
CHAP T E R 32

PostgreSQL

Ioannis Alagiannis (Swisscom AG)

Renata Borovica-Gajic (University of Melbourne, AU)1

PostgreSQL is an open-source object-relational database management system. It is a

descendant of one of the earliest such systems, the POSTGRES system developed un-

der Professor Michael Stonebraker at the University of California, Berkeley. The name

“Postgres” is derived from the name of a pioneering relational database system, Ingres.

Currently, PostgreSQL offers features such as complex queries, foreign keys, triggers,

views, transactional integrity, full-text searching, and limited data replication. Users

can extend PostgreSQL with new data types, functions, operators, or index methods.

PostgreSQL supports a variety of programming languages (including C, C++, Java,

Perl, Tcl, and Python), as well as the database interfaces JDBC and ODBC.

PostgreSQL runs under virtually all Unix-like operating systems, including Linux,

Microsoft Windows and Apple Macintosh OS X. PostgreSQL has been released under

the BSD license, which grants permission to anyone for the use, modification, and dis-

tribution of the PostgreSQL code and documentation for any purpose without any fee.

PostgreSQL has been used to implement several different research and production ap-

plications (such as the PostGIS system for geographic information) and is used an

educational tool at several universities. PostgreSQL continues to evolve through the

contributions of a large community of developers.

In this chapter, we explain how PostgreSQL works, starting from user interfaces

and languages, and continuing into the internals of the system. The chapter would be

useful for application developers who use PostgreSQL, and desire to understand and

1Both authors equally contributed to this work.

This chapter is an online resource of Database System Concepts, 7th edition, by Silberschatz, Korth and Sudarshan,

McGraw-Hill, 2019.

This chapter is released under the Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)

4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0.

For any use beyond those covered by this license, obtain permission by emailing db-book-authors@cs.yale.edu.

1

https://creativecommons.org/licenses/by-nc-sa/4.0

2 Chapter 32 PostgreSQL

make better use of its features. It would also be particularly useful for students and

developers who wish to add functionality to the PostgreSQL system, by modifying its

source code.

32.1 Interacting with PostgreSQL

The standard distribution of PostgreSQL comes with command-line tools for admin-

istering the database. However, there is a wide range of commercial and open-source

graphical administration and design tools that support PostgreSQL. Software develop-

ers may also access PostgreSQL through a comprehensive set of programming inter-

faces.

32.1.1 Interactive Terminal Interfaces

Like most database systems, PostgreSQL offers command-line tools for database ad-

ministration. The psql interactive terminal client supports execution of SQL commands

on the server, and viewing of the results. Additionally, it provides the user with meta-

commands and shell-like features to facilitate a wide variety of operations. Some of its

features are:

• Variables. psql provides variable substitution features, similar to common Unix

command shells.

• SQL interpolation. The user can substitute (“interpolate”) psql variables into SQL

statements by placing a colon in front of the variable name.

• Command-line editing. psql uses the GNU readline library for convenient line edit-

ing, with tab-completion support.

32.1.2 Graphical Interfaces

The standard distribution of PostgreSQL does not contain any graphical tools. How-

ever, there are several open source as well as commercial graphical user interface tools

for tasks such as SQL development, database administration, database modeling/design

and report generation. Graphical tools for SQL development and database administra-

tion include pgAdmin, PgManager, and RazorSQL. Tools for database design include

TOra, Power*Architect, and PostgreSQL Maestro. Moreover, PostgreSQL works with

several commercial forms-design and report-generation tools such as Reportizer, db-

Forge, and Database Tour.

32.1.3 Programming Language Interfaces

PostgreSQL standard distribution includes two client interfaces libpq and ECPG. The

libpq library provides the C API for PostgreSQL and is the underlying engine for

most programming-language bindings. The libpq library supports both synchronous

32.2 System Architecture 3

library
interface
client

postmaster
daemon
process

PostgreSQL
server

(back end)
SQL queries
and results read/

write

shared
tables

shared
disk

buffers

disk
storage

client processes

client
application

server processes

create disk
buffers

kernel

shared memory unix system

initial
connection

request
and

authenticationlibrary API
through

communication

Figure 32.1 The PostgreSQL system architecture.

and asynchronous execution of SQL commands and prepared statements, through a

re-entrant and thread-safe interface. The connection parameters of libpq may be con-

figured in several flexible ways, such as setting environment variables, placing settings

in a local file, or creating entries on an LDAP server. ECPG (Embedded SQL in C) is

an embedded SQL preprocessor for the C language and PostgreSQL. It allows for ac-

cessing PostgreSQL using C programs with embedded SQL code in the following form:

EXEC SQL sql-statements. ECPG provides a flexible interface for connecting to the database

server, executing SQL statements, and retrieving query results, among other features.

Apart from the client interfaces included in the standard distribution of

PostgreSQL, there are also client interfaces provided from external projects. These in-

clude native interfaces for ODBC and JDBC, as well as bindings for most programming

languages, including C, C++, PHP, Perl, Tcl/Tk, JavaScript, Python, and Ruby.

32.2 System Architecture

The PostgreSQL system is based on a multi-process architecture, as shown in Figure

32.1. A set of one or more of databases is managed by a collection of processes. The

postmaster is the central coordinating process and is responsible for system initializa-

tion (including allocation of shared memory and starting of background processes),

and for shutting down the server. Additionally, the postmaster manages connections

with client applications and assigns each new connecting client to a backend server

process for executing the queries on behalf of the client and for returning the results to

the client.

Client applications can connect to the PostgreSQL server and submit queries

through one of the many database application program interfaces supported by

PostgreSQL (libpq, JDBC, ODBC) that are provided as client-side libraries. An exam-

ple client application is the command-line psql program, included in the standard

4 Chapter 32 PostgreSQL

PostgreSQL distribution. The postmaster is responsible for handling the initial client

connections. For this, it constantly listens for new connections on a known port. When

it receives a connection request, the postmaster first performs initialization steps such

as user authentication, and then assigns an idle backend server process (or spawns a

new one if required) to handle the new client. After this initial connection, the client

interacts only with the backend server process, submitting queries and receiving query

results. As long as the client connection is active, the assigned backend server pro-

cess is dedicated to only that client connection. Thus, PostgreSQL uses a process-per-

connection model for the backend server.

The backend server process is responsible for executing the queries submitted by

the client by performing the necessary query-execution steps, including parsing, opti-

mization, and execution. Each backend server process can handle only a single query

at a time. An application that desires to execute more than one query in parallel must

maintain multiple connections to the server. At any given time there may be multiple

clients connected to the system, and thus multiple backend server processes may be

executing concurrently.

In addition to the postmaster and the backend server processes PostgreSQL utilizes

several background worker processes to perform data management tasks, including the

background writer, the statistics collector, the write-ahead log (WAL) writer and the

checkpointer processes. The background writer process is responsible for periodically

writing the dirty pages from the shared buffers to persistent storage. The statistics col-

lector process continuously collects statistics information about the table accesses and

the number of rows in tables. The WAL writer process periodically flushes the WAL data

to persistent storage while the checkpointer process performs database checkpoints to

speed up recovery. These background processes are initiated by the postmaster process.

When it comes to memory management in PostgreSQL, we can identify two differ-

ent categories a) local memory and b) shared memory. Each backend process allocates

local memory for its own tasks such as query processing (e.g., internal sort operations

hash tables and temporary tables) and maintenance operations (e.g., vacuum, create

index).

On the other hand, the in-memory buffer pool is placed in shared memory, so that

all the processes, including backend server processes and background processes can

access it. Shared memory is also used to store lock tables and other data that must be

shared by server and background processes.

Due to the use of shared memory as the inter-process communication medium,

a PostgreSQL server should run on a single shared-memory machine; a single-server

site cannot be executed across multiple machines that do not share memory, without

the assistance of third-party packages. However, it is possible to build a shared-nothing

parallel database system with an instance of PostgreSQL running on each node; in

fact, several commercial parallel database systems have been built with exactly this

architecture.

32.3 Storage and Indexing 5

32.3 Storage and Indexing

PostgreSQL’s approach to data layout and storage has the goals of (1) a simple and

clean implementation and (2) ease of administration. As a step toward these goals,

PostgreSQL relies on file-system files for data storage (also referred to as “cooked”

files), instead of handling the physical layout of data on raw disk partitions by itself.

PostgreSQL maintains a list of directories in the file hierarchy to use for storage; these

directories are referred to as tablespaces. Each PostgreSQL installation is initialized

with a default tablespace, and additional tablespaces may be added at any time. When

creating a table, index, or entire database, the user may specify a tablespace in which

to store the related files. It is particularly useful to create multiple tablespaces if they

reside on different physical devices, so that tablespaces on the faster devices may be

dedicated to data that are accessed more frequently. Moreover, data that are stored on

separate disks may be accessed in parallel more efficiently.

The design of the PostgreSQL storage system potentially leads to some perfor-

mance limitations, due to clashes between PostgreSQL and the file system. The use

of cooked file systems results in double buffering, where blocks are first fetched from

disk into the file system’s cache (in kernel space), and are then copied to PostgreSQL’s

buffer pool. Performance can also be limited by the fact that PostgreSQL stores data in

8-KB blocks, which may not match the block size used by the kernel. It is possible to

change the PostgreSQL block size when the server is installed, but this may have unde-

sired consequences: small blocks limit the ability of PostgreSQL to store large tuples

efficiently, while large blocks are wasteful when a small region of a file is accessed.

On the other hand, modern enterprises increasingly use external storage systems,

such as network-attached storage and storage-area networks, instead of disks attached

to servers. Such storage systems are administered and tuned for performance sepa-

rately from the database. PostgreSQL may directly leverage these technologies because

of its reliance on “cooked” file systems. For most applications, the performance reduc-

tion due to the use of “cooked” file systems is minimal, and is justified by the ease of

administration and management, and the simplicity of implementation.

32.3.1 Tables

The primary unit of storage in PostgreSQL is a table. In PostgreSQL, tuples in a table are

stored in heap files. These files use a form of the standard slotted-page format (Section

13.2.2). The PostgreSQL slotted-page format is shown in Figure 32.2. In each page, the

page header is followed by an array of line pointers (also referred to as item identifiers). A

line pointer contains the offset (relative to the start of the page) and length of a specific

tuple in the page. The actual tuples are stored from the end of the page to simplify

insertions. When a new item is added in the page, if all line pointers are in use, a new

line pointer is allocated at the beginning of the unallocated space (pd lower) while the

actual item is stored from the end of the unallocated space (pd upper).

6 Chapter 32 PostgreSQL

page header data linp1 linp2 linp3 linp4

... linpn

pd_lower

pd_upper

“special space”tuple1tuple2

tuple3...tuplen

Figure 32.2 Slotted-page format for PostgreSQL tables.

A record in a heap file is identified by its tuple ID (TID). The TID consists of a

4-byte block ID which specifies the page in the file containing the tuple and a 2-byte

slot ID. The slot ID is an index into the line pointer array that in turn is used to access

the tuple.

Due to the multi-version concurrency control (MVCC) technique used by

PostgreSQL, there may be multiple versions of a tuple, each with an associated start

and end time for validity. Delete operations do not immediately delete tuples, and up-

date operations do not directly update tuples. Instead, deletion of a tuple initially just

updates the end-time for validity, while an update of a tuple create a new version of

the existing tuple; the old version has its validity end-time set to just before the validity

start-time of the new version.

Old versions of tuples that are no longer visible to any transaction are physically

deleted later; deletion causes holes to be formed in a page. The indirection of accessing

tuples through the line pointer array permits the compaction of such holes by moving

the tuples, without affecting the TID of the tuple.

The length of a physical tuple is limited by the size of a data page, which makes

it difficult to store very long tuples. When PostgreSQL encounters a large tuple that

cannot fit in a page, it tries to “TOAST” individual large attributes, that is, compress

the attribute or break it up into smaller pieces. In some cases, “toasting” an attribute

may be accomplished by compressing the value. If compression does not shrink the

tuple enough to fit in the page (as is often the case), the data in the toasted attribute is

replaced by a reference to the attribute value; the attribute value is stored outside the

page in an associated TOAST table. Large attribute values are split into smaller chunks;

the chunk size is chosen such that four chunks can fit in a page. Each chunk is stored

as a separate row in the associated TOAST table. An index on the combination of the

identifier of a toasted attribute with the sequence number of each chunk allows efficient

retrieval of the values. Only the data types with variable-length representation support

32.3 Storage and Indexing 7

TOAST, to avoid imposing the overhead on data types that cannot produce large field

values. The toasted attribute size is limited to 1 GB.

32.3.2 Indices

A PostgreSQL index is a data structure that provides a dynamic mapping from search

predicates to sequences of tuple IDs from a particular table. The returned tuples are

intended to match the search predicate, although in some cases the predicate must

be rechecked on the actual tuples, since the index may return a superset of matching

tuples. PostgreSQL supports several different index types, including indices that are

based on user-extensible access methods. All the index types in PostgreSQL currently

use the slotted-page format described in Section 32.3.1 to organize the data within an

index page.

32.3.2.1 Index Types

PostgreSQL supports several types of indices that target different categories of work-

loads. In addition to the conventional B-tree,2 PostgreSQL supports hash indices and

several specialized indexing methods: the Generalized Search Tree (GiST), the Space-

partitioned Generalized Search Tree (SP-GiST), the Generalized Inverted Index (GIN)

and the Block Range Index (BRIN), which can be beneficial for workloads requiring

full-text indexing, querying multi-value elements or being naturally clustered on some

specific attribute(s).

B-tree: In PostgreSQL, the B-tree is the default index type, and the implementation

is based on Lehman and Yao’s B-link tree (B-link trees, described briefly in Section

18.10.2, are a variant of B+-trees that support high concurrency of operations). B-

trees can efficiently support equality and range queries on sortable data, as also certain

pattern-matching operations such as some cases of like expressions.

Hash: PostgreSQL’s hash indices are an implementation of linear hashing. Such indices

are useful only for simple equality operations. The hash indices used by PostgreSQL had

been shown to have lookup performance no better than that of B-trees while having

considerably larger size and maintenance costs. The use of hash indices was generally

discouraged due to the lack of write-ahead logging. However, in PostgreSQL 10 and

11, the hash index implementation has been significantly improved: hash indices now

support write-ahead logging, can be replicated, and performance has improved as well.

Generalized Search Tree (GiST): The Generalized Search Tree (GiST) is an extensible

indexing structure supported by PostgreSQL. The GiST index is based on a balanced

tree-structure similar to a B-tree, but where several of the operations on the tree are

not predefined, but instead must be specified by an access method implementor. GiST

allows creation of specialized index types on top of the basic GiST template, without

having to deal with the numerous internal details of a complete index implementation.

2As is conventional in the industry, the term B-tree is used in place of B+ -tree, and should be interpreted as referring

to the B+ -tree data structure.

8 Chapter 32 PostgreSQL

Examples of some indices built using GiST index include R-trees, as well as less con-

ventional indices for multidimensional cubes and full-text search.

The GiST interface requires the access-method implementer to only implement

certain operations on the data type being indexed, and specify how to arrange those

data values in the GiST tree. New GiST access methods can be implemented by creating

an operator class. Each GiST operator class may have a different set of strategies based

on the search predicates implemented by the index. There are five support functions

that an index operator class for GiST must provide, such as for testing set membership,

for splitting sets of entries on page overflows, and for computing cost of inserting a new

entry. GiST also allows four support functions that are optional, such as for supporting

ordered scans, or to allow the index to contain a different type than the data type on

which it is build. An index built on the GiST interface may be lossy, meaning that such

an index might produce false matches; in that case, records fetched by the index need

to have the index predicate rechecked, and some of the fetched records may fail the

predicate.

