
CHAP T E R 31
Information Retrieval

Textual data are unstructured, unlike the rigidly structured data in relational databases.
The term information retrieval generally refers to the querying of unstructured textual
data. Information-retrieval systems have much in common with database systems, in
particular, the storage and retrieval of data on secondary storage. However, the em-
phasis in the field of information systems is different from that in database systems,
concentrating on issues such as querying based on keywords; the relevance of docu-
ments to the query; and the analysis, classification, and indexing of documents. web
search engines today go beyond the paradigm of retrieving documents and address
broader issues such as what information to display in response to a keyword query, to
satisfy the information needs of a user.

31.1 Overview

The field of information retrieval has developed in parallel with the field of databases. In
the traditional model used in the field of information retrieval, information is organized
into documents, and it is assumed that there is a large number of documents. Data
contained in documents are unstructured, without any associated schema. The process
of information retrieval consists of locating relevant documents on the basis of user
input, such as keywords or example documents.

The web provides a convenient way to get to, and to interact with, information
sources across the internet. However, a persistent problem facing the web is the ex-
plosion of stored information, with little guidance to help the user to locate what is
interesting. Information retrieval has played a critical role in making the web a produc-
tive and useful tool, especially for researchers.

Traditional examples of information-retrieval systems are online library catalogs
and online document-management systems such as those that store newspaper articles.
The data in such systems are organized as a collection of documents; a newspaper article
and a catalog entry (in a library catalog) are examples of documents. In the context of
the web, usually each HTML page is considered to be a document.

1

2 Chapter 31 Information Retrieval

A user of such a system may want to retrieve a particular document or a partic-
ular class of documents. The intended documents are typically described by a set of
keywords—for example, the keywords “database system” may be used to locate books
on database systems, and the keywords “stock” and “scandal” may be used to locate
articles about stock-market scandals. Documents have associated with them a set of
keywords, and documents whose keywords contain those supplied by the user are re-
trieved.

Keyword-based information retrieval can be used not only for retrieving textual
data, but also for retrieving other types of data, such as video and audio data, that
have descriptive keywords associated with them. For instance, a video movie may have
associated with it keywords such as its title, director, actors, and genre, while an image
or video clip may have tags, which are keywords describing the image or video clip,
associated with it.

There are several differences between this model and the models used in traditional
database systems.

• Database systems deal with several operations that are not addressed in infor-
mation-retrieval systems. For instance, database systems deal with updates and
with the associated transactional requirements of concurrency control and dura-
bility. These matters are viewed as less important in information systems. Simi-
larly, database systems deal with structured information organized with relatively
complex data models (such as the relational model or object-oriented data mod-
els), whereas information-retrieval systems traditionally have used a much simpler
model, where the information in the database is organized simply as a collection
of unstructured documents.

• Information-retrieval systems deal with several issues that have not been addressed
adequately in database systems. For instance, the field of information retrieval has
dealt with the issue of querying collections of unstructured documents, focusing on
issues such as keyword queries, and of ranking of documents on estimated degree
of relevance of the documents to the query.

In addition to simple keyword queries that are just sets of words, information-
retrieval systems typically allow query expressions formed using keywords and the log-
ical connectives and, or, and not. For example, a user could ask for all documents that
contain the keywords “motorcycle and maintenance,” or documents that contain the
keywords “computer or microprocessor,” or even documents that contain the keyword
“computer but not database.” A query containing keywords without any of the above
connectives is assumed to have ands implicitly connecting the keywords.

In full text retrieval, all the words in each document are considered to be keywords.
For unstructured documents, full text retrieval is essential since there may be no infor-
mation about what words in the document are keywords. We shall use the word term
to refer to the words in a document, since all words are keywords.

31.2 Relevance Ranking Using Terms 3

In its simplest form, an information-retrieval system locates and returns all doc-
uments that contain all the keywords in the query, if the query has no connectives;
connectives are handled as you would expect. More sophisticated systems estimate
relevance of documents to a query so that the documents can be shown in order of es-
timated relevance. They use information about term occurrences, as well as hyperlink
information, to estimate relevance.

Information-retrieval systems, as exemplified by web search engines, have today
evolved beyond just retrieving documents based on a ranking scheme. Today, search
engines aim to satisfy a user’s information needs by judging what topic a query is about
and displaying not only web pages judged as relevant, but also displaying other kinds of
information about the topic. For example, given a query term cricket, a search engine
may display scores from ongoing or recent cricket matches, rather than just display
top-ranked documents related to cricket. As another example, in response to a query
“New York”, a search engine may show a map of New York, and images of New York,
in addition to web pages related to New York.

31.2 Relevance Ranking Using Terms

The set of all documents that satisfy a query expression may be very large; in partic-
ular, there are billions of documents on the web, and most keyword queries on a web
search engine find hundreds of thousands of documents containing the keywords. Full
text retrieval makes this problem worse: each document may contain many terms, and
even terms that are mentioned only in passing are treated equivalently with documents
where the term is indeed relevant. Irrelevant documents may be retrieved as a result.

Information-retrieval systems therefore estimate the relevance of documents to a
query and return only highly ranked documents as answers. Relevance ranking is not
an exact science, but there are some well-accepted approaches.

31.2.1 Ranking Using TF-IDF

The first question to address is, given a particular term t, how relevant is a particular
document d to the term. One approach is to use the the number of occurrences of the
term in the document as a measure of its relevance, on the assumption that relevant
terms are likely to be mentioned many times in a document. Just counting the number
of occurrences of a term is usually not a good indicator: first, the number of occur-
rences depends on the length of the document, and second, a document containing 10
occurrences of a term may not be 10 times as relevant as a document containing one
occurrence.

One way of measuring TF(d, t), the relevance of a document d to a term t, is

TF(d, t) = log
(

1 + n(d, t)
n(d)

)

4 Chapter 31 Information Retrieval

where n(d) denotes the number of term occurrences in the document and n(d, t) de-
notes the number of occurrences of term t in the document d. Observe that this metric
takes the length of the document into account. The relevance grows with more occur-
rences of a term in the document, although it is not directly proportional to the number
of occurrences.

Many systems refine the preceding metric by using other information. For instance,
if the term occurs in the title, or the author list, or the abstract, the document would
be considered more relevant to the term. Similarly, if the first occurrence of a term is
late in the document, the document may be considered less relevant than if the first
occurrence is early in the document. These notions can be formalized by extensions of
the formula we have shown for TF(d, t). In the information retrieval community, the
relevance of a document to a term is referred to as term frequency (TF), regardless of
the exact formula used.

A query Q may contain multiple keywords. The relevance of a document to a query
with two or more keywords is estimated by combining the relevance measures of the
document to each keyword. A simple way of combining the measures is to add them
up. However, not all terms used as keywords are equal. Suppose a query uses two terms,
one of which occurs frequently, such as database, and another that is less frequent, such
as Silberschatz. A document containing Silberschatz but not database should be ranked
higher than a document containing the term database but not Silberschatz.

To fix the problem, weights are assigned to terms using the inverse document fre-
quency (IDF), defined as

IDF(t) = 1
n(t)

where n(t) denotes the number of documents (among those indexed by the system) that
contain the term t. The relevance of a document d to a set of terms Q is then defined
as

r(d, Q) =
∑
t∈Q

TF(d, t) ∗ IDF(t)

This measure can be further refined if the user is permitted to specify weights w(t) for
terms in the query, in which case the user-specified weights are also taken into account
by multiplying TF(t) by w(t) in the above formula.

The above approach of using term frequency and inverse document frequency as
a measure of the relevance of a document is called the TF–IDF approach.

Almost all text documents (in English) contain words such as and, or, a, and so on,
and hence these words are useless for querying purposes since their inverse document
frequency is extremely low. Information-retrieval systems define a set of words, called
stop words, containing 100 or so of the most common words, and ignore these words
when indexing a document. Such words are not used as keywords and are discarded if
present in the keywords supplied by the user.

