

Chapter 10: Big Data

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use

Motivation

- Very large volumes of data being collected
 - Driven by growth of web, social media, and more recently internet-ofthings
 - Web logs were an early source of data
 - Analytics on web logs has great value for advertisements, web site structuring, what posts to show to a user, etc
- Big Data: differentiated from data handled by earlier generation databases
 - Volume: much larger amounts of data stored
 - Velocity: much higher rates of insertions
 - Variety: many types of data, beyond relational data

Querying Big Data

- Transaction processing systems that need very high scalability
 - Many applications willing to sacrifice ACID properties and other database features, if they can get very high scalability
- Query processing systems that
 - Need very high scalability, and
 - need to support non-relation data

Big Data Storage Systems

- Distributed file systems
- Sharding across multiple databases
- Key-value storage systems
- Parallel and distributed databases

Distributed File Systems

- A distributed file system stores data across a large collection of machines, but provides single file-system view
- Highly scalable distributed file system for large data-intensive applications.
 - E.g. 10K nodes, 100 million files, 10 PB
- Provides redundant storage of massive amounts of data on cheap and unreliable computers
 - Files are replicated to handle hardware failure
 - Detect failures and recovers from them
- Examples:
 - Google File System (GFS)
 - Hadoop File System (HDFS)

Hadoop File System Architecture

Hadoop Distributed File System (HDFS)

NameNode

- Maps a filename to list of Block IDs
- Maps each Block ID to DataNodes containing a replica of the block
- **DataNode** : Maps a Block ID to a physical location on disk
- Data Coherency
 - Write-once-read-many access model
 - Client can only append to existing files
- Distributed file systems good for millions of large files
 - but have very high overheads and poor performance with billions of smaller tuples

Sharding

- **Sharding**: partition data across multiple databases
- Partitioning usually done on some *partitioning attributes* (also known as *partitioning keys* or *shard keys* e.g. user ID
 - E.g. records with key values from 1 to 100,000 on database 1, records with key values from 100,001 to 200,000 on database 2, etc.
- Application must track which records are on which database and send queries/updates to that database
- Positives: scales well, easy to implement
- Drawbacks:
 - Not transparent: application has to deal with routing of queries, queries that span multiple databases
 - When a database is overloaded, moving part of its load out is not easy
 - Chance of failure more with more databases
 - need to keep replicas to ensure availability, which is more work for application

Key Value Storage Systems

- Key-value storage systems store large numbers (billions or even more) of small (KB-MB) sized records
- Records are partitioned across multiple machines and
- Queries are routed by the system to appropriate machine
- Records are also replicated across multiple machines, to ensure availability even if a machine fails
 - Key-value stores ensure that updates are applied to all replicas, to ensure that their values are consistent

Key Value Storage Systems

- Key-value stores may store
 - **uninterpreted bytes**, with an associated key
 - E.g. Amazon S3, Amazon Dynamo
 - Wide-table (can have arbitrarily many attribute names) with associated key
 - Google BigTable, Apache Cassandra, Apache Hbase, Amazon DynamoDB
 - Allows some operations (e.g. filtering) to execute on storage node
 - JSON
 - MongoDB, CouchDB (document model)
- Document stores store semi-structured data, typically JSON
- Some key-value stores support multiple versions of data, with timestamps/version numbers

Data Representation

```
An example of a JSON object is:
 ٤
   "ID": "22222",
   "name": {
        "firstname: "Albert",
        "lastname: "Einstein"
   },
   "deptname": "Physics",
   "children": [
        { "firstname": "Hans", "lastname": "Einstein" },
        { "firstname": "Eduard", "lastname": "Einstein" }
```


Key Value Storage Systems

- Key-value stores support
 - *put*(key, value): used to store values with an associated key,
 - get(key): which retrieves the stored value associated with the specified key
 - *delete*(key) -- Remove the key and its associated value
- Some systems also support *range queries* on key values
- Document stores also support queries on non-key attributes
 - See book for MongoDB queries
- Key value stores are not full database systems
 - Have no/limited support for transactional updates
 - Applications must manage query processing on their own
- Not supporting above features makes it easier to build scalable data storage systems
 - Also called **NoSQL** systems

