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Motivation

 Very large volumes of data being collected
• Driven by growth of web, social media, and more recently internet-of-

things
• Web logs were an early source of data
 Analytics on web logs has great value for advertisements, web site 

structuring, what posts to show to a user, etc

 Big Data:  differentiated from data handled by earlier generation 
databases
• Volume: much larger amounts of data stored
• Velocity: much higher rates of insertions
• Variety: many types of data, beyond relational data
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Querying Big Data

 Transaction processing systems that need very high scalability
• Many applications willing to sacrifice ACID properties and other database 

features, if they can get very high scalability

 Query processing systems that
• Need very high scalability, and 
• need to support non-relation data
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Big Data Storage Systems

 Distributed file systems
 Sharding across multiple databases
 Key-value storage systems
 Parallel and distributed databases
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Distributed File Systems

 A distributed file system stores data across a large collection of 
machines, but provides single file-system view

 Highly scalable distributed file system for large data-intensive 
applications.

• E.g. 10K nodes, 100 million files, 10 PB
 Provides redundant storage of massive amounts of data on cheap and 

unreliable computers
• Files are replicated to handle hardware failure
• Detect failures and recovers from them

 Examples: 

• Google File System (GFS)
• Hadoop File System (HDFS)
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Hadoop File System Architecture

 Single Namespace for entire 
cluster

 Files are broken up into 
blocks
• Typically 64 MB block 

size
• Each block replicated on 

multiple DataNodes
 Client

• Finds location of blocks 
from NameNode

• Accesses data directly 
from DataNode
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Hadoop Distributed File System (HDFS)

 NameNode
• Maps a filename to list of Block IDs
• Maps each Block ID to DataNodes containing a replica of the block

 DataNode : Maps a Block ID to a physical location on disk

 Data Coherency
• Write-once-read-many access model
• Client can only append to existing files

 Distributed file systems good for millions of large files
• but have very high overheads and poor performance with billions 

of smaller tuples
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Sharding

 Sharding: partition data across multiple databases
 Partitioning usually done on some partitioning attributes (also 

known as partitioning keys or shard keys e.g. user ID
• E.g. records with key values from 1 to 100,000 on database 1,

records with key values from 100,001 to 200,000 on database 2, etc.

 Application must track which records are on which database and send 
queries/updates to that database

 Positives: scales well, easy to implement
 Drawbacks:

• Not transparent: application has to deal with routing of queries, queries 
that span multiple databases

• When a database is overloaded, moving part of its load out is not easy
• Chance of failure more with more databases
 need to keep replicas to ensure availability, which is more work for 

application
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Key Value Storage Systems

 Key-value storage systems store large numbers (billions or even 
more) of small (KB-MB) sized records

 Records are partitioned across multiple machines and 
 Queries are routed by the system to appropriate machine
 Records are also replicated across multiple machines, to ensure 

availability even if a machine fails
• Key-value stores ensure that updates are applied to all replicas, to ensure 

that their values are consistent
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Key Value Storage Systems

 Key-value stores may store 
• uninterpreted bytes, with an associated key
 E.g. Amazon S3, Amazon Dynamo

• Wide-table (can have arbitrarily many attribute names) with associated 
key

• Google BigTable, Apache Cassandra, Apache Hbase, Amazon 
DynamoDB

• Allows some operations (e.g. filtering) to execute on storage node
• JSON
 MongoDB, CouchDB (document model)

 Document stores store semi-structured data, typically JSON
 Some key-value stores support multiple versions of data, with 

timestamps/version numbers



©Silberschatz, Korth and Sudarshan10.12Database System Concepts - 7th Edition

Data Representation

 An example of a JSON object is:
{

"ID": "22222",
"name": {

"firstname: "Albert",
"lastname: "Einstein"

},
"deptname": "Physics",
"children": [

{ "firstname": "Hans", "lastname": "Einstein" },
{ "firstname": "Eduard", "lastname": "Einstein" }

]
}
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Key Value Storage Systems

 Key-value stores support
• put(key, value):  used to store values with an associated key, 
• get(key):  which retrieves the stored value associated with the 

specified key
• delete(key) -- Remove the key and its associated value

 Some systems also support range queries on key values
 Document stores also support queries on non-key attributes