31.2 Relevance Ranking Using Terms 5

Another factor taken into account when a query contains multiple terms is the
proximity of the terms in the document. If the terms occur close to each other in the
document, the document will be ranked higher than if they occur far apart. The formula
for r(d, Q) can be modified to take proximity of the terms into account.

Given a query Q, the job of an information-retrieval system is to return documents
in descending order of their relevance to Q. Since there may be a very large number
of documents that are relevant, information-retrieval systems typically return only the
first few documents with the highest degree of estimated relevance, and they permit
users to interactively request further documents.

31.2.2 Similarity-Based Retrieval

Certain information-retrieval systems permit similarity-based retrieval. Here, the user
can give the system document A, and ask the system to retrieve documents that are
“similar” to A. The similarity of a document to another may be defined, for example,
on the basis of common terms. One approach is to find k terms in A with highest values
of TF(A, t) ∗ IDF(t), and to use these k terms as a query to find the relevance of other
documents. The terms in the query are themselves weighted by TF(A, t) ∗ IDF(t).

More generally, the similarity of documents is defined by the cosine similarity
metric. Let the terms occurring in either of the two documents be t1, t2,… , tn. Let
r(d, t) = TF(d, t) ∗ IDF(t). Then the cosine similarity metric between documents d
and e is defined as:

∑n
i=1 r(d, ti)r(e, ti)√∑n

i=1 r(d, ti)2
√∑n

i=1 r(e, ti)2

You can easily verify that the cosine similarity metric of a document with itself is 1,
while that between two documents that do not share any terms is 0.

The name “cosine similarity” comes from the fact that the above formula computes
the cosine of the angle between two vectors, one representing each document, defined
as follows: Let there be n words overall across all the documents being considered. An
n-dimensional space is defined, with each word as one of the dimensions. A document
d is represented by a point in this space, with the value of the ith coordinate of the point
being r(d, ti). The vector for document d connects the origin (all coordinates = 0) to
the point representing the document. The model of documents as points and vectors
in an n-dimensional space is called the vector space model.

If the set of documents similar to a query document A is large, the system may
present the user a few of the similar documents, allow the user to choose the most rele-
vant few, and start a new search based on similarity to A and to the chosen documents.
The resultant set of documents is likely to be what the user intended to find. This idea
is called relevance feedback.

Relevance feedback can also be used to help users find relevant documents from a
large set of documents matching the given query keywords. In such a situation, users

6 Chapter 31 Information Retrieval

may be allowed to identify one or a few of the returned documents as relevant; the
system then uses the identified documents to find other similar ones. The resultant
set of documents is likely to be what the user intended to find. An alternative to the
relevance feedback approach is to require users to modify the query by adding more
keywords; relevance feedback can be easier to use, in addition to giving a better final
set of documents as the answer.

In order to show the user a representative set of documents when the number of
documents is very large, a search system may cluster the documents based on their
cosine similarity. Then a few documents from each cluster may be shown, so that more
than one cluster is represented in the set of answers.

As a special case of similarity, there are often multiple copies of a document on
the web; this could happen, for example, if a web site mirrors the contents of another
web site. In this case, it makes no sense to return multiple copies of a highly ranked
document as separate answers; duplicates should be detected, and only one copy should
be returned as an answer.

31.3 Relevance Using Hyperlinks

Early web-search engines ranked documents by using only TF–IDF–based relevance
measures like those described in Section 31.2. However, these techniques had some
limitations when used on very large collections of documents, such as the set of all
web pages. In particular, many web pages have all the keywords specified in a typical
search engine query; further, some of the pages that users want as answers often have
just a few occurrences of the query terms and would not get a very high TF–IDF score.

However, researchers soon realized that web pages have very important informa-
tion that plain text documents do not have, namely hyperlinks. These can be exploited
to get better relevance ranking; in particular, the relevance ranking of a page is in-
fluenced greatly by hyperlinks that point to the page. In this section, we study how
hyperlinks are used for ranking of web pages.

31.3.1 Popularity Ranking

The basic idea of popularity ranking (also called prestige ranking) is to find pages that
are popular and to rank them higher than other pages that contain the specified key-
words. Since most searches are intended to find information from popular pages, rank-
ing such pages higher is generally a good idea. For instance, the term google may occur
in vast numbers of pages, but the page google.com is the most popular among the
pages that contain the term google. The page google.com should therefore be ranked
as the most relevant answer to a query consisting of the term google.

Traditional measures of relevance of a page such as the TF–IDF-based measures
that we saw in Section 31.2 can be combined with the popularity of the page to get an
overall measure of the relevance of the page to the query. Pages with the highest overall
relevance value are returned as the top answers to a query.

http://google.com
http://google.com

31.3 Relevance Using Hyperlinks 7

This raises the question of how to define and how to find the popularity of a page.
One way would be to find how many times a page is accessed and use the number
as a measure of the site’s popularity. However, getting such information is impossible
without the cooperation of the site, and while a few sites may be persuaded to reveal
this information, it is difficult to get it for all sites. Further, sites may lie about their
access frequency in order to get ranked higher.

A very effective alternative is to use hyperlinks to a page as a measure of its popular-
ity. Many people have bookmark files that contain links to sites that they use frequently.
Sites that appear in a large number of bookmark files can be inferred to be very popu-
lar sites. Bookmark files are usually stored privately and are not accessible on the web.
However, many users do maintain web pages with links to their favorite web pages.
Many web sites also have links to other related sites, which can also be used to infer
the popularity of the linked sites. A web search engine can fetch web pages (by a pro-
cess called crawling, which we describe in Section 31.7) and analyze them to find links
between the pages.

A first solution to estimating the popularity of a page is to use the number of pages
that link to the page as a measure of its popularity. However, this by itself has the
drawback that many sites have a number of useful pages, yet external links often point
only to the root page of the site. The root page in turn has links to other pages in the site.
These other pages would then be wrongly inferred to be not very popular and would
have a low ranking in answering queries.

One alternative is to associate popularity with sites, rather than with pages. All
pages at a site then get the popularity of the site, and pages other than the root page
of a popular site would also benefit from the site’s popularity. However, the question
of what constitutes a site then arises. In general, the internet address prefix of a page
URL would constitute the site corresponding to the page. However, there are many
sites that host a large number of mostly unrelated pages, such as home page servers
in universities and web portals such as groups.yahoo.com or groups.google.com. For
such sites, the popularity of one part of the site does not imply popularity of another
part of the site.

A simpler alternative is to allow transfer of prestige from popular pages to pages to
which they link. Under this scheme, in contrast to the one-person one-vote principles
of democracy, a link from a popular page x to a page y is treated as conferring more
prestige to page y than a link from a not-so-popular page z.1

This notion of popularity is in fact circular, since the popularity of a page is de-
fined by the popularity of other pages, and there may be cycles of links between pages.
However, the popularity of pages can be defined by a system of simultaneous linear
equations, which can be solved by matrix manipulation techniques. The linear equa-
tions can be defined in such a way that they have a unique and well-defined solution.

1This is similar in some sense to giving extra weight to endorsements of products by celebrities (such as film stars), so
its significance is open to question, although it is effective and widely used in practice.

http://groups.yahoo.com
http://groups.google.com

8 Chapter 31 Information Retrieval

It is interesting to note that the basic idea underlying popularity ranking is actually
quite old and first appeared in a theory of social networking developed by sociologists
in the 1950s. In the social-networking context, the goal was to define the prestige of
people. For example, the president of the United States has high prestige since a large
number of people know him. If someone is known by multiple prestigious people, then
she also has high prestige, even if she is not known by as large a number of people. The
use of a set of linear equations to define the popularity measure also dates back to this
work.