Parallel and Distributed Databases

- Parallel databases run multiple machines (cluser)
 - Developed in 1980s, well before Big Data
- Parallel databases were designed for smaller scale (10s to 100s of machines)
 - Did not provide easy scalability
- **Replication** used to ensure data availability despite machine failure
 - But typically restart query in event of failure
 - Restarts may be frequent at very large scale
 - Map-reduce systems (coming up next) can continue query execution, working around failures

Replication and Consistency

- Availability (system can run even if parts have failed) is essential for parallel/distributed databases
 - Via replication, so even if a node has failed, another copy is available
- **Consistency** is important for replicated data
 - All live replicas have same value, and each read sees latest version
 - Often implemented using majority protocols
 - E.g. have 3 replicas, reads/writes must access 2 replicas
 - Details in chapter 23
- Network partitions (network can break into two or more parts, each with active systems that can't talk to other parts)
- In presence of partitions, cannot guarantee both availability and consistency
 - Brewer's CAP "Theorem"

Replication and Consistency

- Very large systems will partition at some point
 - Choose one of consistency or availability
- Traditional database choose consistency
- Most Web applications choose availability
 - Except for specific parts such as order processing
- More details later, in Chapter 23

The MapReduce Paradigm

- Platform for reliable, scalable parallel computing
- Abstracts issues of distributed and parallel environment from programmer
 - Programmer provides core logic (via map() and reduce() functions)
 - System takes care of parallelization of computation, coordination, etc
- Paradigm dates back many decades
 - But very large scale implementations running on clusters with 10³ to 10⁴ machines are more recent
 - Google Map Reduce, Hadoop, ..
- Data storage/access typically done using distributed file systems or key-value stores

MapReduce: Word Count Example

- Consider the problem of counting the number of occurrences of each word in a large collection of documents
- How would you do it in parallel ?
- Solution:
 - Divide documents among workers
 - Each worker parses document to find all words, map function outputs (word, count) pairs
 - Partition (word, count) pairs across workers based on word
 - For each word at a worker, reduce function locally add up counts
- Given input: "One a penny, two a penny, hot cross buns."
 - Records output by the map() function would be
 - ("One", 1), ("a", 1), ("penny", 1),("two", 1), ("a", 1), ("penny", 1), ("hot", 1), ("cross", 1), ("buns", 1).
 - Records output by reduce function would be
 - ("One", 1), ("a", 2), ("penny", 2), ("two", 1), ("hot", 1), ("cross", 1), ("buns", 1)

Pseudo-code of Word Count

map(String record):
 for each word in record
 emit(word, 1);

// First attribute of emit above is called reduce key
// In effect, group by is performed on reduce key to create a
// list of values (all 1's in above code). This requires shuffle step
// across machines.

// The reduce function is called on list of values in each group

```
reduce(String key, List value_list):
   String word = key
   int count = 0;
   for each value in value_list:
      count = count + value
   Output(word, count);
```


MapReduce Programming Model

- Inspired from map and reduce operations commonly used in functional programming languages like Lisp.
- Input: a set of key/value pairs
- User supplies two functions:
 - map(k,v) \rightarrow list(k1,v1)
 - reduce(k1, list(v1)) \rightarrow v2
- (k1,v1) is an intermediate key/value pair
- Output is the set of (k1,v2) pairs
- For our example, assume that system
 - breaks up files into lines, and
 - calls map function with value of each line
 - Key is the line number

MapReduce Example 2: Log Processing

• Given log file in following format:

```
...
2013/02/21 10:31:22.00EST <u>/slide-dir/11.ppt</u>
2013/02/21 10:43:12.00EST <u>/slide-dir/12.ppt</u>
2013/02/22 18:26:45.00EST <u>/slide-dir/13.ppt</u>
2013/02/22 20:53:29.00EST <u>/slide-dir/12.ppt</u>
```

- Goal: find how many times each of the files in the slide-dir directory was accessed between 2013/01/01 and 2013/01/31.
- Options:

. . .