PostgreSQL provides several index methods implemented using GiST such as

indices for multidimensional cubes, and for storing key-value pairs. The original

PostgreSQL implementation of R-trees was replaced by GiST operator classes which

allowed R-trees to take advantage of the write-ahead logging and concurrency capabili-

ties provided by the GiST index. The original R-tree implementation did not have these

features, illustrating the benefits of using the GiST index template to implement specific

indices.

Space-partitioned GiST (SP-GiST): Space-partitioned GiST indices leverage balanced

search trees to facilitate disk-based implementations of a wide range of non-balanced

data structures, such as quad-trees, k-d trees, and radix trees (tries). These data struc-

tures are designed for in-memory usage, with small node sizes and long paths in the tree,

and thus cannot directly be used to implement disk-based indices. SP-GiST maps search

tree nodes to disk pages in such a way that a search requires accessing only a few disk

pages, even if it traverses a larger number of tree nodes. Thus, SP-GiST permits the effi-

cient disk-based implementation of index structures originally designed for in-memory

use. Similar to GiST, SP-GiST provides an interface with a high level of abstraction that

allows the development of custom indices by providing appropriate access methods.

Generalized Inverted Index (GIN): The GIN index is designed for speeding up queries

on multi-valued elements, such as text documents, JSON structures and arrays. A GIN

stores a set of (key, posting list) pairs, where a posting list is a set of row IDs in which

the key occurs. The same row ID might appear in multiple posting lists. Queries can

specify multiple keys, for example with keys as words, GIN can be used to implement

keyword indices.

GIN, like GiST, provides extensibility by allowing an index implementor to specify

custom “strategies” for specific data types; the strategies specify, for example, how keys

are extracted from indexed items and from query conditions, and how to determine

whether a row that contains some of the key values in a query actually satisfies the

query.

32.3 Storage and Indexing 9

During query execution, GIN efficiently identifies index keys that overlap the search

key, and computes a bitmap indicating which searched-for elements are members of the

index key. To do so, GIN uses support function that extract members from a set, sup-

port functions that compare individual members. Another support function decides

if the search predicate is satisfied, based on the bitmap and the original predicate. If

the search predicate cannot be resolved without the full indexed attribute, the deci-

sion function must report a possible match and the predicate must be rechecked after

retrieving the data item.

Each key is stored only once in a GIN, making GIN suitable for situations where

many indexed items contain each key. However, updates are slower on GIN making

them better for querying relatively static data, while GiST indices are preferred for work-

loads with frequent updates.

Block Range Index (BRIN): BRIN indices are designed for indexing such very large

datasets that are naturally clustered on some specific attribute(s), with timestamps be-

ing a natural example. Many modern applications generate datasets with such charac-

teristics. For example, an application collecting sensor measurements like temperature

or humidity might have a timestamp column based on the time when each measure-

ment was collected. In most cases, tuples for older measurements will appear earlier in

the table storing the data. BRIN indices can speed up lookups and analytical queries

with aggregates while requiring significantly less storage space than a typical B-tree

index.

BRIN indices store some summary information for a group of pages that are physi-

cally adjacent in a table (block range). The summary data that a BRIN index will store

depends on the operator class selected for each column of the index. For example, data

types having a linear sort order can have operator classes that store the minimum and

maximum value within each block range.

A BRIN index exploits the summary information stored for each block range to

return tuples from only within the qualifying block ranges based on the query condi-

tions. For example, in case of a table with a BRIN index on a timestamp, if the table is

filtered by the timestamp, the BRIN is scanned to identify the block ranges that might

have qualifying values and a list of block ranges is returned. The decision of whether

a block range is to be selected or not is based on the summary information that the

BRIN maintains for the given block range, such as the min and max value for times-

tamps. The selected block ranges might have false matches, that is the block range may

contain items that do not satisfy the query condition. Therefore, the query executor

re-evaluates the predicates on tuples in the selected block ranges and discards tuples

that do not satisfy the predicate.

A BRIN index is typically very small, and scanning the index thus adds a very small

overhead compared to a sequential scan, but may help in avoiding scanning large parts

of a table that are found to not contain any matching tuples. The size of a BRIN index is

determined by the size of the relation divided by the size of the block range. The smaller

the block range, the larger the index, but at the same time the summary data stored can

10 Chapter 32 PostgreSQL

be more precise, and thus more data blocks can potentially be skipped during an index

scan.

32.3.2.2 Other Index Variations

For some of the index types described above, PostgreSQL supports more complex vari-

ations such as:

• Multicolumn indices: These are useful for conjuncts of predicates over multiple

columns of a table. Multicolumn indices are supported for B-tree, GiST, GIN, and

BRIN indices, and up to 32 columns can be specified in the index.

• Unique indices: Unique and primary-key constraints can be enforced by using

unique indices in PostgreSQL. Only B-tree indices may be defined as being unique.

PostgreSQL automatically creates a unique index when a unique constraint or pri-

mary key is defined for a table.

• Covering indices: A covering index is an index that includes additional attributes

that are not part of the search key (as described earlier in Section 14.6). Such

extra attributes can be added to allow a frequently used query to be answered

using only the index, without accessing the underlying relation. Plans that use

an index without accessing the underlying relation are called index-only plans, the

implementation of index-only plans in PostgreSQL is described in Section 32.3.2.4.

PostgreSQL uses the include clause to specify the extra attributes to be included in

the index. A covering index can enhance query performance; however, the index

build time increases since more data should be written and the index size becomes

larger since the non-search attributes are duplicating data from the original table.

Currently, only B-tree indices support covering indices.

• Indices on expressions: In PostgreSQL, it is possible to create indices on arbitrary

scalar expressions of columns, and not just specific columns, of a table. An exam-

ple is to support case-insensitive comparisons by defining an index on the expres-

sion lower(column). A query with the predicate lower(column) = 'value' cannot

be efficiently evaluated using a regular B-tree index since matching records may

appear at multiple locations in the index; on the other hand, an index on the ex-

pression lower(column) can be used to efficiently evaluate the query since all such

records would map to the same index key.

Indices on expressions have a higher maintenance cost (i.e., insert and update

speed) but they can be useful when retrieval speed is more important.

• Operator classes: The specific comparison functions used to build, maintain, and

use an index on a column are tied to the data type of that column. Each data type

has associated with it a default operator class that identifies the actual operators

that would normally be used for the data type. While the default operator class

is sufficient for most uses, some data types might possess multiple “meaningful”

32.3 Storage and Indexing 11

classes. For instance, in dealing with complex numbers, it might be desirable to

sort a complex-number data type either by absolute value or by real part. In this

case, two operator classes can be defined for the data type, and one of the operator

classes can be chosen when creating the index.

• Partial indices: These are indices built over a subset of a table defined by a predi-

cate. The index contains only entries for tuples that satisfy the predicate. An exam-

ple of the use of a partial indices would be a case where a column contains a large

number of occurrences of some of values. Such common values are not worth in-

dexing, since index scans are not beneficial for queries that retrieve a large subset

of the base table. A partial index can be built using a predicate that excludes the

common values. Such an index would be smaller and would incur less storage and

I/O cost than a full index. Such partial indices are also less expensive to maintain,

since a large fraction of inserts and deletes will not affect the the index.

32.3.2.3 Index Construction

An index can be created using the create index command. For example, the following

DDL statement creates a B-tree index on instructor salaries.

create index inst sal idx on instructor (salary);

This statement is executed by scanning the instructor relation to find row versions that

might be visible to a future transaction, then sorting their index attributes and building

the index structure. During this process, the building transaction holds a lock on the

instructor relation that prevents concurrent insert, delete, and update statements. Once

the process is finished, the index is ready to use and the table lock is released.

The lock acquired by the create index command may present a major inconve-

nience for some applications where it is difficult to suspend updates while the index is

built. For these cases, PostgreSQL provides the create index concurrently variant, which

allows concurrent updates during index construction. This is achieved by a more com-

plex construction algorithm that scans the base table twice. The first table scan builds

an initial version of the index, in a way similar to normal index construction described

above. This index may be missing tuples if the table was concurrently updated; how-

ever, the index is well formed, so it is flagged as being ready for insertions. Finally, the

algorithm scans the table a second time and inserts all tuples it finds that still need to

be indexed. This scan may also miss concurrently updated tuples, but the algorithm

synchronizes with other transactions to guarantee that tuples that are updated during

the second scan will be added to the index by the updating transaction. Hence, the

index is ready to use after the second table scan. Since this two-pass approach can be

expensive, the plain create index command is preferred if it is easy to suspend table

updates temporarily.

12 Chapter 32 PostgreSQL

32.3.2.4 Index-Only Scans

An index-only scan allows for processing a query using only an index, without access

the table records. Traditionally, indices in PostgreSQL are secondary indices, meaning

that each index is stored separately from the table’s main data (heap). In the normal

index scan scenario, PostgreSQL initially uses the index to locate qualifying tuples and

then accesses the heap to retrieve the tuples. Accessing the heap via an index scan might

result in a large number of random accesses, since the tuples to be accessed might be

anywhere in the heap; index scans can potentially have a high query execution time

if a large number of records are retrieved. In contrast, an index-only scan can allow

the query to be executed without fetching the tuples, provided the query accesses only

index attributes. This can significantly decrease the number I/O operations required,

and improve performance correspondingly.

To apply an index-only scan plan during query execution, the query must reference

only attributes already stored in the index and the index should support index-only

scans. As of PostgreSQL 11, index-only scans are supported with B-trees and some op-

erator classes of GiST and SP-GiST indices. In practice, the index must physically store,

or else be able to reconstruct, the original data value for each index entry. Thus, for

example, a GIN index cannot support index-only scan since each index entry typically

holds only part of the original data value.

In PostgreSQL, using an index-only scan plan does not guarantee that no heap

pages will be accessed, due to the presence of multiple tuple versions in PostgreSQL; an

index may contain entries for tuple versions that should not be visible to the transaction

performing the scan. To check if the tuple is visible, PostgreSQL normally performs a

heap page access, to find timestamp information for the tuple. However, PostgreSQL

provides a clever optimization that can avoid heap page access in many cases. For each

heap relation PostgreSQL maintains a visibility map. The visibility map tracks the pages

that contain only tuples that are visible to all active transactions and therefore they do

not contain any tuples that need to be vacuumed. Visibility information is stored only

in heap entries and not in index entries. As a result, accessing a tuple using an index-

only scan will require a heap access if the tuple has been recently modified. Otherwise

the heap access can be avoided by checking the visibility map bit for the corresponding

heap page. If the bit is set, the tuple is visible to all transactions, and so the data can

be returned from the index. On the other hand, if the bit is not set, the heap will be

accessed and the performance for this retrieval will be similar to a traditional index

access.

The visibility map bit is set during vacuum, and reset whenever a tuple in the heap

page is updated. Overall, the more the heap pages that have their all-visible map bits

set the higher the performance benefit from an index-only scan. The visibility map is

much smaller than the heap file since it requires only two bits per page; thus, very little

I/O is required to access it.

In PostgreSQL index-only scans can also be performed on covering indices, which

can store attributes other than the index key. Index-only scans on the covering index can

32.3 Storage and Indexing 13

allow efficient sequential access to tuples in the key order, avoiding expensive random

access that would be otherwise required by a secondary-index based access. An index-

only scan can be used provided all attributes required by the query are contained in the

index key or in the covering attributes.

32.3.3 Partitioning

Table partitioning in PostgreSQL allows a table to be split into smaller physical pieces,

based on the value of partitioning attributes. Partitioning can be quite beneficial in cer-

tain scenarios; for example, it can improve query performance when the query includes

predicates on the partitioning attributes, and the matching tuples are in a single parti-

tion or a small number of partitions. Table partitioning can also reduce the overhead

of bulk loading and deletion in some cases by adding or removing partitions without

modifying existing partitions. Partitioning can also make maintenance operations such

as VACUUM and REINDEX faster. Further, indices on the partitions are smaller than

a index on the whole table, thus it is more likely to fit into memory. Partitioning a rela-

tion is a good idea as long as most queries that access the relation include predicates

on the partitioning attributes. Otherwise, the overhead of accessing multiple partitions

can slow down query processing to some extent.

As of version 11, PostgreSQL comes with three types of partitioning tables:

1. Range Partitioning: The table is partitioned into ranges (e.g., date ranges) defined

by a key column or set of columns. The range of values in each partition is as-

signed based on some partitioning expression. The ranges should be contiguous

and non-overlapping.

2. List Partitioning: The table is partitioned by explicitly listing the set of discrete

values that should appear in each partition.

3. Hash Partitioning: The tuples are distributed across different partitions according

to a hash partition key. Hash partitioning is ideal for scenarios in which there is

no natural partitioning key or details about data distribution.

Partitioning in PostgreSQL can be implemented manually using table inheritance.

However, a simpler way of implementing partitioning is through the declarative parti-

tioning feature of PostgreSQL. Declarative partitioning allows a user to create a parti-

tioned table by specifying the partitioning type and the list of columns or expressions

to be used as the partition key. For example, consider the takes relation; a clause

partition by range(year)

can be added at the end of the create table specification for the takes relation to specify

that the relation should be partitioned by the year attribute.

Then, one or more partitions must be created, with each partition specifying the

bounds that correspond to the partitioning method and partition key of the parent, as

illustrated below:

14 Chapter 32 PostgreSQL

create table takes till 2017 partition of takes for values from (1900) to (2017);

create table takes 2017 partition of takes for values from (2017) to (2018);

create table takes 2018 partition of takes for values from (2018) to (2019);

create table takes 2019 partition of takes for values from (2019) to (2020);

create table takes from 2020 partition of takes for values from (2020) to (2100);

New tuples are routed to the proper partitions according to the selected partition key.

Partition key ranges must not overlap, and there must be a partition defined for each

valid key value. The query planner of PostgreSQL can exploit the partitioning informa-

tion to eliminate unnecessary partition accesses during query processing.

Each partition as above is a normal PostgreSQL table, and it is possible to specify

a tablespace and storage parameters for each partition separately. Partitions may have

their own indexes, constraints and default values, distinct from those of other partitions

of the same table. However, there is no support for foreign keys referencing partitioned

tables, or for exclusion constraints3 spanning all partitions.

Turning a table into a partitioned table or vice versa is not supported; however,

it is possible to add a regular or partitioned table containing data as a partition of a

partitioned table, or remove a partition from a partitioned table turning it into a stand-

alone table.

32.4 Query Processing and Optimization

When PostgreSQL receives a query, the query is first parsed into an internal represen-

tation, which goes through a series of transformations, resulting in a query plan that is

used by the executor to process the query.

32.4.1 Query Rewrite

The first stage of a query’s transformation is the rewrite stage, which is responsible

for implementing the PostgreSQL rules system. In PostgreSQL, users can create rules

that are fired on different query structures such as update, delete, insert, and select

statements. A view is implemented by the system by converting a view definition into a

select rule. When a query involving a select statement on the view is received, the select

rule for the view is fired, and the query is rewritten using the definition of the view.

A rule is registered in the system using the create rule command, at which point

information on the rule is stored in the catalog. This catalog is then used during query

rewrite to uncover all candidate rules for a given query.

3Exclusion constraints in PostgreSQL allow a constraint on each row that can involve other rows; for example, such a

constraint can specify that there is no other row with the same key value, or there is no other row with an overlap-

ping range. Efficient implementation of exclusion constraints requires the availability of appropriate indices. See the

PostgreSQL manuals for more details.

32.4 Query Processing and Optimization 15

The rewrite phase first deals with all update, delete, and insert statements by firing

all appropriate rules. Such statements might be complicated and contain select clauses.

Subsequently, all the remaining rules involving only select statements are fired. Since

the firing of a rule may cause the query to be rewritten to a form that may require

another rule to be fired, the rules are repeatedly checked on each form of the rewritten

query until a fixed point is reached and no more rules need to be fired.