• See book for MongoDB queries

 Key value stores are not full database systems
• Have no/limited support for transactional updates
• Applications must manage query processing on their own

 Not supporting above features makes it easier to build scalable data 
storage systems
• Also called NoSQL systems
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Parallel and Distributed Databases

 Parallel databases run multiple machines  (cluser)
• Developed in 1980s, well before Big Data

 Parallel databases were designed for smaller scale (10s to 100s of 
machines)
• Did not provide easy scalability

 Replication used to ensure data availability despite machine failure
• But typically restart query in event of failure
 Restarts may be frequent at very large scale
 Map-reduce systems (coming up next) can continue query execution, 

working around failures
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Replication and Consistency

 Availability (system can run even if parts have failed) is 
essential for parallel/distributed databases
• Via replication, so even if a node has failed, another copy is 

available
 Consistency is important for replicated data

• All live replicas have same value, and each read sees latest version
• Often implemented using majority protocols
 E.g. have 3 replicas, reads/writes must access 2 replicas

• Details in chapter 23

 Network partitions (network can break into two or more parts, each 
with active systems that can’t talk to other parts)

 In presence of partitions, cannot guarantee both availability and 
consistency
• Brewer’s CAP “Theorem”
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Replication and Consistency

 Very large systems will partition at some point
• Choose one of consistency or availability

 Traditional database choose consistency
 Most Web applications choose availability

• Except for specific parts such as order processing

 More details later, in Chapter 23
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The MapReduce Paradigm

 Platform for reliable, scalable parallel computing
 Abstracts issues of distributed and parallel environment from 

programmer
• Programmer provides core logic (via map() and reduce() functions)
• System takes care of parallelization of computation, coordination, etc

 Paradigm dates back many decades 
• But very large scale implementations running on clusters with 10^3 

to 10^4 machines are more recent
• Google Map Reduce, Hadoop, ..

 Data storage/access typically done using distributed file systems or 
key-value stores
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MapReduce: Word Count Example

 Consider the problem of counting the number of occurrences of each 
word in a large collection of documents

 How would you do it in parallel ? 
 Solution:

• Divide documents among workers
• Each worker parses document to find all words, map function outputs 

(word, count) pairs
• Partition (word, count) pairs across workers based on word
• For each word at a worker, reduce function locally add up counts

 Given input:  “One a penny, two a penny, hot cross buns.”
• Records output by the map() function would be

 (“One”, 1), (“a”, 1), (“penny”, 1),(“two”, 1), (“a”, 1), (“penny”, 1), 
(“hot”, 1), (“cross”, 1), (“buns”, 1).

• Records output by reduce function would be 
 (“One”, 1), (“a”, 2), (“penny”, 2), (“two”, 1), (“hot”, 1), (“cross”, 1), 

(“buns”, 1)
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Pseudo-code of Word Count

map(String record): 
for each word in record 

emit(word, 1); 

// First attribute of emit above is called reduce key
// In effect, group by is performed on reduce key to create a 
// list of values (all 1’s in above code).  This requires shuffle step 
// across machines.
// The reduce function is called on list of values in each group

reduce(String key, List value_list): 
String word = key
int count = 0; 
for each value in value_list: 

count = count + value
Output(word, count);
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MapReduce Programming Model

 Inspired from map and reduce operations commonly used in 
functional programming languages like Lisp.

 Input: a set of key/value pairs
 User supplies two functions:

• map(k,v)  list(k1,v1) 
• reduce(k1, list(v1))  v2

 (k1,v1) is an intermediate key/value pair
 Output is the set of (k1,v2) pairs 
 For our example, assume that system 

• breaks up files into lines, and 
• calls map function with value of each line
 Key is the line number
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MapReduce Example 2: Log Processing

 Given log file in following format:      
...
2013/02/21 10:31:22.00EST /slide-dir/11.ppt
2013/02/21 10:43:12.00EST /slide-dir/12.ppt
2013/02/22 18:26:45.00EST /slide-dir/13.ppt
2013/02/22 20:53:29.00EST /slide-dir/12.ppt
...

 Goal: find how many times each of the  files in the slide-dir directory 
was accessed between 2013/01/01 and 2013/01/31.

 Options:
• Sequential program too slow on massive datasets
• Load into database expensive, direct operation on log files cheaper
• Custom built parallel program for this task possible, but very laborious
• Map-reduce paradigm

http://db-book.com/slide-dir/11.ppt
http://db-book.com/slide-dir/12.ppt
http://db-book.com/slide-dir/13.ppt
http://db-book.com/slide-dir/12.ppt
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MapReduce: File Access Count Example

map(String key, String record) {
String attribute[3];
…. break up record into tokens (based on space character), and store the  

tokens in array attributes
String date = attribute[0];
String time = attribute[1];
String filename = attribute[2];
if (date between 2013/01/01 and 2013/01/31  

and filename starts with "/slide-dir/")
emit(filename, 1).

}
reduce(String key, List recordlist) {

String filename = key;
int count = 0;
For each record in recordlist

count = count + 1.
output(filename, count)

}
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Schematic Flow of Keys and Values

 Flow of keys and values in a map reduce task

mk1 mv1

mk2 mv2

mkn mvn

rk1 rv1

rk7 rv2

rk3 rv3

rk2 rv8

rki rvn

rk1 rv7

rk2 rvi

rk1 rv1,rv7,...  

rk2 rv8,rvi,...  

rk3 rv3,...      

rk7 rv2,...      

rki ... rvn,...  

map inputs
(key, value)

map outputs reduce inputs
(key, value)
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Parallel Processing of MapReduce Job
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Hadoop MapReduce

 Google pioneered map-reduce implementations that could run on thousands 
of machines (nodes), and transparently handle failures of machines

 Hadoop is a widely used open source implementation of Map Reduce written 
in Java
• Map and reduce functions can be written in several different languages, 

we use Java.
 Input and output to map reduce systems such as Hadoop must be done in 

parallel
• Google used GFS distributed file system
• Hadoop uses Hadoop File System (HDFS), 
• Input files can be in several formats
 Text/CSV
 compressed representation such as Avro, ORC and Parquet

• Hadoop also supports key-value stores such as Hbase, Cassandra, 
MongoDB, etc
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Hadoop

 Types in Hadoop
• Generic Mapper and Reducer interfaces both take four type 

arguments, that specify the types of the
 input key, input value, output key and output value

• Map class in next slide implements the Mapper interface
 Map input key is of type LongWritable, i.e. a long integer
 Map input value which is (all or part of) a document, is of type 

Text.
 Map output key is of type Text, since the key is a word,
 Map output value is of type IntWritable, which is an integer 

value.
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Hadoop Code in Java: Map Function

public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> 
{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context)  

throws IOException, InterruptedException
{

String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());
context.write(word, one);

}
}

}
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Hadoop Code in Java: Reduce Function

public static class Reduce extends Reducer<Text, IntWritable, Text, 
IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, 
Context context)  throws IOException, InterruptedException

{
int sum = 0;
for (IntWritable val : values) {

sum += val.get();
}
context.write(key, new IntWritable(sum));

}
}
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Hadoop Job Parameters

 The classes that contain the map and reduce functions for the job
• set by methods setMapperClass() and setReducerClass()

 The types of the job’s output key and values
• set by methods setOutputKeyClass() and setOutputValueClass()

 The input format of the job
• set by method job.setInputFormatClass()
 Default input format in Hadoop is the TextInputFormat, 

• map key whose value is a byte offset into the file, and 
• map value is the contents of one line of the file

 The directories where the input files are stored, and where the output files 
must be created
• set by addInputPath() and addOutputPath()

 And many more parameters
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Hadoop Code in Java: Overall Program

public class WordCount {
public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);

}
}
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Map Reduce vs. Databases

 Map Reduce widely used for parallel processing
• Google, Yahoo, and 100’s of other companies
• Example uses: compute PageRank, build keyword indices, do data 

analysis of web click logs, ….
• Allows procedural code in map and reduce functions
• Allows data of any type

 Many real-world uses of MapReduce cannot be expressed in SQL
 But many computations are much easier to express in SQL

• Map Reduce is cumbersome for writing simple queries
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Map Reduce vs.  Databases (Cont.)