- Sequential program too slow on massive datasets
- Load into database expensive, direct operation on log files cheaper
- Custom built parallel program for this task possible, but very laborious
- Map-reduce paradigm

MapReduce: File Access Count Example

```
map(String key, String record) {
```

String attribute[3];

```
.... break up record into tokens (based on space character), and store the tokens in array attributes
```

String date = attribute[0];

```
String time = attribute[1];
```

```
String filename = attribute[2];
```

```
if (date between 2013/01/01 and 2013/01/31
and filename starts with "/slide-dir/")
```

```
emit(filename, 1).
```

```
}
```

```
reduce(String key, List recordlist) {
```

```
String filename = key;
```

```
int count = 0;
```

```
For each record in recordlist
```

```
count = count + 1.
```

```
output(filename, count)
```

```
Database System Concepts - 7th Edition
```


Schematic Flow of Keys and Values

Flow of keys and values in a map reduce task

A

Parallel Processing of MapReduce Job

Hadoop MapReduce

- Google pioneered map-reduce implementations that could run on thousands of machines (nodes), and transparently handle failures of machines
- Hadoop is a widely used open source implementation of Map Reduce written in Java
 - Map and reduce functions can be written in several different languages, we use Java.
- Input and output to map reduce systems such as Hadoop must be done in parallel
 - Google used GFS distributed file system
 - Hadoop uses Hadoop File System (HDFS),
 - Input files can be in several formats
 - Text/CSV
 - compressed representation such as Avro, ORC and Parquet
 - Hadoop also supports key-value stores such as Hbase, Cassandra, MongoDB, etc

Hadoop

- Types in Hadoop
 - Generic Mapper and Reducer interfaces both take four type arguments, that specify the types of the
 - input key, input value, output key and output value
 - Map class in next slide implements the Mapper interface
 - Map input key is of type LongWritable, i.e. a long integer
 - Map input value which is (all or part of) a document, is of type Text.
 - Map output key is of type Text, since the key is a word,
 - Map output value is of type IntWritable, which is an integer value.

{

Hadoop Code in Java: Map Function

public static class Map extends Mapper<LongWritable, Text, Text, IntWritable>

```
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context)
     throws IOException, InterruptedException
{
   String line = value.toString();
   StringTokenizer tokenizer = new StringTokenizer(line);
   while (tokenizer.hasMoreTokens()) {
        word.set(tokenizer.nextToken());
        context.write(word, one);
```

A

Hadoop Code in Java: Reduce Function

```
public static class Reduce extends Reducer<Text, IntWritable, Text,
IntWritable> {
```

```
public void reduce(Text key, Iterable<IntWritable> values,
```

```
Context context) throws IOException, InterruptedException
```

```
{
    int sum = 0;
    for (IntWritable val : values) {
        sum += val.get();
    }
    context.write(key, new IntWritable(sum));
}
```


Hadoop Job Parameters

- The classes that contain the map and reduce functions for the job
 - set by methods setMapperClass() and setReducerClass()
- The types of the job's output key and values
 - set by methods setOutputKeyClass() and setOutputValueClass()
- The input format of the job
 - set by method job.setInputFormatClass()
 - Default input format in Hadoop is the TextInputFormat,
 - map key whose value is a byte offset into the file, and
 - map value is the contents of one line of the file
- The directories where the input files are stored, and where the output files must be created
 - set by addInputPath() and addOutputPath()
- And many more parameters

A

Hadoop Code in Java: Overall Program

public class WordCount { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = new Job(conf, "wordcount"); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); job.setMapperClass(Map.class); job.setReducerClass(Reduce.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true);

Map Reduce vs. Databases

- Map Reduce widely used for parallel processing
 - Google, Yahoo, and 100's of other companies
 - Example uses: compute PageRank, build keyword indices, do data analysis of web click logs,
 - Allows procedural code in map and reduce functions
 - Allows data of any type
- Many real-world uses of MapReduce cannot be expressed in SQL
- But many computations are much easier to express in SQL
 - Map Reduce is cumbersome for writing simple queries

Map Reduce vs. Databases (Cont.)

- Relational operations (select, project, join, aggregation, etc) can be expressed using Map Reduce
- SQL queries can be translated into Map Reduce infrastructure for exectuion
 - Apache Hive SQL, Apache Pig Latin, Microsoft SCOPE
- Current generation execution engines support not only Map Reduce, but also other algebraic operations such as joins, aggregation, etc natively.