32.4.2 Query Planning and Optimization

Once the query has been rewritten, it is subject to the planning and optimization phase.

Here, each query block is treated in isolation and a plan is generated for it. This plan-

ning begins bottom-up from the rewritten query’s innermost subquery, proceeding to

its outermost query block.

The optimizer in PostgreSQL is, for the most part, cost based. The idea is to gen-

erate an access plan whose estimated cost is minimal. The cost model includes as pa-

rameters the I/O cost of sequential and random page fetches, as well as the CPU costs

of processing heap tuples, index tuples, and simple predicates.

Optimization of a query can be done using one of two approaches:

• Standard planner: The standard planner uses the the bottom-up dynamic program-

ming algorithm for join order optimization, which we saw earlier in Section 16.4.1,

which is often referred to as the System R optimization algorithm.

• Genetic query optimizer: When the number of tables in a query block is very

large, System R’s dynamic programming algorithm becomes very expensive. Un-

like other commercial systems that default to greedy or rule-based techniques,

PostgreSQL uses a more radical approach: a genetic algorithm that was developed

initially to solve traveling-salesman problems. There exists anecdotal evidence of

the successful use of genetic query optimization in production systems for queries

with around 45 tables.

Since the planner operates in a bottom-up fashion on query blocks, it is able to per-

form certain transformations on the query plan as it is being built. One example is the

common subquery-to-join transformation that is present in many commercial systems

(usually implemented in the rewrite phase). When PostgreSQL encounters a noncorre-

lated subquery (such as one caused by a query on a view), it is generally possible to pull

up the planned subquery and merge it into the upper-level query block. PostgreSQL is

able to decorrelate many classes of correlated subqueries, but there are other classes

of queries that it is not able to decorrelate. (Decorrelation is described in more detail

in Section 16.4.4.)

The query optimization phase results in a query plan, which is a tree of relational

operators. Each operator represents a specific operation on one or more sets of tu-

ples. The operators can be unary (for example, sort, aggregation), binary (for example,

nested-loop join), or n-ary (for example, set union).

16 Chapter 32 PostgreSQL

Crucial to the cost model is an accurate estimate of the total number of tuples

that will be processed at each operator in the plan. These estimates are inferred by the

optimizer on the basis of statistics that are maintained on each relation in the system.

These statistics include the total number of tuples for each relation and average tuple

size. PostgreSQL also maintains statistics about each column of a relation, such as the

column cardinality (that is, the number of distinct values in the column), a list of most

common values in the table and the number of occurrences of each common value,

and a histogram that divides the column’s values into groups of equal population. In

addition, PostgreSQL also maintains a statistical correlation between the physical and

logical row orderings of a column’s values—this indicates the cost of an index scan to

retrieve tuples that pass predicates on the column. The DBA must ensure that these

statistics are current by running the analyze command periodically.

32.4.3 Query Executor

The executor module is responsible for processing a query plan produced by the opti-

mizer. The executor is based on the demand-driven pipeline model (described in Sec-

tion 15.7.2.1), where each operator implements the iterator interface with a set of four

functions: open(), next(), rescan(), and close()). PostgreSQL iterators have an extra

function, rescan(), which is used to reset a subplan (say for an inner loop of a join)

with new values for parameters such as index keys. Some of the important categories

of operators are as follows:

1. Access methods: Access methods are operators that are used to retrieve data from

disk, and include sequential scans of heap files, index scans, and bitmap index

scans.

• Sequential scans: The tuples of a relation are scanned sequentially from the

first to last blocks of the file. Each tuple is returned to the caller only if it is

“visible” according to the transaction isolation rules (Section 32.5.1.1).

• Index scans: Given a search condition such as a range or equality predicate,

an index scan returns a set of matching tuples from the associated heap file.

In a typical case, the operator processes one tuple at a time, starting by read-

ing an entry from the index and then fetching the corresponding tuple from

the heap file. This can result in a random page fetch for each tuple in the

worst case. The cost of accessing the heap file can be alleviated if an index-

only scan is used that allows for retrieving data directly from the index (see

Section 32.3.2.4 for more details).

• Bitmap index scans: A bitmap index scan reduces the danger of excessive

random page fetches in index scans. To do so, processing of tuples is done

in two phases.

32.4 Query Processing and Optimization 17

a. The first phase reads all index entries and populates a bitmap that con-

tains one bit per heap page; the tuple ID retrieved from the index scan is

used to set the bit of the corresponding page.

b. The second phase fetches heap pages whose bit is set, scanning the

bitmap in sequential order. This guarantees that each heap page is ac-

cessed only once, and increases the chance of sequential page fetches.

Once a heap page is fetched, the index predicate is rechecked on all the

tuples in the page, since a page whose bit is set may well contain tuples

that do not satisfy the index predicate.

Moreover, bitmaps from multiple indexes can be merged and intersected to

evaluate complex Boolean predicates before accessing the heap.

2. Join methods: PostgreSQL supports three join methods: sorted merge joins,

nested-loop joins (including index-nested loop variants for accessing the inner

relation using an index), and a hybrid hash join.

3. Sort: Small relations are sorted in-memory using quicksort, while larger are

sorted using an external sort algorithm. Initially, the input tuples are stored in

an unsorted array as long as there is available working memory for the sort op-

eration. If all the tuples fit in memory, the array is sorted using quicksort, and

the sorted tuples can be accessed by sequentially scanning the array. Otherwise,

the input is divided into sorted runs by using replacement selection; replacement

selection uses a priority tree implemented as a heap, and can generate sorted

runs that are bigger than the available memory. The sorted runs are stored in

temporary files and then merged using a polyphase merge.

4. Aggregation: Grouped aggregation in PostgreSQL can be either sort-based or

hash-based. When the estimated number of distinct groups is very large, the for-

mer is used; otherwise, an in-memory hash-based approach is preferred.

32.4.4 Parallel Query Support

PostgreSQL can generate parallel query plans4 to leverage multiple CPUs/cores, which

can significantly improve query execution performance. Nevertheless, not all queries

can benefit from parallel plans, either due to implementation limitations or because the

serial query plan is still a better option. The optimizer is responsible for determining

whether a parallel plan is the faster execution strategy or not. As of PostgreSQL version

11, only read-only queries can exploit parallel plans. A parallel query plan will not

be generated if the query might be suspended during processing (e.g., a PL/pgSQL

loop of the form for target in query loop .. end loop), if the query uses any function

marked as parallel unsafe, if the query runs in another parallel query. Further, as of

4See https://www.postgresql.org/docs/current/parallel-query.html.

https://www.postgresql.org/docs/current/parallel-query.html

18 Chapter 32 PostgreSQL

PostgreSQL 11, parallel query plans will not be used if the transaction isolation level is

set to serializable, although this may be fixed in future versions.

When a parallel query operator is used, the master backend process coordinates

the parallel execution. It is responsible for spawning the required number of workers,

executing the non-parallel activity while contributing to parallel execution as one of the

workers. The planner determines the number of the background workers that will be

used to process the child plan of the Gather node.

A parallel query plan includes a Gather or Gather Merge node which has exactly

one child plan. This child plan is the part of the plan that will be executed in parallel.

If the root node is Gather or Gather Merge, then the whole query can be executed in

parallel. The master backend executes the Gather or Gather Merge node. The Gather

node is responsible for retrieving the tuples generated by the background workers. A

Gather Merge node is used when the parallel part of the plan produces tuples in sorted

order. The background workers and the master backend process communicate through

the shared memory area.

PostgreSQL has parallel-aware flavors for the basic query operations. It supports

three types of parallel scans; namely, parallel sequential scan, parallel bitmap heap scan

and parallel index/index-only scan (only for B-tree indexes). PostgreSQL also supports

parallel versions of nested loop, hash and merge joins. In a join operation, at least

one of the tables is scanned by multiple background workers. Each background worker

additionally scans the inner table of the join and then forwards the computed tuples to

the master backend coordinator process. For nested-loop join and merge join the inner

side of the join is always non-parallel.

PostgreSQL can also generate parallel plans for aggregation operations. In this case,

the aggregation happens in two steps: (a) each background worker produces a partial

result for a subset of the data, and (b) the partial results are collected to the master

backend process which computes the final result using the partial results generated by

the workers.

32.4.5 Triggers and Constraints

In PostgreSQL (unlike some commercial systems) active-database features such as trig-

gers and constraints are not implemented in the rewrite phase. Instead they are imple-

mented as part of the query executor. When the triggers and constraints are registered

by the user, the details are associated with the catalog information for each appropriate

relation and index. The executor processes an update, delete, and insert statement by

repeatedly generating tuple changes for a relation. For each row modification, the ex-

ecutor explicitly identifies, fires, and enforces candidate triggers and constraints, before

or after the change as required.

32.4.6 Just-in-Time (JIT) Compilation

The Just-in-Time compilation (JIT) functionality was introduced in PostgreSQL version

11. The physical data independence abstraction supported by relational databases pro-

32.5 Transaction Management in PostgreSQL 19

vides significant flexibility by hiding many low-level details. However, that flexibility

can incur a performance hit due to the interpretation overhead (e.g., function calls, un-

predictable branches, high number of instructions). For example, computing the qual-

ifying tuples for any arbitrary SQL expression requires evaluating predicates that can

use any of the supported SQL datatypes (e.g.,integer,double); the predicate evaluation

function must be able to handle all these data types, and also handle sub-expressions

containing other operators. The evaluation function is, in effect, an interpreter that

processes the execution plan. With JIT compilation, a generic interpreted program can

be compiled at query execution time into a native-code program that is tailored for the

specific data types used in a particular expression. The resultant compiled code can

execute significantly faster than the original interpreted function.

As of PostgreSQL 11, PostgreSQL exploits JIT compilation to accelerate expression

evaluation and tuple deforming (which is explained shortly). Those operations were

chosen because they are executed very frequently (per tuple) and therefore have a high

cost for analytics queries that process large amounts of data. PostgreSQL accelerates

expression evaluation (i.e., the code path used to evaluate WHERE clause predicates,

expressions in target lists, aggregates and projections) by generating tailored code to

each case, depending on the data types of the attributes. Tuple deforming is the process

of transforming an on-disk tuple into its in-memory representation. JIT compilation

in PostgreSQL creates a transformation function specific to the table layout and the

columns to be extracted. JIT compilation may be added for other operations in future

releases.

JIT compilation is primarily beneficial for long-running CPU-bound queries. For

short-running queries the overhead of performing JIT compilation and optimizations

can be higher than the savings in execution time. PostgreSQL selects whether JIT opti-

mizations will be applied during planning, based on whether the estimated query cost

is above some threshold.

PostgreSQL uses LLVM to perform JIT compilation; LLVM allows systems to gen-

erate a device independent assembly language code, which is then optimized and com-

piled to machine code specific to the hardware platform. As of PostgreSQL 11, JIT

compilation support is not enabled by default, and is used only when PostgreSQL is

built using the –with-llvm option. The LLVM dependent code is loaded on-demand

from a shared library.

32.5 Transaction Management in PostgreSQL

Transaction management in PostgreSQL uses both snapshot isolation (described ear-

lier in Section 18.8), and two-phase locking. Which one of the two protocols is used

depends on the type of statement being executed. For DML statements the snapshot

isolation technique is used; the snapshot isolation scheme is referred to as the multi-

version concurrency control (MVCC) scheme in PostgreSQL. Concurrency control for

DDL statements, on the other hand, is based on standard two-phase locking.

20 Chapter 32 PostgreSQL

32.5.1 Concurrency Control

Since the concurrency control protocol used by PostgreSQL depends on the isolation

level requested by the application, we begin with an overview of the isolation levels

offered by PostgreSQL. We then describe the key ideas behind the MVCC scheme,

followed by a discussion of their implementation in PostgreSQL and some of the im-

plications of MVCC. We conclude this section with an overview of locking for DDL

statements and a discussion of concurrency control for indices.

32.5.1.1 Isolation Levels

The SQL standard defines three weak levels of consistency, in addition to the serializ-

able level of consistency. The purpose of providing the weak consistency levels is to

allow a higher degree of concurrency for applications that do not require the strong

guarantees that serializability provides. Examples of such applications include long-

running transactions that collect statistics over the database and whose results do not

need to be precise.

The SQL standard defines the different isolation levels in terms of phenomena

that violate serializability. The phenomena are called dirty read, nonrepeatable read,

phantom read, and serialization anomaly and are defined as follows:

• Dirty read. The transaction reads values written by another transaction that has

not committed yet.

• Nonrepeatable read. A transaction reads the same object twice during execution

and finds a different value the second time, although the transaction has not

changed the value in the meantime.

• Phantom read. A transaction re-executes a query returning a set of rows that sat-

isfy a search condition and finds that the set of rows satisfying the condition has

changed as a result of another recently committed transaction.

• Serialization anomaly. A successfully committed group of transactions is inconsis-

tent with all possible orderings of running those transactions one at a time.

Each of the above phenomena violates transaction isolation, and hence violates serial-

izability. Figure 32.3 shows the definition of the four SQL isolation levels specified in

the SQL standard—read uncommitted, read committed, repeatable read, and serializ-

able—in terms of these phenomena. In PostgreSQL the user can select any of the four

transaction isolation levels (using the command set transaction); however, PostgreSQL

implements only three distinct isolation levels. A request to set transaction isolation

level to read uncommitted is treated the same as a request to set the isolation level to

read committed. The default isolation level is read committed.

32.5 Transaction Management in PostgreSQL 21

Isolated level Dirty Read Non repeatable Read Phantom Read

Read Uncommitted Maybe Maybe Maybe

Read Committed No Maybe Maybe

Repeated Read No No Maybe

Serializable No No No

Figure 32.3 Definition of the four standard SQL isolation levels.

32.5.1.2 Concurrency Control for DML Commands

The MVCC scheme used in PostgreSQL is an implementation of the snapshot isolation

protocol, which was described earlier in Section 18.8. The key idea behind MVCC is

to maintain different versions of each row that correspond to instances of the row at

different points in time. This allows a transaction to see a consistent snapshot of the

data, by selecting the most recent version of each row that was committed before tak-

ing the snapshot. The MVCC protocol uses snapshots to ensure that every transaction

sees a consistent view of the database: before executing a command, the transaction

chooses a snapshot of the data and processes the row versions that are either in the

snapshot or created by earlier commands of the same transaction. This view of the data

is transaction-consistent, since the snapshot includes only committed transactions, but

the snapshot is not necessarily equal to the current state of the data.

The motivation for using MVCC is that, unlike with locking, readers never block

writers, and writers never block readers. Readers access the version of a row that is

part of the transaction’s snapshot. Writers create their own separate copy of the row

to be updated. Section 32.5.1.3 shows that the only conflict that causes a transaction

to be blocked arises if two writers try to update the same row. In contrast, under the

standard two-phase locking approach, both readers and writers might be blocked, since

there is only one version of each data object and both read and write operations are

required to obtain a lock before accessing any data.

The basic snapshot isolation protocol has several benefits over locking, but un-

fortunately does not guarantee serializability, as we saw earlier in Section 18.8.3. The

Serializable Snapshot Isolation (SSI), which provides the benefits of snapshot isola-

tion, while also guaranteeing serializability, was introduced in PostgreSQL 9.1. The key

ideas behind SSI are summarized in Section 18.8.3, and more details may be found in

the references in bibliographic notes at the end of the chapter.

SSI retains many of the performance benefits of snapshot isolation and at the

same time guarantees true serializability. SSI runs transactions using snapshot isola-

tion, checks for conflicts between concurrent transactions at runtime, and aborts trans-

actions when anomalies might happen.

32.5.1.3 Implementation of MVCC

At the core of PostgreSQL MVCC is the notion of tuple visibility. A PostgreSQL tuple

refers to a version of a row. Tuple visibility defines which of the potentially many ver-

22 Chapter 32 PostgreSQL

Database table

department(dept_name, building, budget)forward xmin xmax

... ...

