

Chapter 11: Data Analytics

Chapter 11: Data Analytics

- Overview
- Data Warehousing
- Online Analytical Processing
- Data Mining

Overview

- Data analytics: the processing of data to infer patterns, correlations, or models for prediction
- Primarily used to make business decisions
 - Per individual customer
 - E.g. what product to suggest for purchase
 - Across all customers
 - E.g. what products to manufacture/stock, in what quantity
- Critical for businesses today

Overview (Cont.)

- Common steps in data analytics
 - Gather data from multiple sources into one location
 - Data warehouses also integrated data into common schema
 - Data often needs to be extracted from source formats, transformed to common schema, and loaded into the data warehouse
 - Can be done as ETL (extract-transform-load), or ELT (extractload-transform)
 - Generate aggregates and reports summarizing data
 - Dashboards showing graphical charts/reports
 - Online analytical processing (OLAP) systems allow interactive querying
 - Statistical analysis using tools such as R/SAS/SPSS
 - Including extensions for parallel processing of big data
 - Build **predictive models** and use the models for decision making

Overview (Cont.)

- Predictive models are widely used today
 - E.g. use customer profile features (e.g. income, age, gender, education, employment) and past history of a customer to predict likelihood of default on loan
 - and use prediction to make loan decision
 - E.g. use past history of sales (by season) to predict future sales
 - And use it to decide what/how much to produce/stock
 - And to target customers
- Other examples of business decisions:
 - What items to stock?
 - What insurance premium to change?
 - To whom to send advertisements?

Overview (Cont.)

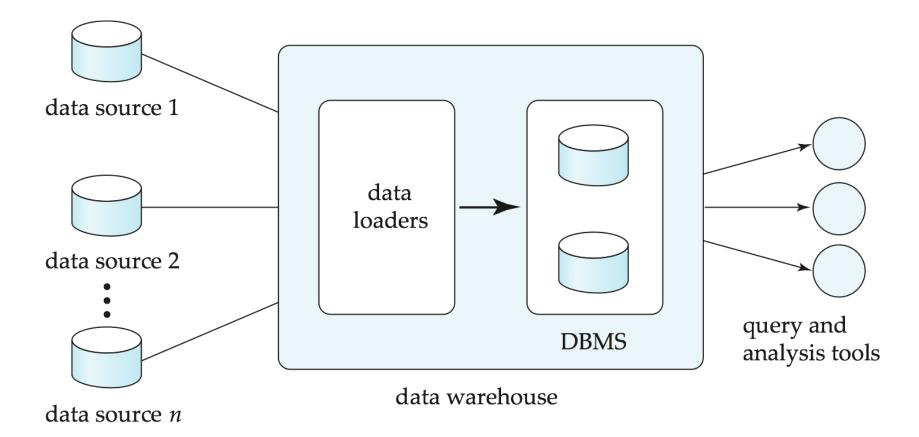
- Machine learning techniques are key to finding patterns in data and making predictions
- Data mining extends techniques developed by machine-learning communities to run them on very large datasets
- The term **business intelligence (BI)** is synonym for data analytics
- The term decision support focuses on reporting and aggregation

DATA WAREHOUSING

Data Warehousing

- Data sources often store only current data, not historical data
- Corporate decision making requires a unified view of all organizational data, including historical data
- A data warehouse is a repository (archive) of information gathered from multiple sources, stored under a unified schema, at a single site
 - Greatly simplifies querying, permits study of historical trends
 - Shifts decision support query load away from transaction processing systems

Data Warehousing



Design Issues

- When and how to gather data
 - **Source driven architecture**: data sources transmit new information to warehouse
 - either continuously or periodically (e.g. at night)
 - **Destination driven architecture:** warehouse periodically requests new information from data sources
 - Synchronous vs asynchronous replication
 - Keeping warehouse exactly synchronized with data sources (e.g. using two-phase commit) is often too expensive
 - Usually OK to have slightly out-of-date data at warehouse
 - Data/updates are periodically downloaded form online transaction processing (OLTP) systems.
- What schema to use
 - Schema integration