 Relational operations (select, project, join, aggregation, etc) can be 
expressed using Map Reduce

 SQL queries can be translated into Map Reduce infrastructure for 
exectuion
• Apache Hive SQL, Apache Pig Latin, Microsoft SCOPE

 Current generation execution engines support not only Map Reduce, 
but also other algebraic operations such as joins, aggregation, etc
natively.
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BEYOND MAPREDUCE: 
ALGEBRAIC OPERATIONS
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Algebraic Operations

 Current generation execution engines 
• natively support algebraic operations such as joins, aggregation, etc

natively.
• Allow users to create their own algebraic operators
• Support trees of algebraic operators that can be executed on multiple 

nodes in parallel

 E.g. Apache Tez, Spark
• Tex provides low level API; Hive on Tez compiles SQL to Tez
• Spark provides more user-friendly API
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Algebraic Operations in Spark

 Resilient Distributed Dataset (RDD) abstraction
• Collection of records that can be stored across multiple machines

 RDDs can be created by applying algebraic operations on other 
RDDs

 RDDs can be lazily computed when needed
 Spark programs can be written in Java/Scala/R

• Our examples are in Java

 Spark makes use of Java 8 Lambda expressions; the code
s - > Arrays.asList(s.split(" ")).iterator() 

defines unnamed function that takes argument s and executes the 
expression Arrays.asList(s.split(" ")).iterator()  on the argument

 Lambda functions are particularly convenient as arguments to map, 
reduce and other functions 
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Word Count in Spark
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Algebraic Operations in Spark

 Algebraic operations in Spark are typically executed in parallel on 
multiple machines
• With data partitioned across the machines

 Algebraic operations are executed lazily, not immediately
• Our preceding program creates an operator tree
• Tree is executed only on specific functions such as saveAsTextFile() or 

collect()
• Query optimization can be performed on tree before it is executed
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Spark DataFrames and DataSet

 RDDs in Spark can be typed in programs, but not dynamically
 The DataSet type allows types to be specified dynamically
 Row is a row type, with attribute names 

• In code below, attribute names/types of instructor and department 
are inferred from files read 

 Operations filter, join, groupBy, agg, etc defined on DataSet, and can 
execute in parallel

 Dataset<Row> instructor = spark.read().parquet("...");
Dataset<Row> department = spark.read().parquet("...");
instructor.filter(instructor.col("salary").gt(100000))
.join(department, instructor.col("dept name")
.equalTo(department.col("dept name")))
.groupBy(department.col("building"))
.agg(count(instructor.col("ID"))); 
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STREAMING DATA



©Silberschatz, Korth and Sudarshan10.41Database System Concepts - 7th Edition

Streaming Data and Applications

 Streaming data refers to data that arrives in a continuous fashion
• Contrast to data-at-rest

 Applications include:
• Stock market: stream of trades
• e-commerce site: purchases, searches
• Sensors: sensor readings
 Internet of things

• Network monitoring data
• Social media: tweets and posts can be viewed as a stream

 Queries on streams can be very useful
• Monitoring, alerts, automated triggering of actions
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Querying Streaming Data

Approaches to querying streams:
 Windowing: Break up stream into windows, and queries are run on 

windows
• Stream query languages support window operations
• Windows may be based on time or tuples
• Must figure out when all tuples in a window have been seen
 Easy if stream totally ordered by timestamp
 Punctuations specify that all future tuples have timestamp greater 

that some value

 Continuous Queries: Queries written e.g. in SQL, output partial 
results based on stream seen so far;  query results updated 
continuously
• Have some applications, but can lead to flood of updates
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Querying Streaming Data (Cont.)