31.3.2 PageRank

The web search engine Google introduced PageRank, which is a measure of popularity
of a page based on the popularity of pages that link to the page. Using the PageRank
popularity measure to rank answers to a query gave results so much better than previ-
ously used ranking techniques that Google became the most widely used search engine
in a rather short period of time.

PageRank can be understood intuitively using a random walk model. Suppose a
person browsing the web performs a random walk (traversal) on web pages as follows:
the first step starts at a random web page, and in each step, the random walker does
one of the following: With a probability δ the walker jumps to a randomly chosen web
page, and with a probability of 1 − δ the walker randomly chooses one of the outlinks
from the current web page and follows the link. The PageRank of a page is then the
probability that the random walker is visiting the page at any given point in time.

Note that pages that are pointed to from many web pages are more likely to be
visited and thus will have a higher PageRank. Similarly, pages pointed to by web pages
with a high PageRank will also have a higher probability of being visited, and thus will
have a higher PageRank.

PageRank can be defined by a set of linear equations, as follows: First, web pages
are given integer identifiers. The jump probability matrix T is defined with T [i, j] set
to the probability that a random walker who is following a link out of page i follows
the link to page j. Assuming that each link from i has an equal probability of being
followed, T [i, j] = 1∕Ni, where Ni is the number of links out of page i. Most entries
of T are 0, and it is best represented as an adjacency list. Then the PageRank P[j] for
each page j can be defined as

P[j] = δ∕N + (1 − δ) ∗
N∑

i=1

(T [i, j] ∗ P[i])

where δ is a constant between 0 and 1 and N the number of pages; δ represents the
probability of a step in the random walk being a jump.

The set of equations generated as above are usually solved by an an iterative tech-
nique, starting with each P[i] set to 1∕N . Each step of the iteration computes new val-
ues for each P[i] using the P values from the previous iteration. Iteration stops when
the maximum change in any P[i] value in an iteration goes below some cutoff value.

31.3 Relevance Using Hyperlinks 9

31.3.3 Other Measures of Popularity

Basic measures of popularity such as PageRank play an important role in ranking of
query answers, but they are by no means the only factor. The TF–IDF scores of a page
are used to judge its relevance to the query keywords, and they must be combined
with the popularity ranking. Other factors must also be taken into account, to handle
limitations of PageRank and related popularity measures.

Information about how often a site is visited would be a useful measure of popu-
larity, but as mentioned earlier it is hard to obtain in general. However, search engines
do track what fraction of times users click on a page when it is returned as an answer.
This fraction can be used as a measure of the site’s popularity. To measure the click
fraction, instead of providing a direct link to the page, the search engine provides an
indirect link through the search engine’s site, which records the page click and trans-
parently redirects the browser to the original link.2

One drawback of the PageRank algorithm is that it assigns a measure of popularity
that does not take query keywords into account. For example, the page google.com is
likely to have a very high PageRank because many sites contain a link to it. Suppose it
contains a word mentioned in passing, such as Stanford (the advanced search page at
Google did in fact contain this word at one point several years ago). A search on the
keyword Stanford would then return google.com as the highest-ranked answer, ahead
of a more relevant answer such as the Stanford University web page.

One widely used solution to this problem is to use keywords in the anchor text of
links to a page to judge what topics the page is highly relevant to. The anchor text of
a link consists of the text that appears within the HTML a href tag. For example, the
anchor text of the link:

 Stanford University

is Stanford University. If many links to the page stanford.edu have the word Stanford in
their anchor text, the page can be judged to be very relevant to the in keyword “Stan-
ford.” Text near the anchor text may also be taken into account; for example, a web site
may contain the text “Stanford’s home page is here” but may have used only the word
here as anchor text in the link to the Stanford web site.

Popularity based on anchor text is combined with other measures of popularity,
and with TF–IDF measures, to get an overall ranking for query answers, as we discuss
in Section 31.3.5. As an implementation trick, the words in the anchor text are often
treated as part of the page, with a term frequency based on the the popularity of the

2Sometimes this indirection is hidden from the user. For example, when you point the mouse at a link (such as
http://db-book.com) in a Google query result, the link appears to point directly to the site. However, at least as of
mid-2009, when you actually click on the link, Javascript code associated with the page actually rewrites the link to go
indirectly through Google’s site. If you use the back button of the browser to go back to the query result page, and point
to the link again, the change in the linked URL becomes visible.

http://google.com
http://google.com
http://stanford.edu
http://http://db-book.com

10 Chapter 31 Information Retrieval

pages where the anchor text appears. Then TF–IDF ranking automatically takes anchor
text into account.

An alternative approach to taking keywords into account when defining popularity
is to compute a measure of popularity using only pages that contain the query keywords,
instead of computing popularity using all available web pages. This approach is more
expensive, since the computation of popularity ranking has to be done dynamically
when a query is received, whereas PageRank is computed statically once and reused
for all queries. web search engines handling billions of queries per day cannot afford
to spend so much time answering a query. As a result, although this approach can give
better answers, it is not very widely used.

The HITS algorithm was based on the above idea of first finding pages that contain
the query keywords, and then computing a popularity measure using just this set of
related pages. In addition, it introduced a notion of hubs and authorities. A hub is a page
that stores links to many related pages; it may not in itself contain actual information on
a topic, but it points to pages that contain actual information. In contrast, an authority
is a page that contains actual information on a topic, although it may not store links
to many related pages. Each page then gets a prestige value as a hub (hub-prestige) and
another prestige value as an authority (authority-prestige). The definitions of prestige,
as before, are cyclic and are defined by a set of simultaneous linear equations. A page
gets higher hub-prestige if it points to many pages with high authority-prestige, while
a page gets higher authority-prestige if it is pointed to by many pages with high hub-
prestige. Given a query, pages with highest authority-prestige are ranked higher than
other pages. See the bibliographical notes for references giving further details.

31.3.4 Search Engine Spamming

Search engine spamming refers to the practice of creating web pages, or sets of web
pages, designed to get a high relevance rank for some queries, even though the sites are
not actually popular sites. For example, a travel site may want to be ranked high for
queries with the keyword “travel”. It can get high TF–IDF scores by repeating the word
travel many times in its page.3 Even a site unrelated to travel, such as a pornographic
site, could do the same thing, and would get highly ranked for a query on the word
travel. In fact, this sort of spamming of TF–IDF was common in the early days of web
search, and there was a constant battle between such sites and search engines that tried
to detect spamming and deny them a high ranking.

Popularity ranking schemes such as PageRank make the job of search engine spam-
ming more difficult, since just repeating words to get a high TF–IDF score is no longer
sufficient. However, even these techniques can be spammed by creating a collection of
web pages that point to each other, increasing their popularity rank. Techniques such as
using sites instead of pages as the unit of ranking (with appropriately normalized jump

3Repeated words in a web page may confuse users; spammers can tackle this problem by delivering different pages
to search engines than to other users, for the same URL, or by making the repeated words invisible, for example, by
formatting the words in small white font on a white background.

31.4 Synonyms, Homonyms, and Ontologies 11

probabilities) have been proposed to avoid some spamming techniques, but they are
not fully effective against other spamming techniques. The war between search engine
spammers and the search engines continues even today.

The hubs and authorities approach of the HITS algorithm is more susceptible to
spamming. A spammer can create a web page containing links to good authorities on
a topic, and gains a high hub score as a result. In addition, the spammer’s web page
includes links to pages that they wish to popularize, which may not have any relevance
to the topic. Because these linked pages are pointed to by a page with a high hub score,
they get a high but undeserved authority score.