More Warehouse Design Issues

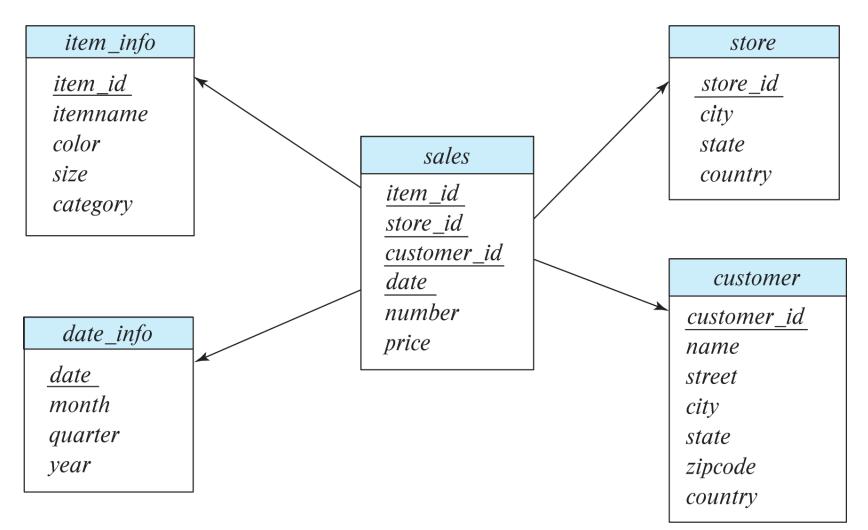
Data transformation and data cleansing

- E.g. correct mistakes in addresses (misspellings, zip code errors)
- Merge address lists from different sources and purge duplicates
- How to propagate updates
 - Warehouse schema may be a (materialized) view of schema from data sources
 - View maintenance
- What data to summarize
 - Raw data may be too large to store on-line
 - Aggregate values (totals/subtotals) often suffice
 - Queries on raw data can often be transformed by query optimizer to use aggregate values

Multidimensional Data and Warehouse Schemas

- Data in warehouses can usually be divided into
 - Fact tables, which are large
 - E.g sales(item_id, store_id, customer_id, date, number, price)
 - **Dimension tables**, which are relatively small
 - Store extra information about stores, items, etc
- Attributes of fact tables can be usually viewed as
 - Measure attributes
 - measure some value, and can be aggregated upon
 - e.g., the attributes number or price of the sales relation
 - Dimension attributes
 - dimensions on which measure attributes are viewed
 - e.g., attributes *item_id, color,* and *size* of the *sales* relation
 - Usually small ids that are foreign keys to dimension tables

Data Warehouse Schema



Multidimensional Data and Warehouse Schemas

- Resultant schema is called a **star schema**
 - More complicated schema structures
 - Snowflake schema: multiple levels of dimension tables
 - May have multiple fact tables
- Typically
 - fact table joined with dimension tables and then
 - group-by on dimension table attributes, and then
 - aggregation on measure attributes of fact table
- Some applications do not find it worthwhile to bring data to a common schema
 - **Data lakes** are repositories which allow data to be stored in multiple formats, without schema integration
 - Less upfront effort, but more effort during querying

Database Support for Data Warehouses

- Data in warehouses usually append only, not updated
 - Can avoid concurrency control overheads
- Data warehouses often use column-oriented storage
 - E.g. a sequence of *sales* tuples is stored as follows
 - Values of item_id attribute are stored as an array
 - Values of store_id attribute are stored as an array,
 - And so on
 - Arrays are compressed, reducing storage, IO and memory costs significantly
 - Queries can fetch only attributes that they care about, reducing IO and memory cost
 - More details in Section 13.6
- Data warehouses often use parallel storage and query processing infrastructure
 - Distributed file systems, Map-Reduce, Hive, ...

Database System Concepts - 7th Edition

OLAP

Data Analysis and OLAP

Online Analytical Processing (OLAP)

- Interactive analysis of data, allowing data to be summarized and viewed in different ways in an online fashion (with negligible delay)
- We use the following relation to illustrate OLAP concepts
 - sales (item_name, color, clothes_size, quantity)

This is a simplified version of the *sales* fact table joined with the dimension tables, and many attributes removed (and some renamed)

Example sales relation

item_name	color	clothes_size	quantity
dress	dark	small	2
dress	dark	medium	6
dress	dark	large	12
dress	pastel	small	4
dress	pastel	medium	3
dress	pastel	large	3
dress	white	small	23
dress	white	medium	
dress	white	large	0
pants	dark	small	14
pants	dark	medium	6
pants	dark	large	0
pants	pastel	small	1
pants	pastel	medium	0
pants	pastel	large	1
pants	white	small	3
pants	white	medium	0
pants	white	large	2
shirt	dark	small	2
shirt	dark	medium	6
shirt	dark	large	6
shirt	pastel	small	4
shirt	pastel	medium	1
shirt	pastel	large	2
shirt	white	small	17
shirt	white	medium	1
shirt	white	large	10
skirt	dark	small	2
skirt	dark	medium	5
•••	•••	•••	•••

Database System Concepts - 7th Edition

. . .

. . .

. . .

©Silberschatz, Korth and Sudarshan

Cross Tabulation of sales by item_name and color

clothes_size **all**

		dark	pastel	white	total
	skirt	8	35	10	53
item_name	dress	20	10	5	35
_	shirt	14	7	28	49
	pants	20	2	5	27
	total	62	54	48	164

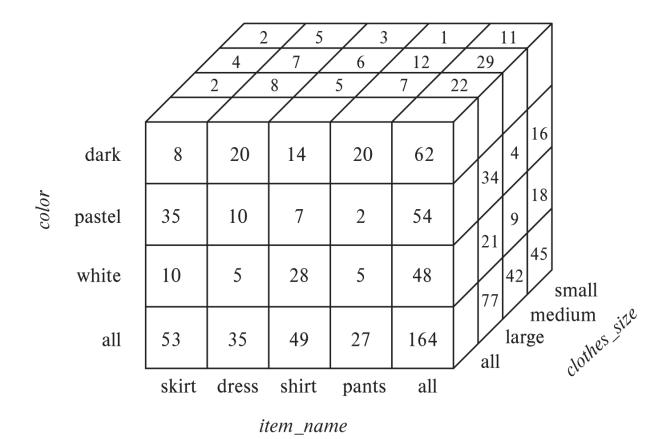
color

- The table above is an example of a cross-tabulation (cross-tab), also referred to as a pivot-table.
 - Values for one of the dimension attributes form the row headers
 - Values for another dimension attribute form the column headers
 - Other dimension attributes are listed on top
 - Values in individual cells are (aggregates of) the values of the dimension attributes that specify the cell.

Database System Concepts - 7th Edition

Data Cube

- A data cube is a multidimensional generalization of a cross-tab
- Can have n dimensions; we show 3 below
- Cross-tabs can be used as views on a data cube



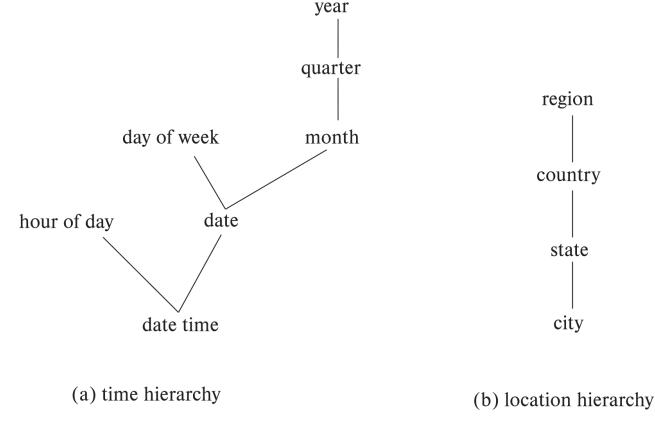
Database System Concepts - 7th Edition

Online Analytical Processing Operations

- **Pivoting:** changing the dimensions used in a cross-tab
 - E.g. moving colors to column names
- **Slicing:** creating a cross-tab for fixed values only
 - E.g fixing color to white and size to small
 - Sometimes called dicing, particularly when values for multiple dimensions are fixed.
- **Rollup:** moving from finer-granularity data to a coarser granularity
 - E.g. aggregating away an attribute
 - E.g. moving from aggregates by day to aggregates by month or year
- Drill down: The opposite operation that of moving from coarsergranularity data to finer-granularity data

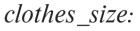
Hierarchies on Dimensions

- Hierarchy on dimension attributes: lets dimensions be viewed at different levels of detail
- E.g., the dimension *datetime* can be used to aggregate by hour of day, date, day of week, month, quarter or year



Cross Tabulation With Hierarchy

- Cross-tabs can be easily extended to deal with hierarchies
- Can drill down or roll up on a hierarchy
- E.g. hierarchy: *item_name* \rightarrow *category*



category	item_name		color			
		dark	pastel	white	to	tal
womenswear	skirt	8	8	10	53	
	dress	20	20	5	35	
	subtotal	28	28	15		88
menswear	pants	14	14	28	49	
	shirt	20	20	5	27	
	subtotal	34	34	33		76
total		62	62	48		164