Approaches to querying streams (cont.):
 Algebraic operators on streams:

• Each operator consumes tuples from a stream and outputs tuples
• Operators can be written e.g. in an imperative language
• Operator may maintain state

 Pattern matching: 
• Queries specify patterns, system detects occurrences of patterns and 

triggers actions
• Complex Event Processing (CEP) systems
• E.g. Microsoft StreamInsight, Flink CEP, Oracle Event Processing
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Stream Processing Architectures

 Many stream processing systems are purely in-memory, and do not 
persist data

 Lambda architecture: split stream into two, one output goes to 
stream processing system and the other to a database for storage
• Easy to implement and widely used
• But often leads to duplication of querying effort, once on streaming 

system and once in database
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Stream Extensions to SQL

 SQL Window functions described in Section 5.5.2
 Streaming systems often support more window types

• Tumbling window
 E.g. hourly windows, windows don’t overlab

• Hopping window
 E.g. hourly window computed every 20 minutes

• Sliding window
 Window of specified size (based on timestamp interval or number of 

tuples) around each incoming tuple
• Session window
 Groups tuples based on user sessions 
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Window Syntax in SQL

 Windowing syntax varies widely by system
 E.g. in Azure Stream Analytics SQL:

select item, System.Timestamp as window end, sum(amount)
from order timestamp by datetime
group by itemid, tumblingwindow(hour, 1) 

 Aggregates are applied on windows
 Result of windowing operation on a stream is a relation
 Many systems support stream-relation joins
 Stream-stream joins often require join conditions to specify bound on 

timestamp gap between matching tuples
• E.g. tuples must be at most 30 minutes apart in timestamp
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Algebraic Operations on Streams

 Tuples in streams need to be routed to operators
 Routing of streams using DAG and publish-subscribe representations

• Used e.g. in Apache Storm and Apache Kafka respective
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Publish Subscribe Systems

 Publish-subscribe (pub-sub) systems provide convenient 
abstraction for processing streams
• Tuples in a stream are published to a topic
• Consumers subscribe to topic

 Parallel pub-sub systems allow tuples in a topic to be partitioned 
across multiple machines

 Apache Kafka is a popular parallel pub-sub system widely used to 
manage streaming data

 More details in book
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GRAPH DATABASES
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Graph Data Model

 Graphs are a very general data model
 ER model of an enterprise can be viewed as a graph

• Every entity is a node
• Every binary relationship is an edge
• Ternary and higher degree relationships can be modelled as binary 

relationships
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Graph Data Model (Cont.)

 Graphs can be modelled as relations
• node(ID, label, node_data)
• edge(fromID, toID, label, edge_data)

 Above representation too simplistic
 Graph databases like Neo4J can provide a graph view of relational 

schema
• Relations can be identified as representing either nodes or edges

 Query languages for graph databases make it 
• easy to express queries requiring edge traversal
• allow efficient algorithms to be used for evaluation
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Graph Data Model (Cont.)

 Suppose
• relations instructor and student are nodes, and 
• relation advisor represents edges between instructors and student

 Query in Neo4J:
match (i:instructor)<-[:advisor]-(s:student)
where i.dept name= 'Comp. Sci.’
return i.ID as ID, i.name as name, collect(s.name) as advisees

 match clause matches nodes and edges in graphs
 Recursive traversal of edges is also possible

• Suppose prereq(course_id, prereq_id) is modeled as an edge
• Transitive closure can be done as follows:

match (c1:course)-[:prereq *1..]->(c2:course)
return c1.course id, c2.course id
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Parallel Graph Processing

 Very large graphs (billions of nodes, trillions of edges)
• Web graph:  web pages are nodes, hyper links are edges
• Social network graph: people are nodes, friend/follow links are edges

 Two popular approaches for parallel processing on such graphs
• Map-reduce and algebraic frameworks
• Bulk synchronous processing (BSP) framework

 Multiple iterations are required for any computations on graphs
• Map-reduce/algebraic frameworks often have high overheads per iteration
• BSP frameworks have much lower per-iteration overheads

 Google’s Pregel system popularized the BSP framework
 Apache Giraph is an open-source version of Pregel
 Apache Spark’s GraphX component provides a Pregel-like API 
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Bulk Synchronous Processing

Bulk synchronous processing framework
 Each vertex (node) of a graph has data (state) associated with it

• Vertices are partitioned across multiple machines, and state of node kept 
in-memory

 Analogous to map() and reduce() functions, programmers provide 
methods to be executed for each node
• Node method can send messages to or receive messages from 

neighboring nodes

 Computation consists of multiple iterations, or supersteps
 In each superstep

• nodes process received messages
• update their state, and 
• send further messages or vote to halt
• Computation ends when all nodes vote to halt, and there are no pending 

messages;
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END OF CHAPTER
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