, and an XML database
can be built with DOM as its primary interface for accessing and modifying data. How-
ever, the DOM interface does not support any form of declarative querying.

The second commonly used programming interface, the Simple API for XML (SAX),
is an event model designed to provide a common interface between parsers and appli-
cations. This API is built on the notion of event handlers, which consist of user-specified
functions associated with parsing events. Parsing events correspond to the recognition
of parts of a document; for example, an event is generated when the start-tag is found
for an element, and another event is generated when the end-tag is found. The pieces
of a document are always encountered in order from start to finish.

The SAX application developer creates handler functions for each event and reg-
isters them. When a document is read in by the SAX parser, as each event occurs,
the handler function is called with parameters describing the event (such as element
tag or text contents). The handler functions then carry out their task. For example, to
construct a tree representing the XML data, the handler functions for an attribute or
element start event could add a node (or nodes) to a partially constructed tree. The
start- and end-tag event handlers would also have to keep track of the current node in
the tree to which new nodes must be attached; the element start event would set the
new element as the node that is the point where further child nodes must be attached.
The corresponding element end event would set the parent of the node as the current
node where further child nodes must be attached.

SAX generally requires more programming effort than DOM, but it helps avoid the
overhead of creating a DOM tree in situations where the application needs to create
its own data representation. If DOM were used for such applications, there would be
unnecessary space and time overhead for constructing the DOM tree.

30.6 Storage of XML Data

Many applications require storage of XML data. One way to store XML data are to
store them as documents in a file system, while a second is to build a special-purpose
database to store XML data. Another approach is to convert the XML data to a rela-

30.6 Storage of XML Data 31

tional representation and store them in a relational database. Several alternatives for
storing XML data are briefly outlined in this section.

30.6.1 Non-relational Data Stores

There are several alternatives for storing XML data in non-relational data-storage sys-
tems:

• Store in flat files. Since XML is primarily a file format, a natural storage mechanism
is simply a flat file. This approach has many of the drawbacks, outlined in Chap-
ter 1, of using file systems as the basis for database applications. In particular, it
lacks data isolation, atomicity, concurrent access, and security. However, the wide
availability of XML tools that work on file data makes it relatively easy to access
and query XML data stored in files. Thus, this storage format may be sufficient for
some applications.

• Create an XML database. XML databases are databases that use XML as their ba-
sic data model. Early XML databases implemented the Document Object Model
on a C++-based object-oriented database. This allows much of the object-oriented
database infrastructure to be reused, while providing a standard XML interface.
The addition of XQuery or other XML query languages provides declarative query-
ing. Other implementations have built the entire XML storage and querying infras-
tructure on top of a storage manager that provides transactional support.

Although several databases designed specifically to store XML data have been
built, building a full-featured database system from the ground up is a very complex
task. Such a database must support not only XML data storage and querying but also
other database features such as transactions, security, support for data access from
clients, and a variety of administration facilities. It makes sense to instead use an ex-
isting database system to provide these facilities and implement XML data storage and
querying either on top of the relational abstraction or as a layer parallel to the relational
abstraction. We study these approaches in Section 30.6.2.

30.6.2 Relational Databases

Since relational databases are widely used in existing applications, there is a great ben-
efit to be had in storing XML data in relational databases, so that the data can be
accessed from existing applications.

Converting XML data to relational form is usually straightforward if the data were
generated from a relational schema in the first place and XML is used merely as a
data exchange format for relational data. However, there are many applications where
the XML data are not generated from a relational schema, and translating the data to
relational form for storage may not be straightforward. In particular, nested elements
and elements that recur (corresponding to set-valued attributes) complicate storage of

32 Chapter 30 XML

XML data in relational format. Several alternative approaches are available, which we
describe below.

30.6.2.1 Store as String

Small XML documents can be stored as string (clob) values in tuples in a relational
database. Large XML documents with the top-level element having many children can
be handled by storing each child element as a string in a separate tuple. For instance, the
XML data in Figure 30.1 could be stored as a set of tuples in a relation elements(data),
with the attribute data of each tuple storing one XML element (department, course,
instructor, or teaches) in string form.

While this representation is easy to use, the database system does not know the
schema of the stored elements. As a result, it is not possible to query the data directly.
In fact, it is not even possible to implement simple selections such as finding all depart-
ment elements, or finding the department element with department name “Comp.
Sci.”, without scanning all tuples of the relation and examining the string contents.

A partial solution to this problem is to store different types of elements in dif-
ferent relations and also store the values of some critical elements as attributes of the
relation to enable indexing. For instance, in our example, the relations would be depart-
ment elements, course elements, instructor elements, and teaches elements, each with an
attribute data. Each relation may have extra attributes to store the values of some subele-
ments, such as dept name, course id, or name. Thus, a query that requires department
elements with a specified department name can be answered efficiently with this rep-
resentation. Such an approach depends on type information about XML data, such as
the DTD of the data.

Some database systems, such as Oracle, support function indices, which can help
avoid replication of attributes between the XML string and relation attributes. Unlike
normal indices, which are on attribute values, function indices can be built on the result
of applying user-defined functions on tuples. For instance, a function index can be built
on a user-defined function that returns the value of the dept name subelement of the
XML string in a tuple. The index can then be used in the same way as an index on a
dept name attribute.

The approaches have the drawback that a large part of the XML information is
stored within strings. It is possible to store all the information in relations in one of
several ways that we examine next.

30.6.2.2 Tree Representation

Arbitrary XML data can be modeled as a tree and stored using a relation

nodes(id, parent id, type, label, value)

Each element and attribute in the XML data are given a unique identifier. A tuple is
inserted in the nodes relation for each element and attribute with its identifier (id), the

30.6 Storage of XML Data 33

identifier of its parent node (parent id), the type of the node (attribute or element), the
name of the element or attribute (label), and the text value of the element or attribute
(value).

If order information of elements and attributes must be preserved, an extra at-
tribute position can be added to the nodes relation to indicate the relative position of
the child among the children of the parent. As an exercise, you can represent the XML
data of Figure 30.1 by using this technique.

This representation has the advantage that all XML information can be represented
directly in relational form, and many XML queries can be translated into relational
queries and executed inside the database system. However, it has the drawback that
each element gets broken up into many pieces, and a large number of joins are required
to reassemble subelements into an element.

30.6.2.3 Map to Relations

In this approach, XML elements whose schema is known are mapped to relations and
attributes. Elements whose schema is unknown are stored as strings or as a tree.

A relation is created for each element type (including subelements) whose schema
is known and whose type is a complex type (i.e., contains attributes or subelements).
The root element of the document can be ignored in this step if it does not have any
attributes. The attributes of the relation are defined as follows:

• All attributes of these elements are stored as string-valued attributes of the relation.

• If a subelement of the element is a simple type (i.e., cannot have attributes or
subelements), an attribute is added to the relation to represent the subelement.
The type of the relation attribute defaults to a string value, but if the subelement
had an XML Schema type, a corresponding SQL type may be used.

For example, when applied to the element department in the schema (DTD
or XML Schema) of the data in Figure 30.1, the subelements dept name, building,
and budget of the element department all become attributes of a relation depart-
ment. Applying this procedure to the remaining elements, we get back the original
relational schema that we have used in earlier chapters.

• Otherwise, a relation is created corresponding to the subelement (using the same
rules recursively on its subelements). Further:

° An identifier attribute is added to the relations representing the element. (The
identifier attribute is added only once even if an element has several subele-
ments.)

° An attribute parent id is added to the relation representing the subelement,
storing the identifier of its parent element.

° If ordering is to be preserved, an attribute position is added to the relation rep-
resenting the subelement.

34 Chapter 30 XML

For example, if we apply the above procedure to the schema corresponding to the
data in Figure 30.5, we get the following relations:

department(id, dept name, building, budget)
course(parent id, course id, dept name, title, credits)

Variants of this approach are possible. For example, the relations corresponding to
subelements that can occur at most once can be “flattened” into the parent relation by
moving all their attributes into the parent relation. The bibliographical notes provide
references to different approaches to represent XML data as relations.

30.6.2.4 Publishing and Shredding XML Data

When XML is used to exchange data between business applications, the data most of-
ten originate in relational databases. Data in relational databases must be published,
that is, converted to XML form, for export to other applications. Incoming data must be
shredded, that is, converted back from XML to normalized relation form and stored in a
relational database. While application code can perform the publishing and shredding
operations, the operations are so common that the conversions should be done au-
tomatically, without writing application code, where possible. Database vendors have
spent a lot of effort to XML-enable their database products.

An XML-enabled database supports an automatic mechanism for publishing rela-
tional data as XML. The mapping used for publishing data may be simple or complex.
A simple relation to XML mapping might create an XML element for every row of
a table and make each column in that row a subelement of the XML element. The
XML schema in Figure 30.1 can be created from a relational representation of univer-
sity information, using such a mapping. Such a mapping is straightforward to generate
automatically. Such an XML view of relational data can be treated as a virtual XML
document, and XML queries can be executed against the virtual XML document.

A more complicated mapping would allow nested structures to be created. Exten-
sions of SQL with nested queries in the select clause have been developed to allow easy
creation of nested XML output. We outline these extensions in Section 30.6.3.

Mappings also have to be defined to shred XML data into a relational representa-
tion. For XML data created from a relational representation, the mapping required to
shred the data are a straightforward inverse of the mapping used to publish the data.
For the general case, a mapping can be generated as outlined in Section 30.6.2.3.

30.6.2.5 Native Storage within a Relational Database

Some relational databases support native storage of XML. Such systems store XML data
as strings or in more efficient binary representations, without converting the data to
relational form. A new data type xml is introduced to represent XML data, although
the CLOB and BLOB data types may provide the underlying storage mechanism. XML
query languages such as XPath and XQuery are supported to query XML data.

30.6 Storage of XML Data 35

A relation with an attribute of type xml can be used to store a collection of XML
documents; each document is stored as a value of type xml in a separate tuple. Special-
purpose indices are created to index the XML data.

Several database systems provide native support for XML data. They provide an xml
data type and allow XQuery queries to be embedded within SQL queries. An XQuery
query can be executed on a single XML document and can be embedded within an SQL
query to allow it to execute on each of a collection of documents, with each document
stored in a separate tuple.

30.6.3 SQL/XML

While XML is used widely for data interchange, structured data are still widely stored
in relational databases. There is often a need to convert relational data to XML rep-
resentation. The SQL/XML standard, developed to meet this need, defines a standard
extension of SQL, allowing the creation of nested XML output. The standard has sev-
eral parts, including a standard way of mapping SQL types to XML Schema types, and
a standard way to map relational schemas to XML schemas, as well as SQL query lan-
guage extensions.

For example, the SQL/XML representation of the department relation would have
an XML schema with outermost element department, with each tuple mapped to an
XML element row, and each relation attribute mapped to an XML element of the same
name (with some conventions to resolve incompatibilities with special characters in
names). An entire SQL schema, with multiple relations, can also be mapped to XML
in a similar fashion. Figure 30.15 shows the SQL/XML representation of (part of) the
university data from Figure 30.1, containing the relations department and course.

SQL/XML adds several operators and aggregate operations to SQL to allow the con-
struction of XML output directly from the extended SQL. The xmlelement function can
be used to create XML elements, while xmlattributes can be used to create attributes,
as illustrated by the following query.

select xmlelement (name “course”,
xmlattributes (course id as course id, dept name as dept name),
xmlelement (name “title”, title),
xmlelement (name “credits”, credits))

from course

This query creates an XML element for each course, with the course identifier
and department name represented as attributes, and title and credits as subelements.
The result would look like the course elements shown in Figure 30.11, but without the
instructor attribute. The xmlattributes operator creates the XML attribute name using
the SQL attribute name, which can be changed using an as clause as shown.

The xmlforest operator simplifies the construction of XML structures. Its syntax
and behavior are similar to those of xmlattributes, except that it creates a forest (collec-
tion) of subelements, instead of a list of attributes. It takes multiple arguments, creating

36 Chapter 30 XML

<university>
<department>

<row>

<dept name> Comp. Sci. </dept name>
<building> Taylor </building>
<budget> 100000 </budget>

</row>

<row>

<dept name> Biology </dept name>
<building> Watson </building>
<budget> 90000 </budget>

</row>

</department>
<course>

<row>

<course id> CS-101 </course id>
<title> Intro. to Computer Science </title>
<dept name> Comp. Sci </dept name>
<credits> 4 </credits>

</row>

<row>

<course id> BIO-301 </course id>
<title> Genetics </title>
<dept name> Biology </dept name>
<credits> 4 </credits>

</row>

</course>
</university>

Figure 30.15 SQL/XML representation of (part of) university information.

an element for each argument, with the attribute’s SQL name used as the XML element
name. The xmlconcat operator can be used to concatenate elements created by subex-
pressions into a forest.

When the SQL value used to construct an attribute is null, the attribute is omitted.
Null values are omitted when the body of an element is constructed.

SQL/XML also provides an aggregate function xmlagg that creates a forest (col-
lection) of XML elements from the collection of values on which it is applied. The
following query creates an element for each department with a course, containing as
subelements all the courses in that department. Since the query has a clause group by
dept name, the aggregate function is applied on all courses in each department, creating
a sequence of course id elements.

30.7 XML Applications 37

select xmlelement (name “department”,
dept name,
xmlagg (xmlforest(course id)

order by course id))
from course
group by dept name

SQL/XML allows the sequence created by xmlagg to be ordered, as illustrated in
the preceding query. See the bibliographical notes for references to more information
on SQL/XML.

30.7 XML Applications

We now outline several applications of XML for storing and communicating (exchang-
ing) data and for accessing web services (information resources).

30.7.1 Storing Data with Complex Structure

Many applications need to store data that are structured, but are not easily modeled as
relations. Consider, such as, user preferences that must be stored by an application such
as a browser. There are usually a large number of fields, such as home page, security set-
tings, language settings, and display settings, that must be recorded. Some of the fields
are multivalued, for example, a list of trusted sites, or maybe ordered lists, for example,
a list of bookmarks. Applications traditionally used some type of textual representation
to store such data. Today, a majority of such applications prefer to store such config-
uration information in XML format. The ad hoc textual representations used earlier
require effort to design and effort to create parsers that can read the file and convert
the data into a form that a program can use. The XML representation avoids both these
steps.

XML-based representations are now widely used for storing documents, spre-
adsheet data, and other data that are part of office application packages. The Open
Document Format (ODF), supported by the Open Office software suite as well as other
office suites, and the Office Open XML (OOXML) format, supported by the Microsoft
Office suite, are document representation standards based on XML. They are the two
most widely used formats for editable document representation.

XML is also used to represent data with complex structure that must be exchanged
between different parts of an application. For example, a database system may represent
a query execution plan (a relational-algebra expression with extra information on how
to execute operations) by using XML. This allows one part of the system to generate
the query execution plan and another part to display it, without using a shared data
structure. For example, the data may be generated at a server system and sent to a
client system where the data are displayed.

38 Chapter 30 XML

30.7.2 Standardized Data Exchange Formats

XML-based standards for representation of data have been developed for a variety of
specialized applications, ranging from business applications such as banking and ship-
ping to scientific applications such as chemistry and molecular biology. Some exam-
ples:

• The chemical industry needs information about chemicals, such as their molecu-
lar structure, and a variety of important properties, such as boiling and melting
points, calorific values, and solubility in various solvents. ChemML is a standard
for representing such information.

• In shipping, carriers of goods and customs and tax officials need shipment records
containing detailed information about the goods being shipped, from whom and to
where they were sent, to whom and to where they are being shipped, the monetary
value of the goods, and so on.

• An online marketplace in which business can buy and sell goods [a so-called
business-to-business (B2B) market] requires information such as product catalogs,
including detailed product descriptions and price information, product invento-
ries, quotes for a proposed sale, and purchase orders. For example, the RosettaNet
standards for e-business applications define XML schemas and semantics for rep-
resenting data as well as standards for message exchange.