Relational Representation of Cross-tabs

- Cross-tabs can be represented as relations
- We use the value all to represent aggregates.
- The SQL standard actually uses *null* values in place of **all**
 - Works with any data type
 - But can cause confusion with regular null values.

item_name	color	clothes_size	quantity
skirt	dark	all	8
skirt	pastel	all	35
skirt	white	all	10
skirt	all	all	53
dress	dark	all	20
dress	pastel	all	10
dress	white	all	5
dress	all	all	35
shirt	dark	all	14
shirt	pastel	all	7
shirt	white	all	28
shirt	all	all	49
pants	dark	all	20
pants	pastel	all	2
pants	white	all	5
pants	all	all	27
all	dark	all	62
all	pastel	all	54
all	white	all	48
all	all	all	164

OLAP IN SQL

Pivot Operation

```
    select *
        from sales
        pivot (
            sum(quantity)
            for color in ('dark','pastel','white')
        )
        order by item name;
```

item_name	clothes_size	dark	pastel	white
dress	small	2	4	2
dress	medium	6	3	3
dress	large	12	3	0
pants	small	14	1	3
pants	medium	6	0	0
pants	large	0	1	2
shirt	small	2	4	17
shirt	medium	6	1	1
shirt	large	6	2	10
skirt	small	2	11	2
skirt	medium	5	9	5
skirt	large	1	15	3

Cube Operation

- The cube operation computes union of group by's on every subset of the specified attributes
- E.g. consider the query

select item_name, color, size, sum(number)
from sales
group by cube(item_name, color, size)

This computes the union of eight different groupings of the *sales* relation:

{ (item_name, color, size), (item_name, color), (item_name, size), (color, size), (item_name), (color), (size), () }

where () denotes an empty group by list.

 For each grouping, the result contains the null value for attributes not present in the grouping.

Online Analytical Processing Operations

 Relational representation of cross-tab that we saw earlier, but with null in place of all, can be computed by

```
select item_name, color, sum(number)
from sales
group by cube(item_name, color)
```

- The function **grouping()** can be applied on an attribute
 - Returns 1 if the value is a null value representing all, and returns 0 in all other cases.

select case when grouping(item_name) = 1 then 'all'
 else item_name end as item_name,
 case when grouping(color) = 1 then 'all'
 else color end as color,
 'all' as clothes size, sum(quantity) as quantity
from sales
group by cube(item name, color);

Online Analytical Processing Operations

- Can use the function decode() in the select clause to replace such nulls by a value such as all
 - E.g., replace *item_name* in first query by decode(grouping(item_name), 1, 'all', *item_name*)

Extended Aggregation (Cont.)

- The rollup construct generates union on every prefix of specified list of attributes
- select item_name, color, size, sum(number) from sales group by rollup(item_name, color, size)

Generates union of four groupings:

{ (item_name, color, size), (item_name, color), (item_name), () }

- Rollup can be used to generate aggregates at multiple levels of a hierarchy.
- E.g., suppose table *itemcategory*(*item_name, category*) gives the category of each item. Then

select category, item_name, sum(number)
from sales, itemcategory
where sales.item_name = itemcategory.item_name
group by rollup(category, item_name)

would give a hierarchical summary by *item_name* and by *category*.

Extended Aggregation (Cont.)

- Multiple rollups and cubes can be used in a single group by clause
 - Each generates set of group by lists, cross product of sets gives overall set of group by lists
- E.g.,

select item_name, color, size, sum(number)
from sales
group by rollup(item_name), rollup(color, size)

generates the groupings

{*item_name, ()*} *X* {*(color, size), (color), ()*}

= { (item_name, color, size), (item_name, color), (item_name), (color, size), (color), () }

 select item_name, color, clothes_size, sum(quantity) from sales group by grouping sets ((color, clothes_size), (clothes_size, item_name));

OLAP Implementation

- The earliest OLAP systems used multidimensional arrays in memory to store data cubes, and are referred to as multidimensional OLAP (MOLAP) systems.
- OLAP implementations using only relational database features are called relational OLAP (ROLAP) systems
- Hybrid systems, which store some summaries in memory and store the base data and other summaries in a relational database, are called hybrid OLAP (HOLAP) systems.

OLAP Implementation (Cont.)