...

...

100

102

106

...

...

...

100

102

104

...

...

106

...

...

...

10

10

00

...

...

00

...

...

...

102

106

x

Transaction 104
 select budget

from department
where dept_name = ‘Physics’ 00 In progress

01 Aborted
10 Committed

Watson

Watson

Watson

70000

64000

68000

.....

.....

Physics

Physics

Physics

.....

 pg_xact file

Status �agsXID

Figure 32.4 The PostgreSQL data structures used for MVCC.

sions of a row in a table is valid within the context of a given statement or transaction.

A transaction determines tuple visibility based on a database snapshot that is chosen

before executing a command.

A tuple is visible for a transaction T if the following two conditions hold:

1. The tuple was created by a transaction that committed before transaction T took

its snapshot.

2. Updates to the tuple (if any) were executed by a transaction that is either

• aborted, or

• started running after T took its snapshot, or

• was active when T took its snapshot.

To be precise, a tuple is also visible to T if it was created by T and not subsequently

updated by T . We omit the details of this special case for simplicity.

The goal of the above conditions is to ensure that each transaction sees a consistent

view of the data. PostgreSQL maintains the following state information to check these

conditions efficiently:

• A transaction ID, which serves as a start timestamp, is assigned to every trans-

action at transaction start time. PostgreSQL uses a logical counter for assigning

transaction IDs.

• A log file called pg xact contains the current status of each transaction. The status

can be either in progress, committed, or aborted.

32.5 Transaction Management in PostgreSQL 23

dept name building budget

Biology Watson 90000

Comp. Sci. Taylor 100000

Elec. Eng. Taylor 85000

Finance Painter 120000

History Painter 50000

Music Packard 80000

Physics Watson 70000

Figure 32.5 The department relation.

• Each tuple in a table has a header with three fields: xmin, which contains the

transaction ID of the transaction that created the tuple and which is therefore also

called the creation-transaction ID; xmax, which contains the transaction ID of the

replacing/deleting transaction (or null if not deleted/replaced) and which is also

referred to as the expire-transaction ID; and a forward link to new versions of the

same logical row, if there are any.

• A SnapshotData data structure is created either at transaction start time or at query

start time, depending on the isolation level (described in more detail below). Its

main purpose is to decide whether a tuple is visible to the current command. The

SnapshotData stores information about the state of transactions at the time it is

created, which includes a list of active transactions and xmax, a value equal to 1

+ the highest ID of any transaction that has started so far. The value xmax serves

as a “cutoff” for transactions that may be considered visible.

Figure 32.4 illustrates some of this state information through a simple example

involving a database with only one table, the department table from Figure 32.5. The

department table has three columns, the name of the department, the building where the

department is located, and the budget of the department. Figure 32.4 shows a fragment

of the department table containing only the (versions of) the row corresponding to the

Physics department. The tuple headers indicate that the row was originally created by

transaction 100, and later updated by transaction 102 and transaction 106. Figure 32.4

also shows a fragment of the corresponding pg xact file. On the basis of the pg xact

file, transactions 100 and 102 are committed, while transactions 104 and 106 are in

progress.

Given the above state information, the two conditions that need to be satisfied for

a tuple to be visible can be rewritten as follows:

1. The creation-transaction ID in the tuple header

a. is a committed transaction according to the pg xact file, and

24 Chapter 32 PostgreSQL

b. is less than the cutoff transaction ID xmax recorded by SnapshotData, and

c. is not one of the active transactions stored in SnapshotData.

2. The expire-transaction ID, if it exists,

a. is an aborted transaction according to the pg xact file, or

b. is greater than or equal to the cutoff transaction ID xmax recorded by Snap-

shotData, or

c. is one of the active transactions stored in SnapshotData.

Consider the example database in Figure 32.4 and assume that the SnapshotData

used by transaction 104 simply uses 103 as the cutoff transaction ID xmax and does

not show any earlier transactions to be active. In this case, the only version of the row

corresponding to the Physics department that is visible to transaction 104 is the second

version in the table, created by transaction 102. The first version, created by transaction

100, is not visible, since it violates condition 2: The expire-transaction ID of this tuple is

102, which corresponds to a transaction that is not aborted and that has a transaction

ID less than or equal to 103. The third version of the Physics tuple is not visible, since

it was created by transaction 106, which has a transaction ID larger than transaction

103, implying that this version had not been committed at the time SnapshotData was

created. Moreover, transaction 106 is still in progress, which violates another one of the

conditions. The second version of the row meets all the conditions for tuple visibility.

The details of how PostgreSQL MVCC interacts with the execution of SQL state-

ments depends on whether the statement is an insert, select, update, or delete statement.

The simplest case is an insert statement, which may simply create a new tuple based

on the data in the statement, initialize the tuple header (the creation ID), and insert

the new tuple into the table. Unlike two-phase locking, this does not require any inter-

action with the concurrency-control protocol unless the insertion needs to be checked

for integrity conditions, such as uniqueness or foreign key constraints.

When the system executes a select, update, or delete statement the interaction with

the MVCC protocol depends on the isolation level specified by the application. If the

isolation level is read committed, the processing of a new statement begins with creating

a new SnapshotData data structure (independent of whether the statement starts a new

transaction or is part of an existing transaction). Next, the system identifies target tuples,

that is, the tuples that are visible with respect to the SnapshotData and that match the

search criteria of the statement. In the case of a select statement, the set of target tuples

make up the result of the query.

In the case of an update or delete statement in read committed mode, the snapshot

isolation protocol used by PostgreSQL requires an extra step after identifying the target

tuples and before the actual update or delete operation can take place. The reason is

that visibility of a tuple ensures only that the tuple has been created by a transaction that

committed before the update/delete statement in question started. However, it is possi-

32.5 Transaction Management in PostgreSQL 25

ble that, since query start, this tuple has been updated or deleted by another concur-

rently executing transaction. This can be detected by looking at the expire-transaction

ID of the tuple. If the expire-transaction ID corresponds to a transaction that is still

in progress, it is necessary to wait for the completion of this transaction first. If the

transaction aborts, the update or delete statement can proceed and perform the actual

modification. If the transaction commits, the search criteria of the statement need to

be evaluated again, and only if the tuple still meets these criteria can the row be mod-

ified. If the row is to be deleted, the main step is to update the expire-transaction ID

of the old tuple. A row update also performs this step, and additionally creates a new

version of the row, sets its creation-transaction ID, and sets the forward link of the old

tuple to reference the new tuple.

Going back to the example from Figure 32.4, transaction 104, which consists of a

select statement only, identifies the second version of the Physics row as a target tuple

and returns it immediately. If transaction 104 were an update statement instead, for

example, trying to increment the budget of the Physics department by some amount, it

would have to wait for transaction 106 to complete. It would then re-evaluate the search

condition and, only if it is still met, proceed with its update.

Using the protocol described above for update and delete statements provides only

the read-committed isolation level. Serializability can be violated in several ways. First,

nonrepeatable reads are possible. Since each query within a transaction may see a

different snapshot of the database, a query in a transaction might see the effects of an

update command completed in the meantime that were not visible to earlier queries

within the same transaction. Following the same line of thought, phantom reads are

possible when a relation is modified between queries.

In order to provide the PostgreSQL serializable isolation level, PostgreSQL MVCC

eliminates violations of serializability in two ways: First, when it is determining tuple

visibility, all queries within a transaction use a snapshot as of the start of the transac-

tion, rather than the start of the individual query. This way successive queries within a

transaction always see the same data.

Second, the way updates and deletes are processed is different in serializable mode

compared to read-committed mode. As in read-committed mode, transactions wait af-

ter identifying a visible target row that meets the search condition and is currently

updated or deleted by another concurrent transaction. If the concurrent transaction

that executes the update or delete aborts, the waiting transaction can proceed with

its own update. However, if the concurrent transaction commits, there is no way for

PostgreSQL to ensure serializability for the waiting transaction. Therefore, the waiting

transaction is rolled back and returns the following error message: “could not serialize

access due to read/write dependencies among transactions“. It is up to the applica-

tion to handle an error message like the above appropriately, by aborting the current

transaction and restarting the entire transaction from the beginning.

Further, to ensure serializability, the serializable snapshot-isolation technique

(which is used when the isolation level is set to serializable) tracks read-write conflicts

26 Chapter 32 PostgreSQL

between transactions, and forces rollback of transactions whenever certain patterns of

conflicts are detected.

Further, to guarantee serializability, the phantom-phenomenon (Section 18.4.3)

must be avoided; the problem occurs when a transaction reads a set of tuples satisfying

a predicate, and a concurrent transaction performs an update that creates a new tuple

satisfying the predicate, or updates a tuple in a way that results in the tuple satisfying

the predicate, when it did not do so earlier.

To avoid the phantom phenomenon, the SSI implementation in PostgreSQL uses

predicate locking, using ideas from the index locking technique described in Section

18.4.3, but with modifications to work correctly with SSI. Predicate locking helps to

detect when a write might have an impact on the result of a predicate read by a concur-

rent transaction. These locks do not cause any blocking and therefore can not cause

a deadlock. They are used to identify and flag dependencies among concurrent serial-

izable transactions which in certain combinations can lead to serialization anomalies.

Predicate locks show up in the pg locks system view with a mode of SIReadLock. The

particular locks acquired during execution of a query depend on the plan used by the

query. A read-only transaction may be able to release its SIRead lock before completion,

if it detects that no conflicts can still occur which could lead to a serialization anomaly.

On the other hand, SIRead locks may need to be kept past transaction commit, until

overlapping read write transactions complete.

32.5.1.4 Implications of Using MVCC

Using the PostgreSQL MVCC scheme has implications in three different areas:

1. An extra burden is placed on the storage system, since it needs to maintain dif-

ferent versions of tuples.

2. The development of concurrent applications takes some extra care, since

PostgreSQL MVCC can lead to subtle, but important, differences in how concur-

rent transactions behave, compared to systems where standard two-phase locking

is used.

3. The performance of MVCC depends on the characteristics of the workload run-

ning on it.

The implications of MVCC in PostgreSQL are described in more detail below.

Creating and storing multiple versions of every row can lead to excessive storage

consumption. The space occupied by a version cannot be freed by the transaction that

deletes the tuple or creates a new version. Instead, a tuple version can be freed only

later, after checking that the tuple version cannot be visible to any active or future

transactions. The task of freeing space is nontrivial, because indices may refer to the

location of an old tuple version, so these references need to be deleted before reusing

the space.

32.5 Transaction Management in PostgreSQL 27

In general, versions of tuples are freed up by the vacuum process of PostgreSQL. The

vacuum process can be initiated by a command, but PostgreSQL employs a background

process to vacuum tables automatically. The vacuum process first scans the heap, and

whenever it finds a tuple version that cannot be accessed by any current/future trans-

action, it marks the tuple as “dead”. The vacuum process then scans all indices of the

relation, and removes any entries that point to dead tuples. Finally, it rescans the heap,

physically deleting tuple versions that were marked as dead earlier.

PostgreSQL also supports a more aggressive form of tuple reclaiming in cases where

the creation of a version does not affect the attributes used in indices, and further the

old and new tuple versions are on the same page. In this case no index entry is created

for the new tuple version, but instead a link is added from the old tuple version in the

heap page to the new tuple version (which is also on the same heap page). An index

lookup will first find the old version, and if it determines that the version is not visible

to the transaction, the version chain is followed to find the appropriate version. When

the old version is no longer visible to any transaction, the space for the old version can

be reclaimed in the heap page by some clever data structure tricks within the page,

without touching the index.

The vacuum command offers two modes of operation: Plain vacuum simply iden-

tifies tuples that are not needed, and makes their space available for reuse. This form

of the command executes as described above, and can operate in parallel with normal

reading and writing of the table. Vacuum full does more extensive processing, includ-

ing moving of tuples across blocks to try to compact the table to the minimum number

of disk blocks. This form is much slower and requires an exclusive lock on each table

while it is being processed.

PostgreSQL’s approach to concurrency control performs best for workloads con-

taining many more reads than updates, since in this case there is a very low chance

that two updates will conflict and force a transaction to roll back. Two-phase locking

may be more efficient for some update-intensive workloads, but this depends on many

factors, such as the length of transactions and the frequency of deadlocks.

32.5.1.5 DDL Concurrency Control

The MVCC mechanisms described in the previous section do not protect transactions

against operations that affect entire tables, for example, transactions that drop a table

or change the schema of a table. Toward this end, PostgreSQL provides explicit locks

that DDL commands are required to acquire before starting their execution. These

locks are always table based (rather than row based) and are acquired and released in

accordance with the strict two-phase locking protocol.

Figure 32.6 lists all types of locks offered by PostgreSQL, which locks they conflict

with, and some commands that use them (the create index concurrently command is

covered in Section 32.3.2.3). The names of the lock types are often historical and do

not necessarily reflect the use of the lock. For example, all the locks are table-level

locks, although some contain the word “row” in the name. DML commands acquire

28 Chapter 32 PostgreSQL

Figure 32.6 Table-level lock modes.

only locks of the first three types. These three lock types are compatible with each

other, since MVCC takes care of protecting these operations against each other. DML

commands acquire these locks only for protection against DDL commands.

While their main purpose is providing PostgreSQL internal concurrency control for

DDL commands, all locks in Figure 32.6 can also be acquired explicitly by PostgreSQL

applications through the lock table command.

Locks are recorded in a lock table that is implemented as a shared-memory hash

table keyed by a signature that identifies the object being locked. If a transaction wants

to acquire a lock on an object that is held by another transaction in a conflicting

mode, it needs to wait until the lock is released. Lock waits are implemented through

semaphores, each of which is associated with a unique transaction. When waiting for

a lock, a transaction actually waits on the semaphore associated with the transaction

holding the lock. Once the lock holder releases the lock, it will signal the waiting trans-

32.5 Transaction Management in PostgreSQL 29

action(s) through the semaphore. By implementing lock waits on a per-lock-holder ba-

sis, rather than on a per-object basis, PostgreSQL requires at most one semaphore per

concurrent transaction, rather than one semaphore per lockable object.

Deadlock detection is triggered if a transaction has been waiting for a lock for more

than 1 second. The deadlock-detection algorithm constructs a wait-for graph based on

the information in the lock table and searches this graph for circular dependencies. If it

finds any, meaning a deadlock was detected, the transaction that triggered the deadlock

detection aborts and returns an error to the user. If no cycle is detected, the transaction

continues waiting on the lock. Unlike some commercial systems, PostgreSQL does not

tune the lock time-out parameter dynamically, but it allows the administrator to tune

it manually. Ideally, this parameter should be chosen on the order of a transaction

lifetime, in order to optimize the trade-off between the time it takes to detect a deadlock

and the work wasted for running the deadlock detection algorithm when there is no

deadlock.

32.5.1.6 Locking and Indices

Indices in PostgreSQL allow for concurrent access by multiple transactions. B-tree,

GIN, GiST and SP-GiST indices use short-term share/exclusive page-level locks for

read/write access which are released immediately after each index row is fetched or

inserted. On the other hand, hash indices use share/exclusive hash-bucket-level locks

for read/write access, and the locks are released after the whole bucket is processed.

This might cause deadlock since the locks are held longer than one index operation.

Indices that support predicate locking acquire SIRead locks on index pages that are ac-

cessed when searching for tuples that satisfy the predicate used in the predicate read.

32.5.2 Recovery

PostgreSQL employs write-ahead log (WAL) based recovery to ensure atomicity and

durability. The approach is similar to the standard recovery techniques; however, re-

covery in PostgreSQL is simplified in some ways because of the MVCC protocol.