Using normalized relational schemas to model such complex data requirements
would result in a large number of relations that do not correspond directly to the
objects that are being modeled. The relations would often have large numbers of at-
tributes; explicit representation of attribute/element names along with values in XML
helps avoid confusion between attributes. Nested element representations help reduce
the number of relations that must be represented, as well as the number of joins re-
quired to get required information, at the possible cost of redundancy. For instance,
in our university example, listing departments with course elements nested within de-
partment elements, as in Figure 30.5, results in a format that is more natural for some
applications—in particular, for humans to read—than is the normalized representation
in Figure 30.1.

30.7.3 Web Services

Applications often require data from outside of the organization, or from another de-
partment in the same organization that uses a different database. In many such situ-
ations, the outside organization or department is not willing to allow direct access to
its database using SQL, but is willing to provide limited forms of information through
predefined interfaces.

When the information is to be used directly by a human, organizations provide
web-based forms, where users can input values and get back desired information in

30.7 XML Applications 39

HTML form. However, there are many applications where such information needs to
be accessed by software programs rather than by end users. Providing the results of a
query in XML form is a clear requirement. In addition, it makes sense to specify the
input values to the query also in XML format.

In effect, the provider of the information defines procedures whose input and out-
put are both in XML format. The HTTP protocol is used to communicate the input and
output information, since it is widely used and can go through firewalls that institutions
use to keep out unwanted traffic from the Internet.

The Simple Object Access Protocol (SOAP) defines a standard for invoking pro-
cedures, using XML for representing the procedure input and output. SOAP defines a
standard XML schema for representing the name of the procedure and result status
indicators such as failure/error indicators. The procedure parameters and results are
application-dependent XML data embedded within the SOAP XML headers.

Typically, HTTP is used as the transport protocol for SOAP, but a message-based
protocol (such as email over the SMTP protocol) may also be used. The SOAP standard
is widely used today. For example, Amazon and Google provide SOAP-based proce-
dures to carry out search and other activities. These procedures can be invoked by
other applications that provide higher-level services to users. The SOAP standard is in-
dependent of the underlying programming language, and it is possible for a site running
one language, such as C#, to invoke a service that runs on a different language, such as
Java.

A site providing such a collection of SOAP procedures is called a web service. Sev-
eral standards have been defined to support web services. The Web Services Description
Language (WSDL) is a language used to describe a web service’s capabilities. WSDL
provides facilities that interface definitions (or function definitions) provide in a tradi-
tional programming language, specifying what functions are available and their input
and output types. In addition, WSDL allows specification of the URL and network port
number to be used to invoke the web service. There is also a standard called Universal
Description, Discovery, and Integration (UDDI) that defines how a directory of avail-
able web services may be created and how a program may search in the directory to
find a web service satisfying its requirements.

The following example illustrates the value of web services. An airline may define a
web service providing a set of procedures that can be invoked by a travel web site; these
may include procedures to find flight schedules and pricing information, as well as to
make flight bookings. The travel web site may interact with multiple web services, pro-
vided by different airlines, hotels, and other companies, to provide travel information
to a customer and to make travel bookings. By supporting web services, the individual
companies allow a useful service to be constructed on top, integrating the individual
services. Users can interact with a single web site to make their travel bookings without
having to contact multiple separate web sites.

To invoke a web service, a client must prepare an appropriate SOAP XML message
and send it to the service; when it gets the result encoded in XML, the client must then

40 Chapter 30 XML

extract information from the XML result. There are standard APIs in languages such as
Java and C# to create and extract information from SOAP messages.

See the bibliographical notes for references to more information on web services.

30.7.4 Data Mediation

Comparison shopping is an example of a mediation application, in which data about
items, inventory, pricing, and shipping costs are extracted from a variety of web sites
offering a particular item for sale. The resulting aggregated information is significantly
more valuable than the individual information offered by a single site.