31.3.5 Combining TF-IDF and Popularity Ranking Measures

We have seen two broad kinds of features used in ranking, TF–IDF and popularity scores
such as PageRank. TF–IDF itself reflects a combination of several factors including raw
term frequency and inverse document frequency, occurrence of a term in anchor text
linking to the page, and a variety of other factors such as occurrence of the term in the
title, occurrence of the term early in the document, and larger font size for the term,
among other factors.

How to combine the scores of a page on each these factors, to generate an overall
page score is a major problem that must be addressed by any information retrieval
system. In the early days of search engines, humans created functions to combine scores
into an overall score. But today, search engines use machine-learning techniques to
decide how to combine scores. Typically, a score-combining formula is fixed, but the
formula takes as parameters weights for different scoring factors. By using a training
set of query results ranked by humans, a machine-learning algorithm can come up
with an assignment of weights for each scoring factor that results in the best ranking
performance across multiple queries.

We note that most search engines do not reveal how they compute relevance rank-
ings; they believe that revealing their ranking techniques would allow competitors to
catch up and would make the job of search engine spamming easier, resulting in poorer
quality results.

31.4 Synonyms, Homonyms, and Ontologies

Consider the problem of locating documents about motorcycle maintenance, using the
query “motorcycle maintenance”. Suppose that the keywords for each document are
the words in the title and the names of the authors. The document titled Motorcycle
Repair would not be retrieved, since the word maintenance does not occur in its title.

We can solve that problem by making use of synonyms. Each word can have a set
of synonyms defined, and the occurrence of a word can be replaced by the or of all
its synonyms (including the word itself). Thus, the query “motorcycle and repair” can
be replaced by “motorcycle and (repair or maintenance).” This query would find the
desired document.

12 Chapter 31 Information Retrieval

Keyword-based queries also suffer from the opposite problem, of homonyms, that
is, single words with multiple meanings. For instance, the word object has different
meanings as a noun and as a verb. The word table may refer to a dinner table or to a
table in a relational database.

In fact, a danger even with using synonyms to extend queries is that the synonyms
may themselves have different meanings. For example, “allowance” is a synonym for
one meaning of the word maintenance but has a different meaning than what the user
intended in the query “motorcycle maintenance”. Documents that use the synonyms
with an alternative intended meaning would be retrieved. The user is then left wonder-
ing why the system thought that a particular retrieved document (e.g., using the word
allowance) is relevant, if it contains neither the keywords the user specified, nor words
whose intended meaning in the document is synonymous with specified keywords! It
is therefore a bad idea to use synonyms to extend a query without first verifying the
synonyms with the user.

A better approach to this problem is for the system to understand what concept
each word in a document represents, and similarly to understand what concepts a user
is looking for, and to return documents that address the concepts that the user is inter-
ested in. A system that supports concept-based querying has to analyze each document
to disambiguate each word in the document and replace it with the concept that it rep-
resents; disambiguation is usually done by looking at other surrounding words in the
document. For example, if a document contains words such as database or query, the
word table probably should be replaced by the concept “table: data,” whereas if the doc-
ument contains words such as furniture, chair, or wood near the word table, the word
table should be replaced by the concept “table: furniture.” Disambiguation based on
nearby words is usually harder for user queries, since queries contain very few words,
so concept-based query systems would offer several alternative concepts to the user,
who picks one or more before the search continues.

Concept-based querying has several advantages; for example, a query in one lan-
guage can retrieve documents in other languages, so long as they relate to the same
concept. Automated translation mechanisms can be used subsequently if the user does
not understand the language in which the document is written. However, the overhead
of processing documents to disambiguate words is very high when billions of docu-
ments are being handled. Internet search engines therefore generally did not support
concept-based querying initially, but interest in concept-based approaches is growing
rapidly. However, concept-based querying systems have been built and used for other
large collections of documents.

Querying based on concepts can be extended further by exploiting concept hier-
archies. For example, suppose a person issues a query “flying animals”; a document
containing information about “flying mammals” is certainly relevant, since a mammal
is an animal. However, the two concepts are not the same, and just matching concepts
would not allow the document to be returned as an answer. Concept-based querying
systems can support retrieval of documents based on concept hierarchies.

31.5 Indexing of Documents 13

Ontologies are hierarchical structures that reflect relationships between concepts.
The most common relationship is the is-a relationship; for example, a leopard is-a mam-
mal, and a mammal is-a animal. Other relationships, such as part-of , are also possible;
for example, an airplane wing is part-of an airplane.

The WordNet system defines a large variety of concepts with associated words
(called a synset in WordNet terminology). The words associated with a synset are syn-
onyms for the concept; a word may be a synonym for several different concepts. In
addition to synonyms, WordNet defines homonyms and other relationships. In partic-
ular, the is-a and part-of relationships that it defines connect concepts, and in effect
define an ontology. The Cyc project is another effort to create an ontology.

In addition to language-wide ontologies, ontologies have been defined for specific
areas to deal with terminology relevant to those areas. For example, ontologies have
been created to standardize terms used in businesses; this is an important step in build-
ing a standard infrastructure for handling order processing and other interorganization
flow of data. As another example, consider a medical insurance company that needs
to get reports from hospitals containing diagnosis and treatment information. An on-
tology that standardizes the terms helps hospital staff to understand the reports unam-
biguously. This can greatly help in analysis of the reports—for example, to track how
many cases of a particular disease occurred in a particular time frame.

It is also possible to build ontologies that link multiple languages. For example,
WordNets have been built for different languages, and common concepts between lan-
guages can be linked to each other. Such a system can be used for translation of text. In
the context of information retrieval, a multilingual ontology can be used to implement
a concept-based search across documents in multiple languages.

The largest effort in using ontologies for concept-based queries is the Semantic web.
The Semantic web is led by the World Wide web Consortium and consists of a collec-
tion of tools, standards, and languages that permit data on the web to be connected
based on their semantics, or meaning. Instead of being a centralized repository, the
Semantic web is designed to permit the same kind of decentralized, distributed growth
that has made the World Wide web so successful. Key to this is the ability to integrate
multiple, distributed ontologies. As a result, anyone with access to the internet can add
to the Semantic web.

31.5 Indexing of Documents

An effective index structure is important for efficient processing of queries in an
information-retrieval system. Documents that contain a specified keyword can be lo-
cated efficiently by using an inverted index that maps each keyword Ki to a list Si of
(identifiers of) the documents that contain Ki. For example, if documents d1, d9, and
d21 contain the term Silberschatz, the inverted list for the keyword “Silberschatz” would
be “d1; d9; d21”. To support relevance ranking based on proximity of keywords, such an
index may provide not just identifiers of documents, but also a list of locations within

14 Chapter 31 Information Retrieval

the document where the keyword appears. For example, if “Silberschatz” appeared at
position 21 in d1, positions 1 and 19 in d2, and positions 4, 29, and 46 in d3, the inverted
list with positions would be “d1∕21; d9∕1, 19; d21∕4, 29, 46”. The inverted lists may also
include with each document the term frequency of the term.

Such indices must be stored on disk, and each list Si can span multiple disk pages.
To minimize the number of I/O operations to retrieve each list Si, the system would
attempt to keep each list Si in a set of consecutive disk pages, so the entire list can be
retrieved with just one disk seek. A B+-tree index can be used to map each keyword Ki
to its associated inverted list Si.

The and operation finds documents that contain all of a specified set of keywords
K1, K2,… , Kn. We implement the and operation by first retrieving the sets of document
identifiers S1, S2,… , Sn of all documents that contain the respective keywords. The
intersection, S1 ∩ S2 ∩⋯∩ Sn, of the sets gives the document identifiers of the desired
set of documents. The or operation gives the set of all documents that contain at least
one of the keywords K1, K2,… , Kn. We implement the or operation by computing the
union, S1 ∪ S2 ∪ ⋯ ∪ Sn, of the sets. The not operation finds documents that do not
contain a specified keyword Ki. Given a set of document identifiers S, we can eliminate
documents that contain the specified keyword Ki by taking the difference S−Si, where
Si is the set of identifiers of documents that contain the keyword Ki.