Under PostgreSQL, recovery does not have to undo the effects of aborted trans-

actions: an aborting transaction makes an entry in the pg xact file, recording the fact

that it is aborting. Consequently, all versions of rows it leaves behind will never be

visible to any other transactions. The only case where this approach could potentially

lead to problems is when a transaction aborts because of a crash of the corresponding

PostgreSQL process and the PostgreSQL process does not have a chance to create the

pg xact entry before the crash. PostgreSQL handles this as follows: Before checking the

status of a transaction in the pg xact file, PostgreSQL checks whether the transaction

is running on any of the PostgreSQL processes. If no PostgreSQL process is currently

running the transaction, but the pg xact file shows the transaction as still running, it

is safe to assume that the transaction crashed and the transaction’s pg xact entry is

updated to “aborted”.

30 Chapter 32 PostgreSQL

Additionally, recovery is simplified by the fact that PostgreSQL MVCC already

keeps track of some of the information required by write-ahead logging. More precisely,

there is no need for logging the start, commit, and abort of transactions, since MVCC

logs the status of every transaction in the pg xact.

PostgreSQL provides support for two-phase commit; two-phase commit is de-

scribed in more detail in Section 23.2.1. The prepare transaction command brings a

transaction to the prepared-state of two-phase commit by persisting its state on disk.

When the coordinator decides on whether the transaction should be committed or

aborted, PostgreSQL can do so, even if there is a system crash between reaching the

prepared state and the commit/abort decision. Leaving transactions in the prepared

state for a long time is not recommended since locks continue to be held by the pre-

pared transaction, affecting concurrency and interfering with the ability of VACUUM

to reclaim storage.

32.5.3 High Availability and Replication

PostgreSQL provides support for high availability (HA). To achieve HA, all up-

dates performed on the primary database system must be replicated to a secondary

(backup/standby) database system, which is referred to as a replica. In case the pri-

mary database fails, the secondary can take over transaction processing.

Updates performed at a primary database can be replicated to more than one sec-

ondary database. Reads can then be performed at the replicas, as long as the reader

does not mind reading a potentially slightly outdated state of the database.

Replication in a HA cluster is done by log shipping. The primary severs (servers that

can modify data) operate in continuous archiving mode while the secondary servers

operate in recovery mode, continuously reading the WAL records from the primary. By

default, the log is created in units of segments, which are files that are (by default) 16MB

in size. PostgreSQL implements file-based log shipping by transferring WAL records one

file (WAL segment) at a time. Log shipping comes with low performance overhead on

master servers; however, there is a potential windows for data loss. Log shipping is

asynchronous, which means that WAL records are shipped after transaction commit.

Thus, if the primary server crashes then the transactions not yet shipped will be lost.

PostgreSQL has a configuration parameter (archive timeout) that can help to limit the

potential window of data lost in file-based log shipping by forcing the primary server

to switch to new WAL segment file periodically.

Streaming replication solution allows for secondary servers to be more up-to-date

than the file-based log shipping approach, thereby decreasing the potential window

of data loss. In this case, the primary servers stream WAL records to the secondary

servers as the WAL records are generated. without having to wait for the WAL file to be

filled. Streaming replication is asynchronous by default and thus, it is still possible to

experience a delay between the time a transaction is committed on the primary server

and the moment is becomes visible in the secondary server. Nevertheless, this window

32.6 SQL Variations and Extensions 31

of potential data loss is shorter (typically below a second) than the one in file-based

log shipping.

PostgreSQL can also operate using synchronous replication. In this case, each com-

mit of a write transaction waits until confirmation is received that the commit has been

written to the WAL on disk of both the primary and secondary server. Even though this

approach increases the confidence that the data of a transaction commit will be avail-

able, commit processing is slower. Further, data loss is still possible if both primary and

secondary servers crash at the same time. For read-only transactions and transaction

rollbacks, there is no need to wait for the response from the secondary servers.

In addition to physical replication, PostgreSQL also supports logical replication.

Logical replication allows for fine-grained control over data replication by replicat-

ing logical data modifications from the WAL based on a replication identity (usually

a primary key). Physical replication, on the other hand, is based on exact block ad-

dresses and byte-by-byte replication. The logical replication can be enabled by setting

the wal level configuration parameter to logical.

Logical replication is implemented using a publish and subscribe model in which

one or more subscribers subscribing to one or more publications (changes generated

from a table or a group of tables). The server responsible for sending the changes is

called a publisher while the server that subscribes to the changes is called a subscriber.

When logical replication is enabled, the subscriber receives a snapshot of the data on

the publisher database. Then, each change that happens on the publisher is identified

and sent to the subscriber using streaming replication. The subscriber is responsible for

applying the change in the same order as the publisher, to guarantee consistency. Typi-

cal use-cases for logical replication include replicating data between different platforms

or different major versions of PostgreSQL, sharing a subset of the database between dif-

ferent groups of users, sending incremental changes in a single database, consolidating

multiple databases into a single one, among other use-cases.

32.6 SQL Variations and Extensions

The current version of PostgreSQL supports almost all entry-level SQL-92 features, as

well as many of the intermediate- and full-level features. It also supports many SQL:1999

and SQL:2003 features, including most object-relational features and the SQL/XML fea-

tures for parsed XML. In fact, some features of the current SQL standard (such as

arrays, functions, and inheritance) were pioneered by PostgreSQL.

32.6.1 PostgreSQL Types

PostgreSQL has support for several nonstandard types, useful for specific application

domains. Furthermore, users can define new types with the create type command. This

includes new low-level base types, typically written in C (see Section 32.6.2.1).

32 Chapter 32 PostgreSQL

32.6.1.1 The PostgreSQL Type System

PostgreSQL types fall into the following categories:

• Base types: Base types are also known as abstract data types; that is, modules that

encapsulate both state and a set of operations. These are implemented below the

SQL level, typically in a language such as C (see Section 32.6.2.1). Examples are

int4 (already included in PostgreSQL) or complex (included as an optional exten-

sion type). A base type may represent either an individual scalar value or a variable-

length array of values. For each scalar type that exists in a database, PostgreSQL

automatically creates an array type that holds values of the same scalar type.

• Composite types: These correspond to table rows; that is, they are a list of field

names and their respective types. A composite type is created implicitly whenever

a table is created, but users may also construct them explicitly.

• Domains: A domain type is defined by coupling a base type with a constraint that

values of the type must satisfy. Values of the domain type and the associated base

type may be used interchangeably, provided that the constraint is satisfied. A do-

main may also have an optional default value, whose meaning is similar to the

default value of a table column.

• Enumerated types: These are similar to enum types used in programming languages

such as C and Java. An enumerated type is essentially a fixed list of named values.

In PostgreSQL, enumerated types may be converted to the textual representation

of their name, but this conversion must be specified explicitly in some cases to

ensure type safety. For instance, values of different enumerated types may not be

compared without explicit conversion to compatible types.

• Pseudotypes: Currently, PostgreSQL supports the following pseudotypes:

any, anyarray, anyelement, anyenum, anynonarray cstring, internal, opaque, lan-

guage handler, record, trigger, and void. These cannot be used in composite types

(and thus cannot be used for table columns), but can be used as argument and

return types of user-defined functions.

• Polymorphic types. Four of the pseudotypes anyelement, anyarray, anynonarray,

and anyenum are collectively known as polymorphic. Functions with arguments of

these types (correspondingly called polymorphic functions) may operate on any ac-

tual type. PostgreSQL has a simple type-resolution scheme that requires that: (1)

in any particular invocation of a polymorphic function, all occurrences of a poly-

morphic type must be bound to the same actual type (that is, a function defined

as f (anyelement, anyelement) may operate only on pairs of the same actual type),

and (2) if the return type is polymorphic, then at least one of the arguments must

be of the same polymorphic type.

32.6 SQL Variations and Extensions 33

32.6.1.2 Nonstandard Types

The types described in this section are included in the standard distribution. Further-

more, thanks to the open nature of PostgreSQL, there are several contributed extension

types, such as complex numbers, and ISBN/ISSNs (see Section 32.6.2).

Geometric data types (point, line, lseg, box, polygon, path, circle) are used in ge-

ographic information systems to represent two-dimensional spatial objects such as

points, line segments, polygons, paths, and circles. Numerous functions and operators

are available in PostgreSQL to perform various geometric operations such as scaling,

translation, rotation, and determining intersections.

Full-text searching is performed in PostgreSQL using the tsvector type that repre-

sents a document and the tsquery type that represents a full-text query. A tsvector stores

the distinct words in a document, after converting variants of each word to a common

normal form (for example, removing word stems). PostgreSQL provides functions to

convert raw text to a tsvector and concatenate documents. A tsquery specifies words to

search for in candidate documents, with multiple words connected by Boolean oper-

ators. For example, the query ’index & !(tree | hash)’ finds documents that contain

“index” without using the words “tree” or “hash.” PostgreSQL natively supports opera-

tions on full-text types, including language features and indexed search.

PostgreSQL offers data types to store network addresses. These data types allow

network-management applications to use a PostgreSQL database as their data store. For

those familiar with computer networking, we provide a brief summary of this feature

here. Separate types exist for IPv4, IPv6, and Media Access Control (MAC) addresses

(cidr, inet and macaddr, respectively). Both inet and cidr types can store IPv4 and IPv6

addresses, with optional subnet masks. Their main difference is in input/output format-

ting, as well as the restriction that classless Internet domain routing (CIDR) addresses

do not accept values with nonzero bits to the right of the netmask. The macaddr type is

used to store MAC addresses (typically, Ethernet card hardware addresses). PostgreSQL

supports indexing and sorting on these types, as well as a set of operations (including

subnet testing, and mapping MAC addresses to hardware manufacturer names). Fur-

thermore, these types offer input-error checking. Thus, they are preferable over plain

text fields.

The PostgreSQL bit type can store both fixed- and variable-length strings of 1s

and 0s. PostgreSQL supports bit-logical operators and string-manipulation functions

for these values.

PostgreSQL offers data types to store XML and JSON data. Both XML and JSON

data can be stored as text. However, the specialized data types offer additional func-

tionality. For example, the XML data type allows for checking the input values for well-

formedness while there are support functions to perform type-safe operations on it.

Similarly, the JSON type has the advantage of enforcing that each stored value is valid

according to the JSON rules. There are two JSON data types: json and jsonb and both

accept almost identical sets of values as input. However, the json data type stores an

exact copy of the input text, which processing functions must re-parse on each execu-

34 Chapter 32 PostgreSQL

tion; while jsonb data is stored in a decomposed binary format that makes it slightly

slower to input due to added conversion overhead, but significantly faster to process

while supporting indexing capabilities.

32.6.2 Extensibility

Like most relational database systems, PostgreSQL stores information about databases,

tables, columns, and so forth, in what are commonly known as system catalogs, which

appear to the user as normal tables. Other relational database systems are typically

extended by changing hard-coded procedures in the source code or by loading special

extension modules written by the vendor.

Unlike most relational database systems, PostgreSQL goes one step further and

stores much more information in its catalogs: not only information about tables and

columns, but also information about data types, functions, access methods, and so

on. Therefore, PostgreSQL makes it easy for users to extend and facilitates rapid pro-

totyping of new applications and storage structures. PostgreSQL can also incorporate

user-written code into the server, through dynamic loading of shared objects. This pro-

vides an alternative approach to writing extensions that can be used when catalog-based

extensions are not sufficient.

Furthermore, the contrib module of the PostgreSQL distribution includes numer-

ous user functions (for example, array iterators, fuzzy string matching, cryptographic

functions), base types (for example, encrypted passwords, ISBN/ISSNs, n-dimensional

cubes) and index extensions (for example, RD-trees,5 indexing for hierarchical labels).

Thanks to the open nature of PostgreSQL, there is a large community of PostgreSQL

professionals and enthusiasts who also actively extend PostgreSQL. Extension types are

identical in functionality to the built-in types; the latter are simply already linked into

the server and preregistered in the system catalog. Similarly, this is the only difference

between built-in and extension functions.

32.6.2.1 Types

PostgreSQL allows users to define composite types, enumeration types, and even new

base types. A composite-type definition is similar to a table definition (in fact, the lat-

ter implicitly does the former). Stand-alone composite types are typically useful for

function arguments. For example, the definition:

create type city t as (name varchar(80), state char(2));

allows functions to accept and return city t tuples, even if there is no table that explicitly

contains rows of this type.

5RD-trees are designed to index sets of items, and support set containment queries such as finding all sets that contain

a given query set.

32.6 SQL Variations and Extensions 35

Adding base types to PostgreSQL is straightforward; an example can be found in

complex.sql and complex.c in the tutorials of the PostgreSQL distribution. The base

type can be declared in C, for example:

typedef struct Complex {
double x;
double y;

} Complex;

The next step is to define functions to read and write values of the new type in text

format. Subsequently, the new type can be registered using the statement:

create type complex (

internallength = 16,

input = complex in,

output = complex out,

alignment = double

);

assuming the text I/O functions have been registered as complex in and complex out.

The user has the option of defining binary I/O functions as well (for more efficient data

dumping). Extension types can be used like the existing base types of PostgreSQL. In

fact, their only difference is that the extension types are dynamically loaded and linked

into the server. Furthermore, indices may be extended easily to handle new base types;

see Section 32.6.2.3.

32.6.2.2 Functions

PostgreSQL allows users to define functions that are stored and executed on the server.

PostgreSQL also supports function overloading (that is, functions may be declared by

using the same name but with arguments of different types). Functions can be written as

plain SQL statements, or in several procedural languages (covered in Section 32.6.2.4).

Finally, PostgreSQL has an application programmer interface for adding functions writ-

ten in C (explained in this section).

User-defined functions can be written in C (or a language with compatible calling

conventions, such as C++). The actual coding conventions are essentially the same for

dynamically loaded, user-defined functions, as well as for internal functions (which

are statically linked into the server). Hence, the standard internal function library is a

rich source of coding examples for user-defined C functions. Once the shared library

containing the function has been created, a declaration such as the following registers

it on the server:

36 Chapter 32 PostgreSQL

create function complex out(complex)

returns cstring

as 'shared object filename'

language C immutable strict;

The entry point to the shared object file is assumed to be the same as the SQL function

name (here, complex out), unless otherwise specified.

The example here continues the one from Section 32.6.2.1. The application pro-

gram interface hides most of PostgreSQL’s internal details. Hence, the actual C code

for the above text output function of complex values is quite simple:

PG FUNCTION INFO V1(complex out);
Datum complex out(PG FUNCTION ARGS) {

Complex *complex = (Complex *) PG GETARG POINTER(0);
char *result;
result = (char *) palloc(100);
snprintf(result, 100, "(%g,%g)", complex−>x, complex−>y);
PG RETURN CSTRING(result);

}

The first line declares the function complex out, and the following lines implement

the output function. The code uses several PostgreSQL-specific constructs, such as the

palloc() function, which dynamically allocates memory controlled by PostgreSQL’s

memory manager.

Aggregate functions in PostgreSQL operate by updating a state value via a state

transition function that is called for each tuple value in the aggregation group. For

example, the state for the avg operator consists of the running sum and the count

of values. As each tuple arrives, the transition function simply add its value to the

running sum and increment the count by one. Optionally, a final function may be called

to compute the return value based on the state information. For example, the final

function for avg would simply divide the running sum by the count and return it.

Thus, defining a new aggregate function (referred to a user-defined aggregate func-

tion) is a simple as defining these functions. For the complex type example, if complex

add is a user-defined function that takes two complex arguments and returns their sum,

then the sum aggregate operator can be extended to complex numbers using the simple

declaration:

create aggregate sum (complex) (

sfunc = complex add,

stype = complex,

initcond = ’(0,0)’

);

32.6 SQL Variations and Extensions 37

Note the use of function overloading: PostgreSQL will call the appropriate sum aggre-

gate function, on the basis of the actual type of its argument during invocation. The

stype is the state value type. In this case, a final function is unnecessary, since the return

value is the state value itself (that is, the running sum in both cases).