A personal financial manager is a similar application in the context of banking.
Consider a consumer with a variety of accounts to manage, such as bank accounts,
credit-card accounts, and retirement accounts. Suppose that these accounts may be
held at different institutions. Providing centralized management for all accounts of a
customer is a major challenge. XML-based mediation addresses the problem by extract-
ing an XML representation of account information from the respective web sites of the
financial institutions where the individual holds accounts. This information may be ex-
tracted easily if the institution exports it in a standard XML format, for example, as
a web service. For those that do not, wrapper software is used to generate XML data
from HTML web pages returned by the web site. Wrapper applications need constant
maintenance since they depend on formatting details of web pages, which change of-
ten. Nevertheless, the value provided by mediation often justifies the effort required to
develop and maintain wrappers.

Once the basic tools are available to extract information from each source, a medi-
ator application is used to combine the extracted information under a single schema.
This may require further transformation of the XML data from each site, since different
sites may structure the same information differently. They may also use different names
for the same information (for instance, acct number and account id) or may even use
the same name for different information. The mediator must decide on a single schema
that represents all required information and must provide code to transform data be-
tween different representations. XML query languages such as XSLT and XQuery play
an important role in the task of transformation between different XML representations.

30.8 Summary

• Like the Hyper-Text Markup Language (HTML) on which the web is based, the
Extensible Markup Language (XML) is derived from the Standard Generalized
Markup Language (SGML). XML was originally intended for providing functional
markup for web documents, but it has now become the de facto standard data
format for data exchange between applications.

• XML documents contain elements with matching starting and ending tags indicat-
ing the beginning and end of an element. Elements may have subelements nested

30.8 Summary 41

within them, to any level of nesting. Elements may also have attributes. The choice
between representing information as attributes and subelements is often arbitrary
in the context of data representation.

• Elements may have an attribute of type ID that stores a unique identifier for the
element. Elements may also store references to other elements by using attributes
of type IDREF. Attributes of type IDREFS can store a list of references.

• Documents optionally may have their schema specified by a document type def-
inition (DTD). The DTD of a document specifies what elements may occur, how
they may be nested, and what attributes each element may have. Although DTDs
are widely used, they have several limitations. For instance, they do not provide a
type system.

• XML Schema is now the standard mechanism for specifying the schema of an XML
document. It provides a large set of basic types, as well as constructs for creating
complex types and specifying integrity constraints, including key constraints and
foreign-key (keyref) constraints.

• XML data can be represented as tree structures, with nodes corresponding to ele-
ments and attributes. Nesting of elements is reflected by the parent-child structure
of the tree representation.

• Path expressions can be used to traverse the XML tree structure and locate data.
XPath is a standard language for path expressions. It allows required elements to be
specified by a file-system-like path, and it also allows selections and other features.
XPath also forms part of other XML query languages.

• The XQuery language is the standard language for querying XML data. It has a
structure not unlike SQL, with for, let, where, order by, and return clauses. However,
it supports many extensions to deal with the tree nature of XML and to allow for
the transformation of XML documents into other documents with a significantly
different structure. XPath path expressions form a part of XQuery. XQuery supports
nested queries and user-defined functions.

• The DOM and SAX APIs are widely used for programmatic access to XML data.
These APIs are available from a variety of programming languages.

• XML data can be stored in any of several different ways. XML data may also be
stored in file systems, or in XML databases, which use XML as their internal rep-
resentation.

• XML data can be stored as strings in a relational database. Alternatively, relations
can represent XML data as trees. As another alternative, XML data can be mapped
to relations in the same way that E-R schemas are mapped to relational schemas.
Native storage of XML in relational databases is facilitated by adding an xml data
type to SQL.

42 Chapter 30 XML

• XML is used in a variety of applications, such as storing complex data, exchange
of data between organizations in a standardized form, data mediation, and web
services. Web services provide a remote-procedure call interface, with XML as the
mechanism for encoding parameters as well as results.