- Early OLAP systems precomputed *all* possible aggregates in order to provide online response
 - Space and time requirements for doing so can be very high
 - 2ⁿ combinations of group by
 - It suffices to precompute some aggregates, and compute others on demand from one of the precomputed aggregates
 - Can compute aggregate on (*item_name, color*) from an aggregate on (*item_name, color, size*)
 - For all but a few "non-decomposable" aggregates such as *median*
 - is cheaper than computing it from scratch
- Several optimizations available for computing multiple aggregates
 - Can compute aggregate on (*item_name, color*) from an aggregate on (*item_name, color, size*)
 - Can compute aggregates on (*item_name, color, size*), (*item_name, color*) and (*item_name*) using a single sorting of the base data

Reporting and Visualization

- Reporting tools help create formatted reports with tabular/graphical representation of data
 - E.g. SQL Server reporting services, Crystal Reports
- Data visualization tools help create interactive visualization of data
 - E.g Tableau, FusionChart, plotly, Datawrapper, Google Charts, etc
 - Frontend typically based on HTML+JavaScript

Acme Supply Company, Inc. Quarterly Sales Report

Period: Jan. 1 to March 31, 2009

Region	Category	Sales	Subtotal
North	Computer Hardware	1,000,000	
	Computer Software	500,000	
	All categories		1,500,000
South	Computer Hardware	200,000	
	Computer Software	400,000	
	All categories		600,000
		Total Sales	2,100,000

Database System Concepts - 7th Edition

DATA MINING

Data Mining

- Data mining is the process of semi-automatically analyzing large databases to find useful patterns
 - Similar goals to machine learning, but on very large volumes of data
- Part of the larger area of knowledge discovery in databases (KDD)
- Some types of knowledge can be represented as rules
- More generally, knowledge is discovered by applying machine learning techniques on past instances of data, to form a model
 - Model is then used to make predictions for new instances

Types of Data Mining Tasks

- Prediction based on past history
 - Predict if a credit card applicant poses a good credit risk, based on some attributes (income, job type, age, ..) and past history
 - Predict if a pattern of phone calling card usage is likely to be fraudulent
- Some examples of prediction mechanisms:
 - Classification
 - Items (with associated attributes) belong to one of several classes
 - Training instances have attribute values and classes provided
 - Given a new item whose class is unknown, predict to which class it belongs based on its attribute values
 - Regression formulae
 - Given a set of mappings for an unknown function, predict the function result for a new parameter value

Data Mining (Cont.)

Descriptive Patterns

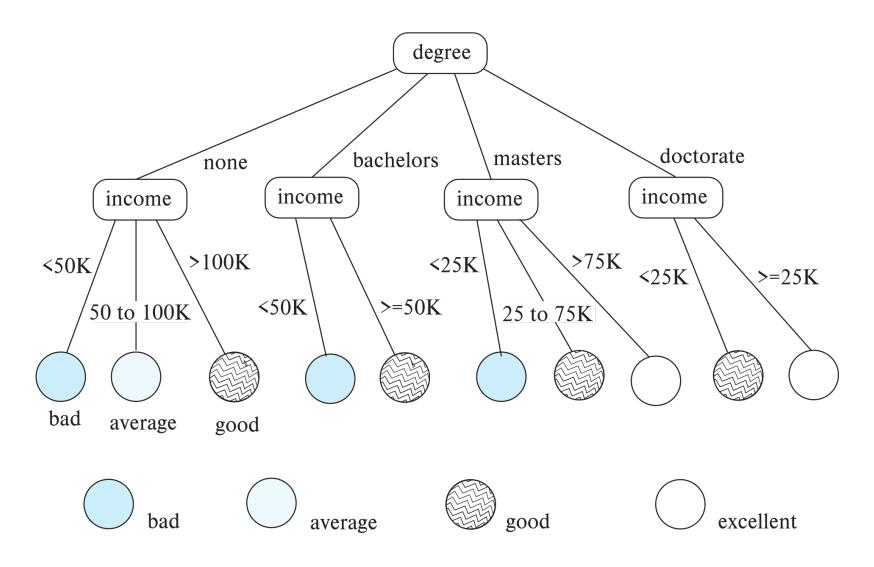
Associations

- Find books that are often bought by "similar" customers. If a new such customer buys one such book, suggest the others too.
- Associations may be used as a first step in detecting causation
 - E.g. association between exposure to chemical X and cancer,

Clusters

- E.g. typhoid cases were clustered in an area surrounding a contaminated well
- Detection of clusters remains important in detecting epidemics

Decision Tree Classifiers



©Silberschatz, Korth and Sudarshan

Decision Trees

- Each internal node of the tree partitions the data into groups based on a partitioning attribute, and a partitioning condition for the node
- Leaf node:
 - all (or most) of the items at the node belong to the same class, or
 - all attributes have been considered, and no further partitioning is possible.
- Traverse tree from top to make a prediction
- Number of techniques for constructing decision tree classifiers
 - We omit details