Given a set of keywords in a query, many information-retrieval systems do not insist
that the retrieved documents contain all the keywords (unless an and operation is used
explicitly). In this case, all documents containing at least one of the words are retrieved
(as in the or operation) but are ranked by their relevance measure.

To use term frequency for ranking, the index structure should additionally maintain
the number of times terms occur in each document. To reduce this effort, they may use
a compressed representation with only a few bits that approximates the term frequency.
The index should also store the document frequency of each term (i.e., the number of
documents in which the term appears).

If the popularity ranking is independent of the index term (as is the case for Page
Rank), the list Si can be sorted on the popularity ranking (and secondarily, for docu-
ments with the same popularity ranking, on document-id). Then a simple merge can
be used to compute and and or operations. For the case of the and operation, if we
ignore the TF–IDF contribution to the relevance score and merely require that the doc-
ument should contain the given keywords, merging can stop once K answers have been
obtained, if the user requires only the top K answers. In general, the results with the
highest final score (after including TF–IDF scores) are likely to have high popularity
scores and would appear near the front of the lists. Techniques have been developed to
estimate the best possible scores of remaining results, and these can be used to recog-
nize that answers not yet seen cannot be part of the top K answers. Processing of the
lists can then terminate early.

However, sorting on popularity score is not fully effective in avoiding long inverted
list scans, since it ignores the contribution of the TF–IDF scores. An alternative in such
cases is to break up the inverted list for each term into two parts. The first part contains

31.6 Measuring Retrieval Effectiveness 15

documents that have a high TF–IDF score for that term (e.g., documents where the term
occurs in the document title, or in anchor text referencing the document). The second
part contains all documents. Each part of the list can be sorted in order of (popularity,
document-id). Given a query, merging the first parts of the list for each term is likely
to give several answers with an overall high score. If sufficient high-scoring answers are
not found using the first parts of the lists, the second parts of the lists are used to find all
remaining answers. If a document scores high on TF–IDF, it is likely to be found when
merging the first parts of the lists. See the bibliographical notes for related references.

31.6 Measuring Retrieval Effectiveness

Each keyword may be contained in a large number of documents; hence, a compact
representation is critical to keep space usage of the index low. Thus, the sets of doc-
uments for a keyword are maintained in a compressed form. So that storage space is
saved, the index is sometimes stored such that the retrieval is approximate; a few rel-
evant documents may not be retrieved (called a false drop or false negative), or a few
irrelevant documents may be retrieved (called a false positive). A good index structure
will not have any false drops, but it may permit a few false positives; the system can
filter them away later by looking at the keywords that they actually contain. In web
indexing, false positives are not desirable either, since the actual document may not be
quickly accessible for filtering.

Two metrics are used to measure how well an information-retrieval system is able
to answer queries. The first, precision, measures what percentage of the retrieved docu-
ments are actually relevant to the query. The second, recall, measures what percentage
of the documents relevant to the query were retrieved. Ideally both should be 100 per-
cent.

Precision and recall are also important measures for understanding how well a
particular document-ranking strategy performs. Ranking strategies can result in false
negatives and false positives, but in a more subtle sense.

• False negatives may occur when documents are ranked, as a result of relevant
documents receiving a low ranking. If the system fetched all documents down to
those with very low ranking there would be very few false negatives. However,
humans would rarely look beyond the first few tens of returned documents, and
they may thus miss relevant documents because they are not ranked highly. Exactly
what is a false negative depends on how many documents are examined. Therefore,
instead of having a single number as the measure of recall, we can measure the
recall as a function of the number of documents fetched.

• False positives may occur because irrelevant documents get higher rankings than
relevant documents. This too depends on how many documents are examined.
One option is to measure precision as a function of number of documents fetched.

16 Chapter 31 Information Retrieval

A better and more intuitive alternative for measuring precision is to measure it
as a function of recall. With this combined measure, both precision and recall can be
computed as a function of number of documents, if required.

For instance, we can say that with a recall of 50 percent the precision was 75 per-
cent, whereas at a recall of 75 percent the precision dropped to 60 percent. In general,
we can draw a graph relating precision to recall. These measures can be computed for
individual queries, then averaged out across a suite of queries in a query benchmark.

Yet another problem with measuring precision and recall lies in how to define
which documents are really relevant and which are not. In fact, it requires an under-
standing of natural language, and understanding of the intent of the query, to decide if
a document is relevant or not. Researchers therefore have created collections of doc-
uments and queries and have manually tagged documents as relevant or irrelevant to
the queries. Different ranking systems can be run on these collections to measure their
average precision and recall across multiple queries.

31.7 Crawling and Indexing the web

web crawlers are programs that locate and gather information on the web. They recur-
sively follow hyperlinks present in known documents to find other documents. Crawlers
start from an initial set of URLs, which may be created manually. Each of the pages
identified by these URLs is fetched from the web. The web crawler then locates all URL
links in these pages and adds them to the set of URLs to be crawled, if they have not
already been fetched, or added to the to-be-crawled set. This process is repeated by
fetching all pages in the to-be-crawled set and processing the links in these pages in the
same fashion. By repeating the process, all pages that are reachable by any sequence of
links from the initial set of URLs would be eventually fetched.

Since the number of documents on the web is very large, it is not possible to crawl
the whole web in a short period of time; and in fact, all search engines cover only
some portions of the web, not all of it, and their crawlers may take weeks or months to
perform a single crawl of all the pages they cover. There are usually many processes,
running on multiple machines, involved in crawling. A database stores a set of links
(or sites) to be crawled; it assigns links from this set to each crawler process. New links
found during a crawl are added to the database and may be crawled later if they are
not crawled immediately. Pages have to be refetched (i.e., links recrawled) periodically
to obtain updated information and to discard sites that no longer exist, so that the
information in the search index is kept reasonably up-to-date.

See the references in the bibliography for a number of practical details in perform-
ing a web crawl, such as infinite sequences of links created by dynamically generated
pages (called a spider trap), prioritization of page fetches, and ensuring that web sites
are not flooded by a burst of requests from a crawler.

Pages fetched during a crawl are handed over to a prestige computation and index-
ing system, which may be running on a different machine. The prestige computation

31.8 Information Retrieval: Beyond Ranking of Pages 17

and indexing systems themselves run on multiple machines in parallel. Pages can be
discarded after they are used for prestige computation and added to the index; however,
they are usually cached by the search engine to give search engine users fast access to a
cached copy of a page, even if the original web site containing the page is not accessible.

It is not a good idea to add pages to the same index that is being used for queries,
since doing so would require concurrency control on the index and would affect query
and update performance. Instead, one copy of the index is used to answer queries while
another copy is updated with newly crawled pages. At periodic intervals the copies
switch over, with the old one being updated while the new copy is being used for queries.

To support very high query rates, the indices may be kept in main memory, and
there are multiple machines; the system selectively routes queries to the machines to
balance the load among them. Popular search engines often have tens of thousands
of machines carrying out the various tasks of crawling, indexing, and answering user
queries.

web crawlers depend on all relevant pages being reachable through hyperlinks.
However, many sites containing large collections of data may not make all the data
available as hyperlinked pages. Instead, they provide search interfaces, where users
can enter terms or select menu options and get results. As an example, a database
of flight information is usually made available using such a search interface, without
any hyperlinks to the pages containing flight information. As a result, the information
inside such sites is not accessible to a normal web crawler. The information in such
sites is often referred to as deep web information.

Deep web crawlers extract some such information by guessing what terms would
make sense to enter, or what menu options to choose, in such search interfaces. By
entering each possible term/option and executing the search interface, they are able to
extract pages with data that they would not have been able to find otherwise. The pages
extracted by a deep web crawl may be indexed just like regular web pages. The Google
search engine, for example, includes results from deep web crawls.

31.8 Information Retrieval: Beyond Ranking of Pages

Information-retrieval systems were originally designed to find textual documents re-
lated to a query, and they were later extended to finding pages on the web that are
related to a query. People use search engines for many different tasks, from simple
tasks such as locating a web site that they want to use, to a broader goal of finding in-
formation on a topic of interest. web search engines have become extremely good at the
task of locating web sites that a user wants to visit. The task of providing information
on a topic of interest is much harder, and we study some approaches in this section.

There is also an increasing need for systems that try to understand documents (to
a limited extent) and answer questions based on that (limited) understanding. One ap-
proach is to create structured information from unstructured documents and to answer
questions based on the structured information. Another approach applies natural lan-

18 Chapter 31 Information Retrieval

guage techniques to find documents related to a question (phrased in natural language)
and return relevant segments of the documents as an answer to the question.

31.8.1 Diversity of Query Results

Today, search engines do not just return a ranked list of web pages relevant to a query.
They also return image and video results relevant to a query. Further, there are a variety
of sites providing dynamically changing content such as sports scores, or stock market
tickers. To get current information from such sites, users would have to first click on
the query result. Instead, search engines have created “gadgets,” which take data from
a particular domain, such as sports updates, stock prices, or weather conditions, and
format them in a nice graphical manner, to be displayed as results for a query. Search
engines have to rank the set of gadgets available in terms of relevance to a query and
display the most relevant gadgets, along with web pages, images, videos, and other types
of results. Thus, a query result has a diverse set of result types.

Search terms are often ambiguous. For example, a query “eclipse” may be referring
to a solar or lunar eclipse, or to the integrated development environment (IDE) called
Eclipse. If all the highly ranked pages for the term eclipse are about the IDE, a user
looking for information about solar or lunar eclipses may be very dissatisfied. Search
engines therefore attempt to provide a set of results that are diverse in terms of their
topics, to minimize the chance that a user would be dissatisfied. To do so, at indexing
time the search engine must disambiguate the sense in which a word is used in a page;
for example, it must decide whether the use of the word eclipse in a page refers to the
IDE or the astronomical phenomenon. Then, given a query, the search engine attempts
to provide results that are relevant to the most common senses in which the query
words are used.

The results obtained from a web page need to be summarized as a snippet in a query
result. Traditionally, search engines have provided a few words surrounding the query
keywords as a snippet that helps indicate what the page contains. However, there are
many domains where the snippet can be generated in a much more meaningful manner.
For example, if a user queries about a restaurant, a search engine can generate a snippet
containing the restaurant’s rating, a phone number, and a link to a map, in addition
to providing a link to the restaurant’s home page. Such specialized snippets are often
generated for results retrieved from a database, for example, a database of restaurants.

31.8.2 Information Extraction

Information-extraction systems convert information from textual form to a more struc-
tured form. For example, a real-estate advertisement may describe attributes of a home
in textual form, such as “two-bedroom, three-bath house in Queens, $1 million,” from
which an information extraction system may extract attributes such as number of bed-
rooms, number of bathrooms, cost, and neighborhood. The original advertisement
could have used various terms, such as 2BR, or two BR, or two bed, to denote two
bedrooms. The extracted information can be used to structure the data in a standard

31.8 Information Retrieval: Beyond Ranking of Pages 19

way. Thus, a user could specify that he is interested in two-bedroom houses, and a
search system would be able to return all relevant houses based on the structured data,
regardless of the terms used in the advertisement.

An organization that maintains a database of company information may use an
information-extraction system to extract information automatically from newspaper ar-
ticles; the information extracted would relate to changes in attributes of interest, such
as resignations, dismissals, or appointments of company officers.

As another example, search engines designed for finding scholarly research arti-
cles, such as Citeseer and Google Scholar, crawl the web to retrieve documents that
are likely to be research articles. They examine some features of each retrieved docu-
ment, such as the presence of words such as bibliography, references, and abstract, to
judge if a document is in fact a scholarly research article. They then extract the title,
list of authors, and the citations at the end of the article by using information extrac-
tion techniques. The extracted citation information can be used to link each article to
articles that it cites or to articles that cite it; such citation links between articles can be
very useful for a researcher.

Several systems have been built for information extraction for specialized applica-
tions. They use linguistic techniques, page structure, and user-defined rules for specific
domains such as real estate advertisements or scholarly publications. For limited do-
mains, such as a specific web site, it is possible for a human to specify patterns that can
be used to extract information. For example, on a particular web site, a pattern such
as “Price: <number> $”, where <number> indicates any number, may match loca-
tions where the price is specified. Such patterns can be created manually for a limited
number of web sites.

However, on the web scale with millions of web sites, manual creation of such
patterns is not feasible. Machine-learning techniques, which can learn such patterns
given a set of training examples, are widely used to automate the process of information
extraction.

Information extraction usually has errors in some fraction of the extracted informa-
tion; typically this is because some page had information in a format that syntactically
matched a pattern but did not actually specify a value (such as the price). Information
extraction using simple patterns, which separately match parts of a page, is relatively
error prone. Machine-learning techniques can perform much more sophisticated anal-
ysis, based on interactions between patterns, to minimize errors in the information
extracted while maximizing the amount of information extracted. See the references in
the bibliographical notes for more information.

31.8.3 Question Answering

Information retrieval systems focus on finding documents relevant to a given query.
However, the answer to a query may lie in just one part of a document, or in small parts
of several documents. Question answering systems attempt to provide direct answers to
questions posed by users. For example, a question of the form “Who killed Lincoln?”

20 Chapter 31 Information Retrieval

may best be answered by a line that says “Abraham Lincoln was shot by John Wilkes
Booth in 1865.” Note that the answer does not actually contain the words killed or who,
but the system infers that “who” can be answered by a name, and “killed” is related to
“shot.”

Question answering systems targeted at information on the web typically generate
one or more keyword queries from a submitted question, execute the keyword queries
against web search engines, and parse returned documents to find segments of the
documents that answer the question. A number of linguistic techniques and heuristics
are used to generate keyword queries and to find relevant segments from the document.

An issue in answering questions is that different documents may indicate different
answers to a question. For example, if the question is “How tall is a giraffe?” different
documents may give different numbers as an answer. These answers form a distribution
of values, and a question answering system may choose the average, or median value
of the distribution as the answer to be returned; to reflect the fact that the answer is
not expected to be precise, the system may return the average along with the standard
deviation (e.g., average of 16 feet, with a standard deviation of 2 feet), or a range based
on the average and the standard deviation (e.g., between 14 and 18 feet).

Current-generation question answering systems are limited in power, since they do
not really understand either the question or the documents used to answer the question.
However, they are useful for a number of simple question answering tasks.

31.8.4 Querying Structured Data

Structured data are primarily represented in either relational or XML form. Several
systems have been built to support keyword querying on relational and XML data (see
Chapter 30). A common theme between these systems lies in finding nodes (tuples
or XML elements) containing the specified keywords and finding connecting paths (or
common ancestors, in the case of XML data) between them.

For example, a query “Zhang Katz” on a university database may find the name
“Zhang” occurring in a student tuple, and the name “Katz” in an instructor tuple, and
a path through the advisor relation connecting the two tuples. Other paths, such as
student “Zhang” taking a course taught by “Katz,” may also be found in response to
this query. Such queries may be used for ad hoc browsing and querying of data when
the user does not know the exact schema and does not wish to take the effort to write
an SQL query defining what she is searching for. Indeed, it is unreasonable to expect
lay users to write queries in a structured query language, whereas keyword querying is
quite natural.