Review Terms

• Extensible Markup Language
(XML)

• Hyper-Text Markup Language
(HTML)

• Standard Generalized Markup
Language

• Markup language

• Tags

• Self-documenting

• Element

• Root element

• Nested elements

• Attribute

• Namespace

• Default namespace

• Schema definition

• Document Type Definition
(DTD)

° ID

° IDREF and IDREFS

• XML Schema

° Simple and complex types

° Sequence type

° Key and keyref

° Occurrence constraints

• Tree model of XML data

• Nodes

• Querying and transformation

• Path expressions

• XPath

• XQuery

° FLWOR expressions

⋄ for

⋄ let

⋄ where

⋄ order by

⋄ return

° Joins

° Nested FLWOR expression

° Sorting

• XML API

• Document Object Model (DOM)

• Simple API for XML (SAX)

• Storage of XML data

° In non-relational data stores

° In relational databases

⋄ Store as string

⋄ Tree representation

⋄ Map to relations

⋄ Publish and shred

⋄ XML-enabled database

⋄ Native storage

⋄ SQL/XML

• XML applications

Practice Exercises 43

° Storing complex data

° Exchange of data

° Data mediation

° SOAP

° Web services

Practice Exercises

30.1 Write a query in XQuery on the XML representation in Figure 30.11 to find the
total salary of all instructors in each department.

30.2 Write a query in XQuery on the XML representation in Figure 30.1 to compute
the left outer join of department elements with course elements. (Hint: Use
universal quantification.)

30.3 Write queries in XQuery to output course elements with associated instructor
elements nested within the course elements, given the university information
representation using ID and IDREFS in Figure 30.11.

30.4 Give a relational schema to represent bibliographical information specified
according to the DTD fragment shown below:

<!DOCTYPE bibliography [
<!ELEMENT book (title, author+, year, publisher, place?)>
<!ELEMENT article (title, author+, journal, year, number, volume, pages?)>
<!ELEMENT author (last name, first name) >
<!ELEMENT title (#PCDATA)>
⋯ similar PCDATA declarations for year, publisher, place, journal, year,

number, volume, pages, last name and first name
] >

The relational schema must keep track of the order of author elements. You
can assume that only books and articles appear as top-level elements in XML
documents.

30.5 Show the tree representation of the XML data in Figure 30.1, and the represen-
tation of the tree using nodes and child relations described in Section 30.6.2.

30.6 Consider the following recursive DTD:

<!DOCTYPE parts [
<!ELEMENT part (name, subpartinfo*)>
<!ELEMENT subpartinfo (part, quantity)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT quantity (#PCDATA)>

] >

44 Chapter 30 XML

a. Show how to map this DTD to a relational schema. You can assume
that part names are unique; that is, wherever a part appears, its subpart
structure will be the same.

b. Create a schema in XML Schema corresponding to this DTD.

Exercises

30.7 Show, by giving a DTD, how to represent the non-1NF books relation from
Section 29.1, using XML.

30.8 Consider the schema:

Emp = (ename, ChildrenSet setof(Children), SkillsSet setof(Skills))
Children = (name, Birthday)
Birthday = (day, month, year)
Skills = (type, ExamsSet setof(Exams))
Exams = (year, city)

Write the following queries in XQuery:

a. Find the names of all employees who have a child who has a birthday in
March.

b. Find those employees who took an examination for the skill type “typ-
ing” in the city “Dayton”.

c. List all skill types in Emp.

30.9 One way to share an XML document is to use XQuery to convert the schema to
an SQL/XML mapping of the corresponding relational schema, and then use
the SQL/XML mapping in the backward direction to populate the relation.

As an illustration, give an XQuery query to convert data from the university-
1 XML schema to the SQL/XML schema shown in Figure 30.15.

30.10 Consider the XML data shown in Figure 30.3. Suppose we wish to find pur-
chase orders that ordered two or more copies of the part with identifier 123.
Consider the following attempt to solve this problem:

for $p in purchaseorder
where $p/part/id = 123 and $p/part/quantity >= 2
return $p

Explain why the query may return some purchase orders that order less than
two copies of part 123. Give a correct version of the above query.

Exercises 45

30.11 Give a query in XQuery to flip the nesting of data from Exercise 30.7. That is, at
the outermost level of nesting, the output must have elements corresponding to
authors, and each such element must have nested within it items corresponding
to all the books written by the author.