Bayesian Classifiers

Bayesian classifiers use **Bayes theorem**, which says $p(c_j | d) = \frac{p(d | c_j) p(c_j)}{p(d)}$

where

 $p(c_j | d) = \text{probability of instance } d \text{ being in class } c_j,$ $p(d | c_j) = \text{probability of generating instance } d \text{ given class } c_j,$ $p(c_j) = \text{probability of occurrence of class } c_j, \text{ and}$ p(d) = probability of instance d occuring

Naïve Bayesian Classifiers

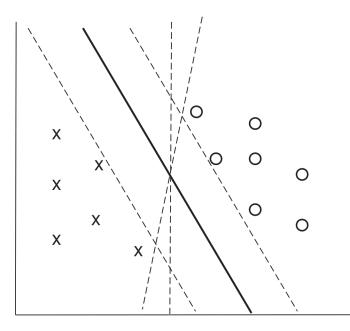
- Bayesian classifiers require
 - computation of $p(d | c_j)$
 - precomputation of p (c_j)
 - p(d) can be ignored since it is the same for all classes
- To simplify the task, naïve Bayesian classifiers assume attributes have independent distributions, and thereby estimate

 $p(d | c_j) = p(d_1 | c_j) * p(d_2 | c_j) ** (p(d_n | c_j))$

- Each of the p (d_i | c_j) can be estimated from a histogram on d_i values for each class c_j
 - the histogram is computed from the training instances
- Histograms on multiple attributes are more expensive to compute and store

Support Vector Machine Classifiers

- Simple 2-dimensional example:
 - Points are in two classes
 - Find a line (maximum margin line) s.t. line divides two classes, and distance from nearest point in either class is maximum

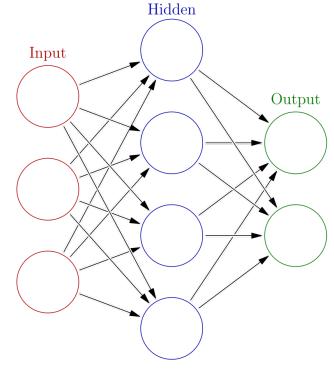


Support Vector Machine

- In n-dimensions points are divided by a plane, instead of a line
- SVMs can be used separators that are curve, not necessarily linear, by transforming points before classification
 - Transformation functions may be non-linear and are called kernel functions
 - Separator is a plane in the transformed space, but maps to curve in original space
- There may not be an exact planar separator for a given set of points
 - Choose plane that best separates points
- N-ary classification can be done by N binary classifications
 - In class *i* vs. not in class *i*.

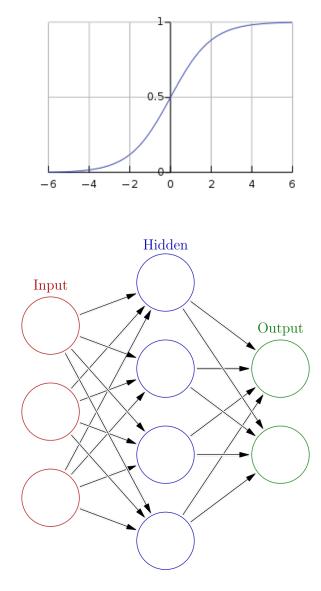
Neural Network Classifiers

- Neural network has multiple layers
 - Each layer acts as input to next later
- First layer has input nodes, which are assigned values from input attributes
- Each node combines values of its inputs using some weight function to compute its value
 - Weights are associated with edges
- For classification, each output value indicates likelihood of the input instance belonging to that class
 - Pick class with maximum likelihood
- Weights of edges are key to classification
- Edge weights are learnt during training phase



Neural Network Classifiers

- Value of a node may be linear combination of inputs, or may be a non-linear function
 - E.g. sigmoid function
- Backpropagation algorithm works as follows
 - Weights are set randomly initially
 - Training instances are processed one at a time
 - Output is computed using current weights
 - If classification is wrong, weights are tweaked to get a higher score for the correct class



Neural Networks (Cont.)