Since queries are not fully defined, they may have many different types of answers,
which must be ranked. A number of techniques have been proposed to rank answers
in such a setting, based on the lengths of connecting paths, and on techniques for
assigning directions and weights to edges. Techniques have also been proposed for
assigning popularity ranks to tuples and XML elements, based on links such as foreign

31.9 Directories and Categories 21

key and IDREF links. See the bibliographical notes for more information on keyword
searching of relational and XML data.

31.9 Directories and Categories

A typical library user may use a catalog to locate a book for which she is looking.
When she retrieves the book from the shelf, however, she is likely to browse through
other books that are located nearby. Libraries organize books in such a way that related
books are kept close together. Hence, a book that is physically near the desired book
may be of interest as well, making it worthwhile for users to browse through such books.

To keep related books close together, libraries use a classification hierarchy. Books
on science are classified together. Within this set of books, there is a finer classifica-
tion, with computer-science books organized together, mathematics books organized
together, and so on. Since there is a relation between mathematics and computer sci-
ence, relevant sets of books are stored close to each other physically. At yet another
level in the classification hierarchy, computer-science books are broken down into sub-
areas, such as operating systems, languages, and algorithms. Figure 31.1 illustrates a
classification hierarchy that may be used by a library. Because books can be kept at
only one place, each book in a library is classified into exactly one spot in the classifi-
cation hierarchy.

In an information-retrieval system, there is no need to store related documents
close together. However, such systems need to organize documents logically to permit
browsing. Thus, such a system could use a classification hierarchy similar to one that

books

algorithms

graph algorithms

math

science fictionengineering

computer science

Figure 31.1 A classification hierarchy for a library system.

22 Chapter 31 Information Retrieval

books

algorithms

graph algorithms

math

science fictionengineering

computer science

Figure 31.2 A classification DAG for a library information-retrieval system.

libraries use, and, when it displays a particular document, it can also display a brief
description of documents that are close in the hierarchy.

In an information-retrieval system, there is no need to keep a document in a single
spot in the hierarchy. A document that talks of mathematics for computer scientists
could be classified under mathematics as well as under computer science. All that is
stored at each spot is an identifier of the document (i.e., a pointer to the document),
and it is easy to fetch the contents of the document by using the identifier.

As a result of this flexibility, not only can a document be classified under two loca-
tions, but also a subarea in the classification hierarchy can itself occur under two areas.
The class of “graph algorithm” documents can appear both under mathematics and
under computer science. Thus, the classification hierarchy is now a directed acyclic
graph (DAG), as shown in Figure 31.2. A graph-algorithm document may appear in a
single location in the DAG but can be reached via multiple paths.

A directory is simply a classification DAG structure. Each leaf of the directory
stores links to documents on the topic represented by the leaf. Internal nodes may also
contain links, for example, to documents that cannot be classified under any of the
child nodes.

To find information on a topic, a user would start at the root of the directory and
follow paths down the DAG until reaching a node representing the desired topic. While
browsing down the directory, the user can find not only documents on the topic he is
interested in, but also find related documents and related classes in the classification
hierarchy. The user may learn new information by browsing through documents (or
subclasses) within the related classes.

Organizing the enormous amount of information available on the web into a direc-
tory structure is a daunting task.

31.10 Summary 23

• The first problem is determining what exactly the directory hierarchy should be.

• The second problem is, given a document, deciding which nodes of the directory
are categories relevant to the document.

To tackle the first problem, portals such as Yahoo! have teams of “Internet librari-
ans” who come up with the classification hierarchy and continually refine it.

The second problem can also be tackled manually by librarians, or web site main-
tainers may be responsible for deciding where their sites should lie in the hierarchy.
There are also techniques for deciding automatically the location of documents based
on computing their similarity to documents that have already been classified.

Wikipedia, the online encyclopedia, addresses the classification problem in the
reverse direction. Each page in Wikipedia has a list of categories to which it belongs.
For example, as of 2009, the Wikipedia page on giraffes had several categories including
“Mammals of Africa.” In turn, the “Mammals of Africa” category itself belongs to the
category “Mammals by geography,” which in turn belongs to the category “Mammals”,
which in turn has a category “Vertebrates,” and so on. The category structure is useful
for browsing other instances of the same category, for example, to find other mammals
of Africa, or other mammals. Conversely, a query that looks for mammals can use
the category information to infer that a giraffe is a mammal. The Wikipedia category
structure is not a tree but is almost a DAG; it is not actually a DAG since it has a few
instances of loops, which probably reflect categorization errors.

31.10 Summary

• Information-retrieval systems are used to store and query textual data such as doc-
uments. They use a simpler data model than do database systems but provide more
powerful querying capabilities within the restricted model.

• Queries attempt to locate documents that are of interest by specifying, for example,
sets of keywords. The query that a user has in mind usually cannot be stated pre-
cisely; hence, information-retrieval systems order answers on the basis of potential
relevance.

• Relevance ranking makes use of several types of information, such as:

° Term frequency: how important each term is to each document.

° Inverse document frequency.

° Popularity ranking.

• Similarity of documents is used to retrieve documents similar to an example doc-
ument. The cosine metric is used to define similarity and is based on the vector
space model.

24 Chapter 31 Information Retrieval

• PageRank and hub/authority rank are two ways to assign prestige to pages on the
basis of links to the page. The PageRank measure can be understood intuitively
using a random-walk model. Anchor text information is also used to compute a
per-keyword notion of popularity. Information-retrieval systems need to combine
scores on multiple factors, such as TF–IDF and PageRank, to get an overall score
for a page.

• Search engine spamming attempts to get (an undeserved) high ranking for a page.

• Synonyms and homonyms complicate the task of information retrieval. Concept-
based querying aims at finding documents that contain specified concepts, regard-
less of the exact words (or language) in which the concept is specified. Ontologies
are used to relate concepts using relationships such as is-a or part-of.

• Inverted indices are used to answer keyword queries.

• Precision and recall are two measures of the effectiveness of an information-
retrieval system.

• web search engines crawl the web to find pages, analyze them to compute prestige
measures, and index them.

• Techniques have been developed to extract structured information from textual
data, to perform keyword querying on structured data, and to give direct answers
to simple questions posed in natural language.

• Directory structures and categories are used to classify documents with other sim-
ilar documents.

Review Terms

• Information-retrieval systems

• Keyword search

• Full text retrieval

• Term

• Relevance ranking

° Term frequency

° Inverse document frequency

° Relevance

° Proximity

• Similarity-based retrieval

° Vector space model

° Cosine similarity metric

° Relevance feedback

• Stop words

• Relevance using hyperlinks

° Popularity/prestige

° Transfer of prestige

• PageRank

° Random walk model

• Anchor-text–based relevance

• Hub/authority ranking

Practice Exercises 25

• Search engine spamming

• Synonyms

• Homonyms

• Concepts

• Concept-based querying

• Ontologies

• Semantic web

• Inverted index

• False drop

• False negative

• False positive

• Precision

• Recall

• web crawlers

• Deep web

• Query result diversity

• Information extraction

• Question answering

• Querying structured data

• Directories

• Classification hierarchy

• Categories

Practice Exercises

31.1 Compute the relevance (using appropriate definitions of term frequency and
inverse document frequency) of each of the Practice Exercises in this chapter
to the query “SQL relation”.

31.2 Suppose you want to find documents that contain at least k of a given set of n
keywords. Suppose also you have a keyword index that gives you a (sorted) list
of identifiers of documents that contain a specified keyword. Give an efficient
algorithm to find the desired set of documents.

31.3 Suggest how to implement the iterative technique for computing PageRank
given that the T matrix (even in adjacency list representation) does not fit in
memory.