30.12 Consider the bibliography DTD fragment:

<!DOCTYPE bibliography [
<!ELEMENT book (title, author+, year, publisher, place?)>
<!ELEMENT article (title, author+, journal, year, number, volume, pages?)>
<!ELEMENT author (last name, first name) >
<!ELEMENT title (#PCDATA)>
⋯ similar PCDATA declarations for year, publisher, place, journal, year,

number, volume, pages, last name and first name
] >

Write the following queries in XQuery:

a. Find all authors who have authored a book and an article in the same
year.

b. Display books and articles sorted by year.

c. Display books with more than one author.

d. Find all books that contain the word database in their title and the word
Hank in an author’s name (whether first or last).

30.13 Give a relational mapping of the XML purchase order schema illustrated in
Figure 30.3, using the approach described in Section 30.6.2.3. Suggest how
to remove redundancy in the relational schema if item identifiers functionally
determine the description and purchase and supplier names functionally de-
termine the purchase and supplier address, respectively.

30.14 Write queries in SQL/XML to convert university data from the relational
schema we have used in earlier chapters to the university-1 and university-2
XML schemas.

30.15 Consider the example XML schema from Section 30.3.2, and write XQuery
queries to carry out the following tasks:

a. Check if the key constraint shown in Section 30.3.2 holds.

b. Check if the keyref constraint shown in Section 30.3.2 holds.

30.16 Consider Exercise 30.4, and suppose that authors could also appear as top-
level elements. What change would have to be done to the relational schema?

46 Chapter 30 XML

30.17 As in Exercise 30.15, write queries to convert university data to the university-1
and university-2 XML schemas, but this time by writing XQuery queries on the
default SQL/XML database to XML mapping.

Tools

A number of tools to deal with XML are available in the public domain. The W3C
web site www.w3.org has pages describing the various XML-related standards, as
well as pointers to software tools such as language implementations. An extensive
list of XQuery implementations is available at www.w3.org/XML/Query. Saxon D
(saxon.sourceforge.net) and Galax (www.galaxquery.org/) are useful as learning
tools, although not designed to handle large databases. Exist (exist-db.org) is an open-
source XML database, supporting a variety of features. Several commercial databases,
including IBM DB2, Oracle, and Microsoft SQL Server, support XML storage, publish-
ing using various SQL extensions, and querying using XPath and XQuery.

Further Reading

The World Wide Web Consortium (W3C) acts as the standards body for web-related
standards, including basic XML and all the XML-related languages such as XPath, XSLT,
and XQuery. A large number of technical reports defining the XML-related standards
are available at www.w3.org. This site also contains tutorials and pointers to software
implementing the various standards.

The XQuery language derives from an XML query language called Quilt; Quilt itself
included features from earlier languages such as XPath, discussed in Section 30.4.2, and
two other XML query languages, XQL and XML-QL. Quilt is described in [Chamberlin
et al. (2000)].

Bibliography

[Chamberlin et al. (2000)] D. D. Chamberlin, J. Robie, and D. Florescu, “Quilt: An XML
Query Language for Heterogeneous Data Sources”, In Proc. of the International Workshop on
the Web and Databases (WebDB) (2000), pages 53–62.

Credits

The photo of the sailboats in the beginning of the chapter is due to ©Pavel Nes-
vadba/Shutterstock.

http://www.w3.org
http://www.w3.org/XML/Query
http://saxon.sourceforge.net
http://www.galaxquery.org/
http://exist-db.org
http://www.w3.org
http://scholar.google.com/scholar?hl/en&q=Donald D. Chamberlin and Jonathan Robie and Daniela Florescu Quilt: An XML Query Language for Heterogeneous Data Sources
http://scholar.google.com/scholar?hl/en&q=Donald D. Chamberlin and Jonathan Robie and Daniela Florescu Quilt: An XML Query Language for Heterogeneous Data Sources
http://scholar.google.com/scholar?hl/en&q=Donald D. Chamberlin and Jonathan Robie and Daniela Florescu Quilt: An XML Query Language for Heterogeneous Data Sources

	Object-Based Databases
	Complex Data Types
	SQL Extensions to Deal with Complex Data Types
	Type and Table Inheritance
	Array and Multiset Types in SQL
	Summary
	Exercises
	Further Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