- Deep neural networks have a large number of layers with large number of nodes in each layer
- Deep learning refers to training of deep neural network on very large numbers of training instances
- Each layer may be connected to previous layers in different ways
 - Convolutional networks used for image processing
 - More complex architectures used for text processing, and machine translation, speech recognition, etc.
- Neural networks are a large area in themselves
 - Further details beyond scope of this chapter

Regression

- Regression deals with the prediction of a value, rather than a class.
 - Given values for a set of variables, X₁, X₂, ..., X_n, we wish to predict the value of a variable Y.
- One way is to infer coefficients a_0 , a_1 , a_1 , ..., a_n such that $Y = a_0 + a_1 * X_1 + a_2 * X_2 + ... + a_n * X_n$
- Finding such a linear polynomial is called **linear regression**.
 - In general, the process of finding a curve that fits the data is also called curve fitting.
- The fit may only be approximate
 - because of noise in the data, or
 - because the relationship is not exactly a polynomial
- Regression aims to find coefficients that give the best possible fit.

Association Rules

- Retail shops are often interested in associations between different items that people buy.
 - Someone who buys bread is quite likely also to buy milk
 - A person who bought the book *Database System Concepts* is quite likely also to buy the book *Operating System Concepts*.
- Associations information can be used in several ways.
 - E.g. when a customer buys a particular book, an online shop may suggest associated books.

Association rules:

bread \Rightarrow *milk DB-Concepts,* OS-Concepts \Rightarrow Networks

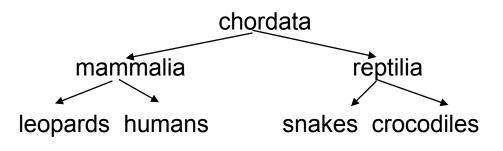
- Left hand side: antecedent, right hand side: consequent
- An association rule must have an associated population; the population consists of a set of instances
 - E.g. each transaction (sale) at a shop is an instance, and the set of all transactions is the population

Association Rules (Cont.)

- Rules have an associated support, as well as an associated confidence.
- Support is a measure of what fraction of the population satisfies both the antecedent and the consequent of the rule.
 - E.g. suppose only 0.001 percent of all purchases include milk and screwdrivers. The support for the rule is *milk* ⇒ *screwdrivers* is low.
- Confidence is a measure of how often the consequent is true when the antecedent is true.
 - E.g. the rule $bread \Rightarrow milk$ has a confidence of 80 percent if 80 percent of the purchases that include bread also include milk.
- We omit further details, such as how to efficiently infer association rules

Clustering

- Clustering: Intuitively, finding clusters of points in the given data such that similar points lie in the same cluster
- Can be formalized using distance metrics in several ways
 - Group points into k sets (for a given k) such that the average distance of points from the centroid of their assigned group is minimized
 - Centroid: point defined by taking average of coordinates in each dimension.
 - Another metric: minimize average distance between every pair of points in a cluster
- **Hierarchical clustering**: example from biological classification
 - (the word classification here does not mean a prediction mechanism)



Clustering and Collaborative Filtering

- Goal: predict what movies/books/... a person may be interested in, on the basis of
 - Past preferences of the person
 - Preferences of other people
- One approach based on repeated clustering
 - Cluster people based on their preferences for movies
 - Then cluster movies on the basis of being liked by the same clusters of people
 - Again cluster people based on their preferences for (the newly created clusters of) movies
 - Repeat above till equilibrium
 - Given new user
 - Find most similar cluster of existing users and
 - Predict movies in movie clusters popular with that user cluster
- Above problem is an instance of **collaborative filtering**

Database System Concepts - 7th Edition

Other Types of Mining

- **Text mining**: application of data mining to textual documents
- Sentiment analysis
 - E.g. learn to predict if a user review is positive or negative about a product
- Information extraction
 - Create structured information from unstructured textual description or semi-structured data such as tabular displays
- Entity recognition and disambiguation
 - E.g. given text with name "Michael Jordan" does the name refer to the famous basketball player or the famous ML expert
- Knowledge graph (see Section 8.4)
 - Can be constructed by information extraction from different sources, such as Wikipedia

End of Chapter

L

Best Splits

- Pick best attributes and conditions on which to partition
- The purity of a set S of training instances can be measured quantitatively in several ways.
 - Notation: number of classes = k, number of instances = |S|, fraction of instances in class i = p_i.
- The Gini measure of purity is defined as

Gini (S) = 1 -
$$\sum_{i=1}^{k} p^{2}_{i}$$

- When all instances are in a single class, the Gini value is 0
- It reaches its maximum (of 1 –1 /k) if each class the same number of instances.

Best Splits (Cont.)