31.4 Suggest how a document containing a word (such as leopard) can be indexed
such that it is efficiently retrieved by queries using a more general concept (such
as “carnivore” or “mammal”). You can assume that the concept hierarchy is
not very deep, so each concept has only a few generalizations (a concept can,
however, have a large number of specializations). You can also assume that
you are provided with a function that returns the concept for each word in a
document. Also suggest how a query using a specialized concept can retrieve
documents using a more general concept.

31.5 Suppose inverted lists are maintained in blocks, with each block noting the
largest popularity rank and TF–IDF scores of documents in the remaining
blocks in the list. Suggest how merging of inverted lists can stop early if the
user wants only the top K answers.

26 Chapter 31 Information Retrieval

Exercises

31.6 Using a simple definition of term frequency as the number of occurrences of
the term in a document, give the TF–IDF scores of each term in the set of
documents consisting of this and the next exercise.

31.7 Create a small example of four small documents, each with a PageRank, and
create inverted lists for the documents sorted by the PageRank. You do not
need to compute PageRank, just assume some values for each page.

31.8 Suppose you wish to perform keyword querying on a set of tuples in a database,
where each tuple has only a few attributes, each containing only a few words.
Does the concept of term frequency make sense in this context? And that of
inverse document frequency? Explain your answer. Also suggest how you can
define the similarity of two tuples using TF–IDF concepts.

31.9 Web sites that want to get some publicity can join a web ring, where they create
links to other sites in the ring in exchange for other sites in the ring creating
links to their site. What is the effect of such rings on popularity ranking tech-
niques such as PageRank?

31.10 The Google search engine provides a feature whereby Web sites can display
advertisements supplied by Google. The advertisements supplied are based on
the contents of the page. Suggest how Google might choose which advertise-
ments to supply for a page, given the page contents.

31.11 One way to create a keyword-specific version of PageRank is to modify the ran-
dom jump such that a jump is only possible to pages containing the keyword.
Thus, pages that do not contain the keyword but are close (in terms of links)
to pages that contain the keyword also get a nonzero rank for that keyword.

a. Give equations defining such a keyword-specific version of PageRank.

b. Give a formula for computing the relevance of a page to a query contain-
ing multiple keywords.

31.12 The idea of popularity ranking using hyperlinks can be extended to relational
and XML data, using foreign key and IDREF edges in place of hyperlinks. Sug-
gest how such a ranking scheme may be of value in the following applications:

a. A bibliographic database that has links from articles to authors of the
articles and links from each article to every article that it references.

b. A sales database that has links from each sales record to the items that
were sold.

Also suggest why prestige ranking can give less than meaningful results in a
movie database that records which actor has acted in which movies.

Further Reading 27

31.13 What is the difference between a false positive and a false drop? If it is essential
that no relevant information be missed by an information-retrieval query, is it
acceptable to have either false positives or false drops? Why?

Tools

Google (http://www.google.com) is currently the most popular search en-
gine, but there are a number of other search engines, such as Microsoft
Bing (http://www.bing.com) and Yahoo! search (search.yahoo.com). The site
searchenginewatch.com provides a wealth of information about search engines. Ya-
hoo! (dir.yahoo.com) and the Open Directory Project (dmoz.org) provide classifica-
tion hierarchies for web sites.

Further Reading

[Manning et al. (2008)], [Chakrabarti (2002)], [Grossman and Frieder (2004)], [Wit-
ten et al. (1999)], and [Baeza-Yates and Ribeiro-Neto (1999)] provide textbook descrip-
tions of information retrieval. In particular, [Chakrabarti (2002)] and [Manning et al.
(2008)] provide detailed coverage of web crawling, ranking techniques, and mining
techniques related to information retrieval such as text classification and clustering.

Bibliography

[Baeza-Yates and Ribeiro-Neto (1999)] R. Baeza-Yates and B. Ribeiro-Neto, Modern Informa-
tion Retrieval, Addison Wesley (1999).

[Chakrabarti (2002)] S. Chakrabarti, Mining the Web: Discovering Knowledge from HyperText
Data, Morgan Kaufmann (2002).

[Grossman and Frieder (2004)] D. A. Grossman and O. Frieder, Information Retrieval: Algo-
rithms and Heuristics, 2nd edition, Springer Verlag (2004).

[Manning et al. (2008)] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Infor-
mation Retrieval, Cambridge University Press (2008).

[Witten et al. (1999)] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Compress-
ing and Indexing Documents and Images, 2nd edition, Morgan Kaufmann (1999).

Credits

The photo of the sailboats in the beginning of the chapter is due to ©Pavel Nes-
vadba/Shutterstock.

http://http://www.google.com
http://http://www.bing.com
http://search.yahoo.com
http://searchenginewatch.com
http://dir.yahoo.com
http://dmoz.org
http://scholar.google.com/scholar?hl/en&q=Christopher D. Manning and Prabhakar Raghavan and Hinrich Sch{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\accent 127 u\egroup \spacefactor \accent@spacefactor }tze Introduction to Information Retrieval
http://scholar.google.com/scholar?hl/en&q=Soumen Chakrabarti Mining the Web: Discovering Knowledge from HyperText Data
http://scholar.google.com/scholar?hl/en&q=David A. Grossman and Ophir Frieder Information Retrieval: Algorithms and Heuristics
http://scholar.google.com/scholar?hl/en&q=Ian H. Witten and Alistair Moffat and Timothy C. Bell Managing Gigabytes: Compressing and Indexing Documents and Images
http://scholar.google.com/scholar?hl/en&q=Ricardo Baeza-Yates and Berthier Ribeiro-Neto Modern Information Retrieval
http://scholar.google.com/scholar?hl/en&q=Soumen Chakrabarti Mining the Web: Discovering Knowledge from HyperText Data
http://scholar.google.com/scholar?hl/en&q=Christopher D. Manning and Prabhakar Raghavan and Hinrich Sch{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\accent 127 u\egroup \spacefactor \accent@spacefactor }tze Introduction to Information Retrieval
http://scholar.google.com/scholar?hl/en&q=Ricardo Baeza-Yates and Berthier Ribeiro-Neto Modern Information Retrieval
http://scholar.google.com/scholar?hl/en&q=Ricardo Baeza-Yates and Berthier Ribeiro-Neto Modern Information Retrieval
http://scholar.google.com/scholar?hl/en&q=Soumen Chakrabarti Mining the Web: Discovering Knowledge from HyperText Data
http://scholar.google.com/scholar?hl/en&q=Soumen Chakrabarti Mining the Web: Discovering Knowledge from HyperText Data
http://scholar.google.com/scholar?hl/en&q=David A. Grossman and Ophir Frieder Information Retrieval: Algorithms and Heuristics
http://scholar.google.com/scholar?hl/en&q=David A. Grossman and Ophir Frieder Information Retrieval: Algorithms and Heuristics
http://scholar.google.com/scholar?hl/en&q=Christopher D. Manning and Prabhakar Raghavan and Hinrich Sch{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\accent 127 u\egroup \spacefactor \accent@spacefactor }tze Introduction to Information Retrieval
http://scholar.google.com/scholar?hl/en&q=Christopher D. Manning and Prabhakar Raghavan and Hinrich Sch{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\accent 127 u\egroup \spacefactor \accent@spacefactor }tze Introduction to Information Retrieval
http://scholar.google.com/scholar?hl/en&q=Ian H. Witten and Alistair Moffat and Timothy C. Bell Managing Gigabytes: Compressing and Indexing Documents and Images
http://scholar.google.com/scholar?hl/en&q=Ian H. Witten and Alistair Moffat and Timothy C. Bell Managing Gigabytes: Compressing and Indexing Documents and Images

	PostgreSQL
	Introduction
	User Interfaces
	SQL Variations and Extensions
	Transaction Management in PostgreSQL
	Storage and Indexing
	Query Processing and Optimization
	System Architecture
	Bibliographical Notes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