User-defined functions can also be invoked by using operator syntax. Beyond sim-

ple “syntactic sugar” for function invocation, operator declarations can also provide

hints to the query optimizer in order to improve performance. These hints may include

information about commutativity, restriction and join selectivity estimation, and vari-

ous other properties related to join algorithms.

32.6.2.3 Index Extensions

The indices supported by PostgreSQL can be extended to accommodate new base types.

Adding index extensions for a type requires the definition of an operator class, which

encapsulates the following:

• Index-method strategies: These are a set of operators that can be used as qualifiers

in where clauses. The particular set depends on the index type. For example, B-tree

indices can retrieve ranges of objects, so the set consists of five operators (<, <=,

=, >=, and >), all of which can appear in a where clause involving a B-tree index

while a hash index allows only equality testing.

• Index-method support routines: The above set of operators is typically not sufficient

for the operation of the index. For example, a hash index requires a function to

compute the hash value for each object.

For example, if the following functions and operators are defined to compare the

magnitude of complex numbers (see Section 32.6.2.1), then we can make such objects

indexable by the following declaration:

create operator class complex abs ops

default for type complex using btree as

operator 1 < (complex, complex),

operator 2 <= (complex, complex),

operator 3 = (complex, complex),

operator 4 >= (complex, complex),

operator 5 > (complex, complex),

function 1 complex abs cmp(complex, complex);

The operator statements define the strategy methods and the function statements define

the support methods.

38 Chapter 32 PostgreSQL

32.6.2.4 Procedural Languages

Stored functions and procedures can be written in a number of procedural languages.

Furthermore, PostgreSQL defines an application programmer interface for hooking up

any programming language for this purpose. Programming languages can be registered

on demand and are either trusted or untrusted. The latter allow unlimited access to

the DBMS and the file system, and writing stored functions in them requires superuser

privileges.

• PL/pgSQL. This is a trusted language that adds procedural programming capabili-

ties (for example, variables and control flow) to SQL. It is very similar to Oracle’s

PL/SQL. Although code cannot be transferred verbatim from one to the other,

porting is usually simple.

• PL/Tcl, PL/Perl, and PL/Python. These leverage the power of Tcl, Perl, and Python

to write stored functions and procedures on the server. The first two come in both

trusted and untrusted versions (PL/Tcl, PL/Perl and PL/TclU, PL/PerlU, respec-

tively), while PL/Python is untrusted at the time of this writing. Each of these has

bindings that allow access to the database system via a language-specific interface.

32.7 Foreign Data Wrappers

Foreign data wrappers (FDW) allow a user to connect with external data sources to

transparently query data that reside outside of PostgreSQL, as if the data were part

of an existing table in a database. PostgreSQL implements FDWs to provide SQL/MED

(“Management of External Data”) functionality. SQL/MED is an extension of the ANSI

SQL standard specification that defines types that allow a database management system

to access external data. FDWs can be a powerful tool both for data migration and data

analysis scenarios.

Today, there are a number of FDWs that enable PostgreSQL to access different re-

mote stores, such as other relational databases supporting SQL, key-value (NoSQL)

sources, and flat files; however, most of them are implemented as PostgreSQL exten-

sions and are not officially supported. PostgreSQL provides two FDWs modules:

• file fdw: The file fdw module allow users to create foreign tables for data files in

the server’s file system, or to specify commands to be executed on the server and

read their output. Access is read-only and the data file or command output should

be in a format compatible to the copy from command. These include csv files,

text files with one row per line, with columns separated by user-specified delimiter

character, and a PostgreSQL specific binary format.

• postgres fdw: The postgres fdw module is used to access remote tables stored in

external PostgreSQL servers. Using postgres fdw, foreign tables are updatable as

long as the the required privileges are set. When a query references a remote table,

32.8 PostgreSQL Internals for Developers 39

postgres fdw opens a transaction on the remote server that is committed or aborted

when the local transaction commits or aborts. The remote transaction uses seri-

alizable isolation level when the local transaction has serializable isolation level;

otherwise it uses repeatable read isolation level. This ensures that a query perform-

ing multiple table scans on the remote server it will get snapshot-consistent results

for all the scans.

Instead of fetching all the required data from the remote database and compute

the query locally, postgres fdw tries to reduce the amount of data transferred from

foreign servers. Queries are optimized to send the query where clauses that use data

types, operators, and built-in functions to the remote server for execution and by

retrieving only the table columns that are needed for the correct query execution.

Similarly, when a join operation is performed between foreign tables on the same

foreign server, postgres fdw pushes down the join operation to the remote server

and retrieves only the results, unless the optimizer estimates that it will be more

efficient to fetch rows from each table individually.

In a typical usage scenario, the user should go through a number of prerequisites

steps before accessing foreign data using the FDWs provided by PostgreSQL. Specifi-

cally, the user should a) install the desired FDW extension, b) create a foreign server

object to specify connection information for the particular external data source, c)

specify the credentials a user should use to access an external data resource, and d)

create one or more foreign tables specifying the schema of the external data source to

be accessed.

A FDW handles all the operations performed on a foreign table and is responsi-

ble for accessing the remote data source and returning it to the PostgreSQL executor.

PostgreSQL internally provides a list of APIs that a FDW can implement, depending

on the desired functionality. For example, if a FDW intends to support remote foreign

joins instead of fetching the tables and performing the join locally, it should implement

the GetForeignJoinPaths() callback function.

32.8 PostgreSQL Internals for Developers

This section is targeted for developers and researchers who plan to extend the

PostgreSQL source code to implement any desired functionality. The section provides

pointers on how to install PostgreSQL from source code, navigate the source code,

and understand some basic PostgreSQL data structures and concepts, as a first step

toward adding new functionality to PostgreSQL. The section pays particular focus on

the region-based memory manager of PostgreSQL and the structure of nodes in a query

plan, and the key functions that are invoked during the processing of a query. It also ex-

plains the organization of tuples and their internal representation in the form of Datum

data structures used to represent values, and various data structures used to represent

tuples. Finally, the section describes error handling mechanisms in PostgreSQL, and

40 Chapter 32 PostgreSQL

offer advice on steps required when adding a new functionality. This section can also

serve as a reference source for key concepts whose understanding is necessary when

changing the source code of PostgreSQL. For more development information we en-

courage the readers to refer to the PostgreSQL development wiki.6

32.8.1 Installation From Source Code

We start with a brief walk-through of the steps required to install PostgreSQL from

source code, which is a first step for the development of any new functionality. The

source code can be obtained from the version control repository at: git.postgresql.

org, or downloaded from: https://www.postgresql.org/download/. We describe the

basic steps required for installation in this section; detailed installation instructions

can be found at: https://www.postgresql.org/docs/current/installation.html.

32.8.1.1 Requirements

The following software packages are required for a successful build:

• An ISO/ANSI C compiler is required to compile the source code. Recent versions

of GCC are recommended, but PostgreSQL can be built using a wide variety of

compilers from different vendors.

• tar is required to unpack the source distribution, in addition to either gzip or

bzip2.

• The GNU Readline library is used by default. An alternative is to disable it by spec-

ifying—without-readline option when invoking configure (discussed next). When

installing PostgreSQL under a Linux distribution both readline and readline-

devel packages are needed.

• The zlib compression library is used by default. This library is used by pg dump

and pg restore.

• GNU Flex (2.5.31 or later) and Bison(1.875 or later) are needed to build from a

Git checkout (which is necessary when doing any development on the server).

• Perl (5.8.3 or later) is required when doing a build from the Git checkout.

32.8.1.2 Installation Steps

Once all required software packages are installed, we can proceed with the PostgreSQL

installation. The installation consists of a couple of steps discussed next:

6https://wiki.postgresql.org/wiki/Development information

git.postgresql.org
git.postgresql.org
https://www.postgresql.org/download/
https://www.postgresql.org/docs/current/installation.html
https://wiki.postgresql.org/wiki/Development_information

32.8 PostgreSQL Internals for Developers 41

1. Configuration: The first step of the installation procedure is to configure the

source tree for a given system, and specify installation options (e.g. the directory

of the build). A default configuration can be invoked with:

./configure

The configure script sets up files for building the server, utilities and all clients ap-

plications, by default under /usr/local/pgsql; to specify an alternative directory

you should run configure with the command line option —prefix=PATH, where

PATH is the directory where you wish to install PostgreSQL.7).

In addition to the –prefix option, other frequently used options include –enable-

debug, –enable-depend, and –enable-cassert, which enable debugging; it is

important to use these options to help you debug code that you create in

PostgreSQL. The –enable-debug option enables build with debugging symbols

(-g), the –enable-depend option turns on automatic dependency tracking, while

the –enable-cassert option enables assertion checks (used for debugging).

Further, it is recommended that you set the environment variable CFLAGS to

the value -O0 (the letter “O” followed by a zero) to turn off compiler optimiza-

tion entirely. This option reduces compilation time and improves debugging in-

formation. Thus, the following commands can be used to configure PostgreSQL

to support debugging:

export CFLAGS=-O0
./configure –prefix=PATH –enable-debug –enable-depend –enable-cassert

where PATH is the path for installing the files. The CFLAGS variable can alter-

natively be set in the command line by adding the option CFLAGS=’-O0’ to the

configure command above.

2. Build: To start the build, type either of the following commands:

make
make all

This will build the core of PostgreSQL. For a complete build that includes the

documentation as well as all additional modules (the contrib directory) type:

make world

3. Regression Tests: This is an optional step to verify whether PostgreSQL runs on

the current machine in the expected way. To run the regression tests type:

make check

7More details about the command line options of configure can be found at: https://www.postgresql.org/docs/current/

install-procedure.html.

https://www.postgresql.org/docs/current/install-procedure.html
https://www.postgresql.org/docs/current/install-procedure.html

42 Chapter 32 PostgreSQL

4. Installation: To install PostgreSQL enter:

make install

This step will install files into the default directory or the directory specified with

the –prefix command line option provided in Step 1.

For a full build (including the documentation and the contribution modules)

type:

make install-world

32.8.1.3 Creating a Database

Once PostgreSQL is installed, we will create our first database, using the following

steps; for a more detailed list of steps we encourage the reader to refer to: https://

www.postgresql.org/docs/current/creating-cluster.html.

1. Create a directory to hold the PostgreSQL data tree by executing the following

commands in the bash console:

mkdir DATA PATH

where DATA PATH is a directory on disk where PostgreSQL will hold data.

2. Create a PostgreSQL cluster by executing:

PATH/bin/initdb -D DATA PATH

where PATH is the installation directory (specified in the ./configure call), and

DATA PATH is the data directory path.

A database cluster is a collection of databases that are managed by a single server

instance. The initdb function creates the directories in which the database data

will be stored, generates the shared catalog tables (which are the tables that be-

long to the whole cluster rather than to any particular database), and creates

template1 (a template for generating new databases) and postgres databases.

The postgres database is a default database available for use by all users, and any

third party applications.

3. Start up the PostgreSQL server by executing:

PATH/bin/postgres -D DATA PATH >logfile 2>&1 &

where PATH and DATA PATH are as described earlier.

By default, PostgreSQL uses the TCP/IP port 5432 for the postgres server to lis-

ten for connections. Since default installations frequently exist side by side with

the installations from source code, not all PostgreSQL servers can be simultane-

ously listening on the same TCP port. The postgres server can also run on a

https://www.postgresql.org/docs/current/creating-cluster.html
https://www.postgresql.org/docs/current/creating-cluster.html

32.8 PostgreSQL Internals for Developers 43

different port, specified by using the flag -p. This port should then be specified

by all client applications (e.g. createdb, psql discussed next).

To run postgres on a different port type:

PATH/bin/postgres -D DATA PATH -p PORT >logfile 2>&1 &

where PORT is an alternative port number between 1024 and 65535, that is not

currently used by any application on your computer.

The postgres command can also be called in single-user mode. This mode is par-

ticularly useful for debugging or disaster recovery. When invoked in single-user

mode from the shell, the user can enter queries and the results will be printed to

the screen, but in a form that is more useful for developers than end users. In the

single-user mode, the session user will be set to the user with ID 1, and implicit

superuser powers are granted to this user. This user does not actually have to

exist, so the single-user mode can be used to manually recover from certain kinds

of accidental damage to the system catalogs. To run the postgres server in the

single-user mode type:

PATH/bin/postgres –single -D DATA PATH DBNAME

4. Create a new PostgreSQL database in the cluster by executing:

PATH/bin/createdb -p PORT test

where PORT is the port on which the server is running; the port specification can

be omitted if the default port (5432) is being used.

After this step, in addition to template1 and postgres databases, the database

named test will be placed in the cluster as well. You can use any other name in

place of test.

5. Log-in to the database using the psql command:

PATH/bin/psql -p PORT test

Now you can create tables, insert some data and run queries over this database.

When debugging, it is frequently useful to run SQL commands directly from the

command line or read them from a file. This can be achieved by specifying the

options -c or -f. To execute a specific command you can use:

PATH/bin/psql -p PORT -c COMMAND test

where COMMAND is the command you wish to run, which is typically enclosed

in double quotes.

To read and execute SQL statements from a file you can use:

PATH/bin/psql -p PORT -f FILENAME test

44 Chapter 32 PostgreSQL

Directory Description

config Configuration system for driving the build

contrib Source code for contribution modules (extensions)

doc Documentation

src/backend PostgreSQL Server (backend)

src/bin psql, pg dump, initdb, pg upgrade and other front-

end utilities

src/common Code common to the front- and backends

src/fe utils Code useful for multiple front-end utilities

src/include Header files for PostgreSQL

src/include/catalog Definition of the PostgreSQL catalog tables

src/interfaces Interfaces to PostgreSQL including libpq, ecpg

src/pl Core Procedural Languages (plpgsql, plperl,

plpython, tcl)

src/port Platform-specific hacks

src/test Regression tests

src/timezone Timezone code from IANA

src/tools Developer tools (including pgindent8)

src/tutorial SQL tutorial scripts

Figure 32.7 Top-level source code organization

where FILENAME is the name of the file containing SQL commands. If a file has

multiple statements they need to be separated by semicolon.

When either -c or -f is specified, psql does not read commands from standard

input; instead it terminates after processing all the -c and -f options in sequence.

32.8.2 Code Organization

Prior to adding any new functionality it is necessary to get familiar with the source code

organization. Figure 32.7 presents the organization of PostgreSQL top level directory.

The PostgreSQL contrib tree contains porting tools, analysis utilities, and plug-in

features that are not part of the core PostgreSQL system. Client (front-end) programs

are placed in src/bin. The directory src/pl contains support for procedural languages

(e.g. perl and python), which allows for writing PostgreSQL functions and procedures

in these languages. Some of these libraries are not part of the generic build and need to

be explicitly enabled (e.g. use ./configure –with-perl for perl support). The src/test di-

rectory contains a variety of regression tests, e.g. for testing authentication, concurrent

behavior, locality and encodings, and recovery and replication.

32.8 PostgreSQL Internals for Developers 45

Directory Description

access Methods for accessing different types of data (e.g., heap, hash,

btree, gist/gin)

bootstrap Routines for running PostgreSQL in a âŁžbootstrapâŁž mode (by

initdb)

catalog Routines used for modifying objects in the PostgreSQL Catalog

commands User-level DDL/SQL commands (e.g., create, alter, vacuum, an-

alyze, copy)

executor Executor runs queries after they have been planned and optimized

foreign Handles foreign data wrappers, user mappings, etc

jit Provides independent Just-In-Time Compilation infrastructure

lib Contains general purpose data structures used in the backend (e.g.,

binary heap, bloom filters, etc)

libpq Code for the wire protocol (e.g., authentication, and encryption)

main The main() routine determines how the PostgreSQL backend pro-

cess will start and starts the right subsystem

nodes Generalized Node structures in PostgreSQL. Contains functions

to manipulate with nodes (e.g., copy, compare, print, etc)

optimizer Optimizer implements the costing system and generates a plan for

the executor

parser Parser parses the sent queries

partitioning Common code for declarative partitioning in PostgreSQL

po Translations of backend messages to other languages

port Backend-specific platform-specific hacks

postmaster The main PostgreSQL process that always runs, answers requests,

and hands off connections

regex Henry Spencer’s regex library

replication Backend components to support replication, shipping of WAL

logs, and reading them

rewrite Query rewrite engine used with RULEs

snowball Snowball stemming used with full-text search

statistics Extended statistics system (CREATE STATISTICS)

storage Storage layer handles file I/O, deals with pages and buffers

tcop Traffic Cop gets the actual queries, and runs them

tsearch Full-Text Search engine

utils Various backend utility components, caching system, memory

manager, etc

Figure 32.8 Source code organization of PostgreSQL backend

46 Chapter 32 PostgreSQL

Since typically new functionality is added in the PostgreSQL backend directory,

we further dive into the organization of this directory, which is presented in Figure

32.8.

Parser: The parser of PostgreSQL consists of two major components - the lexer and

grammar. The lexer determines how the input will be tokenized. The grammar defines

the grammar of the SQL and other commands that are processed by PostgreSQL, and

is used for parsing commands.

The corresponding files of interest in the /backend/parser directory are: i) scan.l,

which is the lexer that handles tokenization, ii) gram.y, which is the definition of the

grammar, iii) parse *.c, which contains specialized routines for parsing, and iv) an-

alyze.c, which contains routines to transform a raw parse tree into a query tree repre-

sentation.

Optimizer: The optimizer takes the query structure returned by the parser as input and

produces a plan to be used by the executor as output. The /path directory contains

code for exploring possible ways to join the tables (using dynamic programming), while

the /plan subdirectory contains code for generating the actual execution plan. The

/prep directory contains code for handling preprocessing steps for special cases. The

/geqo directory contains code for a planner that uses genetic optimization algorithm

to handle queries with a large number of joins; the genetic optimizer performs a semi-

random search through the join tree space. The primary entry point for the optimizer

is the planner() function.

Executor: The executor processes a query plan, which is a tree of plan nodes. The

plan tree nodes are operators that implement a demand/pull driven pipeline of tuple

processing operations (following the Volcano model). When the next() function is

called on a node, it produces the next tuple in its output sequence, or NULL if no more

tuples are available. If the node is not a relation-scan or index-scan, it will have 1 or

more children nodes. the code implementing the operation calls next() on its children

to obtain input tuples.

32.8.3 System Catalogs

PostgreSQL is an entirely catalog driven DBMS. Not only are system catalogs used to

store metadata information about tables, their columns, and indices, but they are also

used to store metadata information about data types, function definitions, operators

and access methods. Such an approach provides an elegant way of offering extensibility:

new data types or access methods can be added by simply inserting a record in the

corresponding pg * table. System catalogs are thus used to a much greater extent in

PostgreSQL, compared to other relational database systems.

The list of catalog tables with their descriptions can be found at: https://

www.postgresql.org/docs/current/catalogs.html. For a graphical representation

of the relationships between different catalog tables, we encourage the reader to

refer to: https://www.postgrescompare.com/pg catalog/constrained pg catalog

organic.pdf.

https://www.postgresql.org/docs/current/catalogs.html
https://www.postgresql.org/docs/current/catalogs.html
https://www.postgrescompare.com/pg_catalog/constrained_pg_catalog_organic.pdf
https://www.postgrescompare.com/pg_catalog/constrained_pg_catalog_organic.pdf

32.8 PostgreSQL Internals for Developers 47

Some of the widely used system catalog tables are the following:

• pg class: contains one row for each table in the database.

• pg attribute: contains one row for each column of each table in the database.

• pg index: contains one row for each index with a reference to the table it belongs

to (described in the pg class table).

• pg proc: contains one row for each defined function. Each function is described

through its name, input argument types, result type, implementation language, and

definition (either the text, if it is in an interpreted language, or a reference to its

executable code, if it is compiled). Compiled functions can be statically linked into

the server, or stored in shared libraries that are dynamically loaded on the first use.

• pg operator: contains operators that can be used in expressions.

• pg type: contains information about basic data types that columns in the table can

have and that are accepted as inputs and outputs to functions. New data types are

added by making new entries in the pg type table.

In addition to the system catalogs, PostgreSQL provides a number of built-in system

views. System views typically provide convenient access to commonly used queries on

the system catalogs. For instance:

select tablename from pg catalog.pg tables;

will print the list of table names of all tables in the database. System views can be rec-

ognized in the pg catalog schema by the plural suffix (e.g., pg tables, or pg indexes).

32.8.4 The Region-Based Memory Manager

PostgreSQL uses a region-based memory manager, which implements of a hierarchy

of different memory contexts. Objects are created in specific memory contexts, and a

single function call frees up all objects that are in a particular memory context. The

memory manager routines can be found in the /backend/utils/mmgr directory. An

important difference between PostgreSQL and other applications written in C is that

in PostgreSQL, memory is allocated via a special routine called palloc(), as opposed

to the traditional malloc() routine of C. The allocations can be freed individually with

pfree() function calls, as opposed to calling the free() routine; but the main advan-

tage of memory contexts over plain use of malloc()/free() is that the entire content

of a memory context can be efficiently freed using a single call, without having to re-

quest freeing of each individual chunk within it. This is both faster and less error prone

compared to per-object bookkeeping, since it prevents memory leakage and reduces

chances of use-after-free bugs.

48 Chapter 32 PostgreSQL

All allocations occur inside a corresponding memory context. Examples of con-

texts are: CurrentMemoryContext (the current context), TopMemoryContext (the

backend lifetime), CurTransactionContext (the transaction lifetime), PerQueryCon-

text (the query lifetime), PerTupleContext (the per-result-tuple lifetime). When un-

specified, the default memory context is CurrentMemoryContext, which is stored as a

global variable. Contexts are arranged in a tree hierarchy, expressed through a parent-

child relationship. Whenever a new context gets created, the context from which the

creation context routine gets invoked becomes the parent of the newly created context.

The basic operations on a memory context are:

• MemoryContextCreate(): to create a new context.

• MemoryContextSwitchTo(): to switch from the CurrentMemoryContext into a

new one.

• MemoryContextAlloc(): to allocate a chunk of memory within a context.

• MemoryContextDelete(): to delete a context, which includes freeing all the mem-

ory allocated within the context.

• MemoryContextReset(): to reset a context, which frees all memory allocated in the

context, but not the context object itself.

The MemoryContextSwitchTo() operation selects a new current context and re-

turns the previous context, so that the caller can restore the previous context before

exiting. When a memory context is reset, all allocations within the context are auto-

matically released. Reset or deletion of a context will automatically invoke the call to

reset/delete all children contexts. As a consequence, memory leaks are rare in the back-

end, since all memory will eventually be released. Nonetheless, a memory leak could

happen when memory is allocated in a too-long-lived context, i.e., a context that lives

longer than supposed. An example of such a case would be allocating resources that are

needed per tuple into CurTransactionContext that lives much longer than the tuple.

32.8.5 Node Structure and Node Functions

Each query in PostgreSQL is represented as a tree of nodes; the actual type of nodes dif-

fers depending on the query stage (e.g., the parsing, optimization, or execution stage).

Since C does not support inheritance at the language level (unlike C++), to represent

node type inheritance, PostgreSQL uses a node structuring convention that in effect

implements a simple object system with support for a single inheritance. The root of

the class hierarchy is Node, presented below:

typedef struct {
NodeTag type;

} Node;

32.8 PostgreSQL Internals for Developers 49

The first field of any Node is NodeTag, which is used to determine a Node’s spe-

cific type at run-time. Each node consists of a type, plus appropriate data. It is partic-

ularly important to understand the node type system when adding new features, such

as new access path, or new execution operator. Important functions related to nodes

are: makeNode() for creating a new node, IsA() which is a macro for run-time type

testing, equal() for testing the equality of two nodes, copyObject() for a deep copy of

a node (which should make a copy of the tree rooted at that node), nodeToString() to

serialize a node to text (which is useful for printing the node and tree structure), and

stringToNode() for deserializing a node from text.

An important thing to remember when modifying or creating a new node type is

to update these functions (especially equal() and copy() that can be found in equal-

funcs.c and copyfuncs.c in the /CODE/nodes/ directory). For serialization and dese-

rialization, /nodes/outfuncs.c need to be modified as well.

32.8.5.1 Steps For Adding a New Node Type

To illustrate, suppose that we want to introduce a new node type called TestNode, the

following are the steps required:

1. Add a tag (T TestNode) to the enum NodeTag in include/nodes/nodes.h.

2. Add the structure definition to the appropriate include/nodes/*.h file. The

nodes.h is used for defining node tags (NodeTag), primnodes.h for primitive

nodes, parsenodes.h for parse tree nodes, pathnodes.h for path tree nodes and

planner internal structures, plannodes.h for plan tree nodes, execnodes.h for

executor nodes, and memnodes.h for memory nodes.

For example, new node type can be defined as follows:

typedef struct TestNode
{

NodeTag type;
/* a list of other attributes */

} TestNode;

3. If we intend to use copyObject(), equal(), nodeToString() or stringToNode(),

we need to add an appropriate function to copyfuncs.c, equalfuncs.c, out-

funcs.c, and readfuncs.c respectively. For example:

50 Chapter 32 PostgreSQL

static TestNode *
copyTestNode(const TestNode *from)
{

TestNode *newnode = makeNode(TestNode);
/* copy remainder of node fields (if any) */
newnode= COPY *(from);
return newnode;

}

where COPY * is a routine to copy individual fields. Alternatively, each at-

tribute of the TestNode can be copied individually by calling the exist-

ing copy routines, such as COPY NODE FIELD, COPY SCALAR FIELD, and

COPY POINTER FIELD.

4. We also need to modify the functions in nodeFuncs.c to add code for handling

the new node type; which of the functions needs to be modified depends on

the node type added. Examples of functions in this file includes * tree walker()

functions to traverse various types of trees, and * tree mutator() functions to

traverse various types of trees and return a copy with specified changes to the

tree.

As a general note, there may be other places in the code where we might need to

inform PostgreSQL about our new node type. The safest way to make sure no place in

the code has been overlooked is to search (e.g., using grep) for references to one or

two similar existing node types to find all the places where they appear in the code.

32.8.5.2 Casting Pointers to Subtypes and Supertypes

To support inheritance, PostgreSQL uses a simple convention where the first field of

any subtype is its parent, i.e., its supertype. Hence, casting a subtype into a supertype

is trivial. Since the first field of a node of any type is guaranteed to be the NodeTag,

any node can be cast into Node *. Declaring a variable to be of Node * (instead of

void *) can facilitate debugging.

In the following we show examples of casting a subtype into a supertype and vice

versa, by using the example of SeqScanState and PlanState. PlanState is the common

abstract superclass for all PlanState-type nodes, including ScanState node. ScanState

extends PlanState for node types that represent scans of an underlying relation. Its sub-

types include SeqScanState, IndexScanState, and IndexOnlyScanState among oth-

ers. To cast SeqScanState into PlanState we can use direct casting such as (PlanState

*) SeqScanState *.

Casting a supertype into a subtype on the other hand requires a run-time call to a

castNode macro, which will check whether the NodeTag of the given pointer is of the

given subtype. Similarly, a supertype can be cast directly into a subtype after invoking

the IsA macro at run-time, which will check whether the given node is of the requested

32.8 PostgreSQL Internals for Developers 51

subtype (again by checking the NodeTag value). The following code snippet shows an

example of casting a supertype into a subtype by using the castNode macro:

static TupleTableSlot *
ExecSeqScan(PlanState *pstate)
{

/* Cast a PlanState (supertype) into a SeqScanState (subtype) */
SeqScanState *node = castNode(SeqScanState, pstate);
...

}

32.8.6 Datum

Datum is a generic data type used to store the internal representation of a single value of

any SQL data type that can be stored in a PostgreSQL table. It is defined in postgres.h.

A Datum contains either a value of a pass-by-value type or a pointer to a value of a

pass-by-reference type. The code using the Datum has to know which type it is, since

the Datum itself does not contain that information. Usually, C code will work with a

value in a native representation, and then convert to or from a Datum in order to pass

the value through data-type-independent interfaces.

There are a number of macros to cast a Datum to and from one of the specific data

types. For instance:

• Int32GetDatum(int): will return a Datum representation of an Int32.

• DatumGetInt32(Datum): will return Int32 from a Datum.

Similar macros exist for all other data types such as Bool (boolean), and Char (char-

acter) data types.

32.8.7 Tuple

Datums are used to extensively to represent values in tuples. A tuple comprises of a

sequence of Datums. HeapTupleData (defined in include/access/htup.h) is an in-

memory data structure that points to a tuple. It contains the length of a tuple, and a

pointer to the tuple header. The structure definition is as follows:

typedef struct HeapTupleData
{

uint32 t len; /* length of *t data */
ItemPointerData t self; /* SelfItemPointer */
Oid t tableOid; /* table the tuple came from */
HeapTupleHeader t data; /* pointer to tuple header and data */

} HeapTupleData;

52 Chapter 32 PostgreSQL

The t len field contains the tuple length; the value of this field should always be valid,

except in the pointer-to-nothing case. The t self pointer is a pointer to an item within

a disk page of a known file. It consists of a block ID (which is a unique identifier of a

block), and an offset within the block. The t self and t tableOid (the ID of the table

the tuple belongs to) values should be valid if the HeapTupleData points to a disk

buffer, or if it represents a copy of a tuple on disk. They should be explicitly set invalid

in tuples that do not correspond to tables in the database.

There are several ways in which a pointer t data can point to a tuple:

• Pointer to a tuple stored in a disk buffer: which is a pointer directly to a pinned

buffer page (when the page is stored in the memory buffer pool).

• Pointer to nothing: which points to NULL, and is frequently used as a failure indi-

cator in functions.

• Part of a palloc’d tuple: theHeapTupleData struct itself and the tuple form a single

palloc’d chunk. t data points to the memory location immediately following the

HeapTupleData struct.

• Separately allocated tuple: t data points to a palloc’d chunk that is not adjacent

to the HeapTupleData struct.

• Separately allocated minimal tuple: t data points minimal tuple offset bytes before

the start of a MinimalTuple.

MinimalTuple (defined in htup details.h) is an alternative representation to

HeapTuple that is used for transient tuples inside the executor, in places where transac-

tion status information is not required, and the tuple length is known. The purpose of

MinimalTuple is to save a few bytes per each tuple, which may be a worthwhile effort

over a number of tuples. This representation is chosen so that tuple access routines can

work with either full or minimal tuples via a HeapTupleData pointer structure intro-

duced above. The access routines see no difference, except that they must not access

fields that are not part of the MinimalTuple (such as the tuple length for instance).

PostgreSQL developers recommend that tuples (both MinimalTuple and HeapTu-

ple) should be accessed via TupleTableSlot routines. TupleTableSlot is an abstraction

used in the executor to hide details to where tuple pointers point to (e.g., buffer page,

heap allocated memory, etc). The executor stores tuples in a “tuple table”, which is

a list of independent TupleTableSlot(s), which enables cursor-like behavior. The Tu-

pleTableSlot routines will prevent access to the system columns and thereby prevent

accidental use of the nonexistent fields. Examples of TupleTableSlot routines include

the following:

32.8 PostgreSQL Internals for Developers 53

PostgresMain()
exec simple query()

pg parse query()
raw parser() – calling the parser

pg analyze rewrite()
parse analyze() – calling the parser (analyzer)
pg rewrite query()

QueryRewrite() – calling the rewriter
RewriteQuery()

pg plan queries()
pg plan query()

planner() – calling the optimizer
create plan()

PortalRun()
PortalRunSelect()

ExecutorRun()
ExecutePlan() – calling the executor

ExecProcNode()
– uses the demand-driven pipeline execution model

or
ProcessUtility() – calling utilities

Figure 32.9 PostgreSQL Query Execution Stack

void (*copyslot) (TupleTableSlot *dstslot, TupleTableSlot *srcslot);

HeapTuple (*get heap tuple)(TupleTableSlot *slot);

MinimalTuple (*get minimal tuple)(TupleTableSlot *slot);

HeapTuple (*copy heap tuple)(TupleTableSlot *slot);

MinimalTuple (*copy minimal tuple)(TupleTableSlot *slot);

These function pointers are redefined for different types of tuples, such as Heap-

Tuple, MinimalTuple, BufferHeapTuple, and VirtualTuple.

32.8.8 Query Execution Stack

Figure 32.9 depicts the query execution stack through important function calls. The

execution starts with the PostgresMain() routine, which is the main module of the

PostgreSQL backend and can be found in /tcop/postgres.c. Execution then proceeds

through the parser, rewriter, optimizer, and executor.

Parser: When a query is received, the PostgresMain() routine calls

exec simple query(), which in turn calls first pg parse query() to perform the

parsing of the query. This function in turn calls the function raw parser() (which is

located in /parser/parser.c). The pg parse query() routine returns a list of raw parse

54 Chapter 32 PostgreSQL

trees – each parse tree representing a different command, since a query may contain

multiple select statements separated by semicolons.

Each parse tree is then individually analyzed and rewritten. This is achieved by call-

ing pg analyze rewrite() from the exec simple query() routine. For a given raw parse

tree, the pg analyze rewrite() routine performs parse analysis and applies rule rewrit-

ing (combining parsing and rewriting), returning a list of Query nodes as a result (since

one query can be expanded into several ones as a result of this process). The first routine

that pg analyze rewrite() invokes is parse analyze() (located in /parser/analyze.c)

to obtain a Query node of the given raw parse tree.

Rewriter: The rule rewrite system is triggered after parser. It takes the output of the

parser, one Query tree, and defined rewrite rules, and creates zero or more Query trees

as result. Typical examples of rewrite rules are replacing the use of a view with its

definition, or populating procedural fields. The parse analyze() call from the parser

is thus followed by pg rewrite query() to perform rewriting. The pg rewrite query()

invokes the QueryRewrite() routine (located in /rewrite/rewriteHandler.c), which is

the primary module of the query rewriter. This method in turn makes a recursive call

of RewriteQuery() where rewrite rules are repeatedly applied, as long as some rule is

applicable.

Optimizer: After pg analyze rewrite() finishes, producing a list of Query nodes as

output, the pg plan queries() routine is invoked to generate plans for all the nodes

from the Query list. Each Query node is optimized by calling pg plan query(), which

in turn invokes planner() (located in /plan/planner.c), which is the main entry point

for the optimizer. The planner() routine invokes the create plan() routine to create

the best query plan for a given path, returning a Plan as output. Finally, the planner

routine creates a PlannedStmt node to be fed to the executor.

Executor: Once the best plan is found for each Query node, the exec simple query()

routine calls PortalRun(). A portal, previously created in the initialization step (dis-

cussed in the next section), represents the execution state of query. PortalRun() in turn

invokes ExecutorRun() through PortalRunSelect() in the case of queries, or ProcessU-

tility() in the case of utility functions for each individual statement. Both ExecutorRun()

and ProcessUtility() accept a PlannedStmt node; the only difference is that the utility

call has the commandType attribute of the node set to CMD UTILITY.

The ExecutorRun() defined in execMain.c, which is the main routine of the execu-

tor module, invokes ExecutePlan()which processes the query plan by calling ExecProc-

Node() for each individual node in the plan, applying the demand-driven pipelining

(iterator) model (see Section 15.7.2.1 for more details).

32.8.8.1 Memory Management and Contexts Switches

Before making any changes to PostgreSQL code, it is important to understand how

different contexts get switched during the lifetime of a query. Figure 32.10 shows a

sketch of the query processing control flow, with key context switch points annotated

with comments.

32.8 PostgreSQL Internals for Developers 55

CreateQueryDesc()
ExecutorStart()

CreateExecutorState() — creates per-query context
switch to per-query context
InitPlan()

ExecInitNode() — recursively scans plan tree
CreateExprContext() — creates per-tuple context
ExecInitExpr()

ExecutorRun()
ExecutePlan()

ExecProcNode() — recursively called in per-query context
ExecEvalExpr() — called in per-tuple context
ResetExprContext() — to free per-tuple memory

ExecutorFinish()
ExecPostprocessPlan()
AfterTriggerEndQuery()

ExecutorEnd()
ExecEndPlan()

ExecEndNode() — recursively releases resources
FreeExecutorState() — frees per-query context and child contexts

FreeQueryDesc()

Figure 32.10 PostgreSQL Query Processing Control Flow

Initialization: The CreateQueryDesc() routine (defined in tcop/pquery.c), is invoked

through PortalStart(), i.e. in the initialization step before calling the ExecutorRun()

routine. This function allocates the query descriptor, which is then used in all key ex-

ecutor routines (ExecutorStart, ExecutorRun, ExecutorFinish, and ExecutorEnd). The

QueryDesc encapsulates everything that the executor needs to execute the query (e.g.,

a PlannedStmt of the chosen plan, source text of the query, the destination for tuple

output, parameter values that are passed in, and a PlanState, among other informa-

tion).

ExecutorStart() (defined in executor/ExecMain.c) is invoked through Portal-

Start(), when starting a new portal in which a query is going to be executed. This

function must be called at the beginning of execution of any query plan. Execu-

torStart() in turn calls CreateExecutorState() (defined in executor/utils.c) to create

a per-query context. After creating the per-query context, InitPlan() (defined in ex-

ecutor/execMain.c) allocates necessary memory, and calls the ExecInitNode() rou-

tine (defined in executor/execProcnode.c); this function recursively initializes all the

nodes in the plan tree. Query plan nodes may invoke CreateExprContext() (defined in

execUtils.c) to create a per tuple context, and ExecInitExpr() to initialize it.

Execution: After the initialization is finalized, the execution starts by invoking Execu-

torRun(), which calls ExecutePlan(), which in turn invokes ExecProcNode() for each

56 Chapter 32 PostgreSQL

node in the plan tree. The context is switched from the per-query context into the per-

tuple context for each invocation of the ExecEvalExpr() routine.

Upon the exit from this routine, ResetExprContext() is invoked. This is a macro

that invokes the MemoryContextReset() routine to release all the space allocated

within the per-tuple context.

Cleanup: The ExecutorFinish() routine must be called after ExecutorRun(), and before

ExecutorEnd(). This routine performs cleanup actions such as calling ExecPostpro-

cessPlan() to allow plan nodes to execute required actions before the shutdown, and

AfterTriggerEndQuery() to invoke all AFTER IMMEDIATE trigger events.

The ExecutorEnd() routine must be called at the end of execution. This routine

invokes ExecEndPlan() which in turn calls ExecEndNode() to recursively release all

resources. FreeExecutorState() frees up the per-query context and consequently all

of its child contexts (e.g., per-tuple contexts) if they have not been released already.

Finally, FreeQueryDesc() from tcop/pquery.c frees the query descriptor created by

CreateQueryDesc().

This fine level of control through different contexts coupled with palloc() and

pfree() routines ensures that memory leaks rarely happen in the backend.

32.8.9 Error Handling

PostgreSQL has a rich error handling mechanism, with most prominent being ereport()

and elog() macros. The ereport() macro is used for user-visible errors and allows for

a detailed specification through a number of fields (e.g. SQLSTATE, detail, hint, etc.).

The treatment of exceptions is conceptually similar to the treatment of exceptions in

other languages such as C++, but is implemented using a set of macros since C does

not have an exception mechanism defined as part of the language.

The elog(ERROR) function traces up the stack to the closest error handling block,

which can then either handle the error or re-throw it. The top-level error handler (if

reached) aborts the current transaction and resets the transaction’s memory context.

Reset in turn frees all resources held by the transaction, including files, locks, allocated

memory and pinned buffer pages. Assertions (i.e., the Assert function) help detect

programming errors, and are frequently used in PostgreSQL code.

32.8.10 Tips For Adding New Functionality

Adding a new feature for the first time in PostgreSQL can be an overwhelming expe-

rience even for researchers and experienced developers. This section provides some

guidelines and general advice on how to minimize the risk of failures.

First, one needs to isolate in which subsystem the desired feature should be imple-

mented, for example the backend, PostgreSQL contributions (contrib), etc. Once the

subsystem is identified, a general strategy is to explore how similar parts of the system

function. Developers are strongly advised against copying code directly since this is a

common source of errors. Instead, the developers should focus on understanding of

the exposed APIs, existing function calls, and the way they are used.

32.8 PostgreSQL Internals for Developers 57

Another common source of errors is re-implementing existing functionality, often

due to insufficient familiarity with the code base. A general guideline to avoid potential

errors and code duplication is to use existing APIs and add only necessary additions

to the existing code base. For instance, PostgreSQL has very good support of data

structures and algorithms that should be favored over custom made implementations.

Examples include:

• Simple linked list implementation: pg list.h, list.c

• Integrated/inline doubly- and singly- linked lists: ilist.h, ilist.c

• Binary Heap implementation: binaryheap.c

• Hopcroft-Karp maximum cardinality algorithm for bipartite graphs:

bipartite match.c

• Bloom Filter: bloomfilter.c

• Dynamic Shared Memory-Based Hash Tables: dshash.c

• HyperLogLog cardinality estimator: hyperloglog.c

• Knapsack problem solver: knapsack.c

• Pairing Heap implementation: pairingheap.c

• Red-Black binary tree: rbtree.c

• String handling: stringinfo.c

Prior to adding a desired functionality, the behavior of the feature should be dis-

cussed in depth, with a special focus on corner cases. Corner cases are frequently over-

looked and result in a substantial debugging overhead after the feature has been im-

plemented. Another important aspect is understanding the relationship between the

desired feature and other parts of PostgreSQL. Typical examples would include (but

are not limited to) the changes to the system catalog, or the parser.

PostgreSQL has a great community where developers can ask questions, and

questions are usually answered promptly. The web page https://www.postgresql.org/

developer/ provides links to a variety of resources that are useful for PostgreSQL devel-

opers. The pgsql-general@postgresql.org mailing list is targeted for developers, and

database administrators (DBAs) who have a question or problem when using Post-

greSQL. The pgsql-hackers@postgresql.org mailing list is targeted for developers to

submit and discuss patches, or for bug reports or issues with unreleased versions (e.g.

development snapshots, beta or release candidates), and for discussion about database

internals. Finally, the mailing list pgsql-novice@postgresql.org is a great starting point

for all new developers, with a group of people who answer even basic questions.

https://www.postgresql.org/developer/
https://www.postgresql.org/developer/

58 Chapter 32 PostgreSQL

Bibliographical Notes

Parts of this chapter are based on a previous version of the chapter, authored by Anas-

tasia Ailamaki, Sailesh Krishnamurthy, Spiros Papadimitriou, Bianca Schroeder, Karl

Schnaitter, and Gavin Sherry, which was published in the 6th edition of this textbook,

There is extensive online documentation of PostgreSQL at www.postgresql.org.

This Web site is the authoritative source for information on new releases of PostgreSQL,

which occur on a frequent basis. Until PostgreSQL version 8, the only way to run

PostgreSQL under Microsoft Windows was by using Cygwin. Cygwin is a Linux-like

environment that allows rebuilding of Linux applications from source to run under

Windows. Details are at www.cygwin.com. Books on PostgreSQL include [Schonig

(2018)], [Maymala (2015)] and [Chauhan and Kumar (2017)]. Rules as used in

PostgreSQL are presented in [Stonebraker et al. (1990)]. Many tools and extensions

for PostgreSQL are documented by the pgFoundry at www.pgfoundry.org. These in-

clude the pgtcl library and the pgAccess administration tool mentioned in this chapter.

The pgAdmin tool is described on the Web atwww.pgadmin.org. Additional details re-

garding the database-design tools TOra and PostgreSQL Maestro can be found at tora.

sourceforge.net and https://www.sqlmaestro.com/products/postgresql/maestro/,

respectively.

The serializable snapshot isolation protocol used in PostgreSQL is described

in [Ports and Grittner (2012)].

An open-source alternative to PostgreSQL is MySQL, which is available for non-

commercial use under the GNU General Public License. MySQL may be embedded in

commercial software that does not have freely distributed source code, but this requires

a special license to be purchased. Comparisons between the most recent versions of

the two systems are readily available on the Web.

Bibliography

[Chauhan and Kumar (2017)] C. Chauhan and D. Kumar, PostgreSQL High Performance

Cookbook, Packt Publishing (2017).

[Maymala (2015)] J. Maymala, PostgreSQL for data architects, Packt Publ., Birmingham

(2015).

[Ports and Grittner (2012)] D. R. K. Ports and K. Grittner, “Serializable Snapshot Isolation

in PostgreSQL”, Proceedings of the VLDB Endowment, Volume 5, Number 12 (2012), pages

1850–1861.

[Schonig (2018)] H.-J. Schonig, Mastering PostgreSQL 11, Packt Publishing (2018).

[Stonebraker et al. (1990)] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos, “On

Rules, Procedure, Caching and Views in Database Systems”, In Proc. of the ACM SIGMOD

Conf. on Management of Data (1990), pages 281–290.

www.postgresql.org
www.cygwin.com
http://scholar.google.com/scholar?hl/en&q=Schonig, Hans-Jurgen Mastering PostgreSQL 11
http://scholar.google.com/scholar?hl/en&q=Maymala, Jayadevan {PostgreSQL for data architects}
http://scholar.google.com/scholar?hl/en&q=Chauhan, Chitij and Kumar, Dinesh PostgreSQL High Performance Cookbook
https://doi.acm.org/10.1145/93597.98737
www.pgfoundry.org
www.pgadmin.org
tora.sourceforge.net
tora.sourceforge.net
https://www.sqlmaestro.com/products/postgresql/maestro/
http://scholar.google.com/scholar?hl/en&q=Dan R. K. Ports and Kevin Grittner Serializable Snapshot Isolation in {PostgreSQL}
http://scholar.google.com/scholar?hl/en&q=Chauhan, Chitij and Kumar, Dinesh PostgreSQL High Performance Cookbook
http://scholar.google.com/scholar?hl/en&q=Chauhan, Chitij and Kumar, Dinesh PostgreSQL High Performance Cookbook
http://scholar.google.com/scholar?hl/en&q=Maymala, Jayadevan {PostgreSQL for data architects}
http://scholar.google.com/scholar?hl/en&q=Maymala, Jayadevan {PostgreSQL for data architects}
http://scholar.google.com/scholar?hl/en&q=Dan R. K. Ports and Kevin Grittner Serializable Snapshot Isolation in {PostgreSQL}
http://scholar.google.com/scholar?hl/en&q=Dan R. K. Ports and Kevin Grittner Serializable Snapshot Isolation in {PostgreSQL}
http://scholar.google.com/scholar?hl/en&q=Schonig, Hans-Jurgen Mastering PostgreSQL 11
http://scholar.google.com/scholar?hl/en&q=Schonig, Hans-Jurgen Mastering PostgreSQL 11
https://doi.acm.org/10.1145/93597.98737
https://doi.acm.org/10.1145/93597.98737

	PostgreSQL
	Interacting with PostgreSQL
	System Architecture
	Storage and Indexing
	Query Processing and Optimization
	Transaction Management in PostgreSQL
	SQL Variations and Extensions
	Foreign Data Wrappers
	PostgreSQL Internals for Developers
	Bibliographical Notes