• Another measure of purity is the **entropy** measure, which is defined as

entropy (S) =
$$-\sum_{i=1}^{k} p_i log_2 p_i$$

When a set S is split into multiple sets Si, I=1, 2, ..., r, we can measure the purity of the resultant set of sets as:

purity(
$$S_1, S_2, \dots, S_r$$
) = $\sum_{i=1}^r \frac{|S_i|}{|S|}$ purity (S_i)

The information gain due to particular split of S into S_i, i = 1, 2, ..., r
 Information-gain (S, {S₁, S₂, ..., S_r) = purity(S) – purity (S₁, S₂, ..., S_r)

Best Splits (Cont.)

- Measure of "cost" of a split: Information-content (S, {S₁, S₂,, S_r})) = $-\sum_{i=1}^{r} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$
- Information-gain ratio = Information-gain $(S, \{S_1, S_2, \dots, S_r\})$ Information-content $(S, \{S_1, S_2, \dots, S_r\})$
- The best split is the one that gives the maximum information gain ratio

Finding Best Splits

- Categorical attributes (with no meaningful order):
 - Multi-way split, one child for each value
 - Binary split: try all possible breakup of values into two sets, and pick the best
- Continuous-valued attributes (can be sorted in a meaningful order)
 - Binary split:
 - Sort values, try each as a split point
 - E.g. if values are 1, 10, 15, 25, split at $\leq 1, \leq 10, \leq 15$
 - Pick the value that gives best split
 - Multi-way split:
 - A series of binary splits on the same attribute has roughly equivalent effect

Decision-Tree Construction Algorithm

Procedure *GrowTree* (*S*) Partition (*S*);

Procedure Partition (S) if (purity (S) > δ_p or $|S| < \delta_s$) then return; for each attribute A evaluate splits on attribute A; Use best split found (across all attributes) to partition S into $S_1, S_2, ..., S_r$, for i = 1, 2, ..., rPartition (S_i);

Finding Association Rules

- We are generally only interested in association rules with reasonably high support (e.g. support of 2% or greater)
- Naïve algorithm
 - 1. Consider all possible sets of relevant items.
 - 2. For each set find its support (i.e. count how many transactions purchase all items in the set).
 - Large itemsets: sets with sufficiently high support
 - 3. Use large itemsets to generate association rules.
 - From itemset A generate the rule A $\{b\} \Rightarrow b$ for each $b \in A$.
 - Support of rule = support (*A*).
 - Confidence of rule = support (A) / support (A {b})

Finding Support

- Determine support of itemsets via a single pass on set of transactions
 - Large itemsets: sets with a high count at the end of the pass
- If memory not enough to hold all counts for all itemsets use multiple passes, considering only some itemsets in each pass.
- Optimization: Once an itemset is eliminated because its count (support) is too small none of its supersets needs to be considered.
- The **a priori** technique to find large itemsets:
 - Pass 1: count support of all sets with just 1 item. Eliminate those items with low support
 - Pass *i*: candidates: every set of *i* items such that all its *i-1* item subsets are large
 - Count support of all candidates
 - Stop if there are no candidates

Other Types of Associations

- Basic association rules have several limitations
- Deviations from the expected probability are more interesting
 - E.g. if many people purchase bread, and many people purchase cereal, quite a few would be expected to purchase both
 - We are interested in positive as well as negative correlations between sets of items
 - Positive correlation: co-occurrence is higher than predicted
 - Negative correlation: co-occurrence is lower than predicted
- Sequence associations / correlations
 - E.g. whenever bonds go up, stock prices go down in 2 days
- Deviations from temporal patterns
 - E.g. deviation from a steady growth
 - E.g. sales of winter wear go down in summer
 - Not surprising, part of a known pattern.
 - Look for deviation from value predicted using past patterns

Hierarchical Clustering

Agglomerative clustering algorithms

- Build small clusters, then cluster small clusters into bigger clusters, and so on
- Divisive clustering algorithms
 - Start with all items in a single cluster, repeatedly refine (break) clusters into smaller ones

Clustering Algorithms

- Clustering algorithms have been designed to handle very large datasets
- E.g. the Birch algorithm
 - Main idea: use an in-memory R-tree to store points that are being clustered
 - Insert points one at a time into the R-tree, merging a new point with an existing cluster if is less than some δ distance away
 - If there are more leaf nodes than fit in memory, merge existing clusters that are close to each other
 - At the end of first pass we get a large number of clusters at the leaves of the R-tree
 - Merge clusters to reduce the number of clusters