BEYOND MAPREDUCE: ALGEBRAIC OPERATIONS

Algebraic Operations

- Current generation execution engines
 - natively support algebraic operations such as joins, aggregation, etc natively.
 - Allow users to create their own algebraic operators
 - Support trees of algebraic operators that can be executed on multiple nodes in parallel
- E.g. Apache Tez, Spark
 - Tex provides low level API; Hive on Tez compiles SQL to Tez
 - Spark provides more user-friendly API

Algebraic Operations in Spark

- Resilient Distributed Dataset (RDD) abstraction
 - Collection of records that can be stored across multiple machines
- RDDs can be created by applying algebraic operations on other RDDs
- RDDs can be lazily computed when needed
- Spark programs can be written in Java/Scala/R
 - Our examples are in Java
- Spark makes use of Java 8 Lambda expressions; the code

s - > Arrays.asList(s.split(" ")).iterator()

defines unnamed function that takes argument s and executes the expression Arrays.asList(s.split(" ")).iterator() on the argument

 Lambda functions are particularly convenient as arguments to map, reduce and other functions

Word Count in Spark

SparkSession spark =
 SparkSession.builder().appName("WordCount").getOrCreate();

JavaRDD<String> lines = spark.read().textFile(args[0]).javaRDD(); JavaRDD<String> words = lines.flatMap(s -> Arrays.asList(s.split(" ")).iterator()); JavaPairRDD<String, Integer> ones = words.mapToPair(s -> new Tuple2<>(s, 1)); JavaPairRDD<String, Integer> counts = ones.reduceByKey((i1, i2) -> i1 + i2);

counts.saveAsTextFile("outputDir"); // Save output files in this directory

```
List<Tuple2<String, Integer>> output = counts.collect();
for (Tuple2<String,Integer> tuple : output) {
    System.out.println(tuple);
}
spark.stop();
```


Algebraic Operations in Spark

- Algebraic operations in Spark are typically executed in parallel on multiple machines
 - With data partitioned across the machines
- Algebraic operations are executed lazily, not immediately
 - Our preceding program creates an operator tree
 - Tree is executed only on specific functions such as saveAsTextFile() or collect()
 - Query optimization can be performed on tree before it is executed

Spark DataFrames and DataSet

- RDDs in Spark can be typed in programs, but not dynamically
- The DataSet type allows types to be specified dynamically
- Row is a row type, with attribute names
 - In code below, attribute names/types of instructor and department are inferred from files read
- Operations filter, join, groupBy, agg, etc defined on DataSet, and can execute in parallel
- Dataset<Row> instructor = spark.read().parquet("..."); Dataset<Row> department = spark.read().parquet("..."); instructor.filter(instructor.col("salary").gt(100000))
 .join(department, instructor.col("dept name"))
 .equalTo(department.col("dept name")))
 .groupBy(department.col("building"))
 .agg(count(instructor.col("ID")));

STREAMING DATA

Streaming Data and Applications

- Streaming data refers to data that arrives in a continuous fashion
 - Contrast to data-at-rest
- Applications include:
 - Stock market: stream of trades
 - e-commerce site: purchases, searches
 - Sensors: sensor readings
 - Internet of things
 - Network monitoring data
 - Social media: tweets and posts can be viewed as a stream
- Queries on streams can be very useful
 - Monitoring, alerts, automated triggering of actions

Querying Streaming Data

Approaches to querying streams:

- Windowing: Break up stream into windows, and queries are run on windows
 - Stream query languages support window operations
 - Windows may be based on time or tuples
 - Must figure out when all tuples in a window have been seen
 - Easy if stream totally ordered by timestamp
 - Punctuations specify that all future tuples have timestamp greater that some value
- Continuous Queries: Queries written e.g. in SQL, output partial results based on stream seen so far; query results updated continuously
 - Have some applications, but can lead to flood of updates

Querying Streaming Data (Cont.)

Approaches to querying streams (cont.):

Algebraic operators on streams:

- Each operator consumes tuples from a stream and outputs tuples
- Operators can be written e.g. in an imperative language
- Operator may maintain state

Pattern matching:

- Queries specify patterns, system detects occurrences of patterns and triggers actions
- Complex Event Processing (CEP) systems
- E.g. Microsoft StreamInsight, Flink CEP, Oracle Event Processing

Stream Processing Architectures

- Many stream processing systems are purely in-memory, and do not persist data
- Lambda architecture: split stream into two, one output goes to stream processing system and the other to a database for storage
 - Easy to implement and widely used
 - But often leads to duplication of querying effort, once on streaming system and once in database

Stream Extensions to SQL

- SQL Window functions described in Section 5.5.2
- Streaming systems often support more window types
 - Tumbling window
 - E.g. hourly windows, windows don't overlab
 - Hopping window
 - E.g. hourly window computed every 20 minutes
 - Sliding window
 - Window of specified size (based on timestamp interval or number of tuples) around each incoming tuple
 - Session window
 - Groups tuples based on user sessions

Window Syntax in SQL

- Windowing syntax varies widely by system
- E.g. in Azure Stream Analytics SQL: select item, System. Timestamp as window end, sum(amount) from order timestamp by datetime group by itemid, tumblingwindow(hour, 1)
- Aggregates are applied on windows
- Result of windowing operation on a stream is a relation
- Many systems support stream-relation joins
- Stream-stream joins often require join conditions to specify bound on timestamp gap between matching tuples
 - E.g. tuples must be at most 30 minutes apart in timestamp

Algebraic Operations on Streams

- Tuples in streams need to be routed to operators
- Routing of streams using DAG and publish-subscribe representations
 - Used e.g. in Apache Storm and Apache Kafka respective

(a) DAG representation of streaming data flow

(b) Publish-subscribe representation of streaming data flow

Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan

Publish Subscribe Systems

- Publish-subscribe (pub-sub) systems provide convenient abstraction for processing streams
 - Tuples in a stream are published to a topic
 - Consumers subscribe to topic
- Parallel pub-sub systems allow tuples in a topic to be partitioned across multiple machines
- Apache Kafka is a popular parallel pub-sub system widely used to manage streaming data
- More details in book

GRAPH DATABASES

Graph Data Model

- Graphs are a very general data model
- ER model of an enterprise can be viewed as a graph
 - Every entity is a node
 - Every binary relationship is an edge
 - Ternary and higher degree relationships can be modelled as binary relationships

Graph Data Model (Cont.)

- Graphs can be modelled as relations
 - node(ID, label, node_data)
 - edge(fromID, toID, label, edge_data)
- Above representation too simplistic
- Graph databases like Neo4J can provide a graph view of relational schema
 - Relations can be identified as representing either nodes or edges
- Query languages for graph databases make it
 - easy to express queries requiring edge traversal
 - allow efficient algorithms to be used for evaluation

Graph Data Model (Cont.)

- Suppose
 - relations *instructor* and *student* are nodes, and
 - relation *advisor* represents edges between instructors and student
- Query in Neo4J: match (*i*:*instructor*)<-[:*advisor*]-(*s*:*student*) where *i*.*dept name*= 'Comp. Sci.' return *i*.ID as ID, *i*.*name* as *name*, collect(*s*.*name*) as *advisees*
- match clause matches nodes and edges in graphs
- Recursive traversal of edges is also possible
 - Suppose *prereq(course_id, prereq_id)* is modeled as an edge
 - Transitive closure can be done as follows:

```
match (c1:course)-[:prereq *1..]->(c2:course)
return c1.course id, c2.course id
```


Parallel Graph Processing

- Very large graphs (billions of nodes, trillions of edges)
 - Web graph: web pages are nodes, hyper links are edges
 - Social network graph: people are nodes, friend/follow links are edges
- Two popular approaches for parallel processing on such graphs
 - Map-reduce and algebraic frameworks
 - Bulk synchronous processing (BSP) framework
- Multiple iterations are required for any computations on graphs
 - Map-reduce/algebraic frameworks often have high overheads per iteration
 - BSP frameworks have much lower per-iteration overheads
- Google's Pregel system popularized the BSP framework
- Apache Giraph is an open-source version of Pregel
- Apache Spark's GraphX component provides a Pregel-like API

Bulk Synchronous Processing

Bulk synchronous processing framework

- Each vertex (node) of a graph has data (state) associated with it
 - Vertices are partitioned across multiple machines, and state of node kept in-memory
- Analogous to map() and reduce() functions, programmers provide methods to be executed for each node
 - Node method can send messages to or receive messages from neighboring nodes
- Computation consists of multiple iterations, or supersteps
- In each superstep
 - nodes process received messages
 - update their state, and
 - send further messages or vote to halt
 - Computation ends when all nodes vote to halt, and there are no pending messages;

END OF CHAPTER

Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan