
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 13: Data Storage Structures

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan13.2Database System Concepts - 7th Edition

File Organization

 The database is stored as a collection of files. Each file is a
sequence of records. A record is a sequence of fields.

 One approach
• Assume record size is fixed
• Each file has records of one particular type only
• Different files are used for different relations
This case is easiest to implement; will consider variable length
records later

We assume that records are smaller than a disk block
.

©Silberschatz, Korth and Sudarshan13.3Database System Concepts - 7th Edition

Fixed-Length Records

 Simple approach:
• Store record i starting from byte n ∗ (i – 1), where n is the size of

each record.
• Record access is simple but records may cross blocks

 Modification: do not allow records to cross block boundaries

©Silberschatz, Korth and Sudarshan13.4Database System Concepts - 7th Edition

Fixed-Length Records

 Deletion of record i: alternatives:
• move records i + 1, . . ., n to i, . . . , n – 1
• move record n to i
• do not move records, but link all free records on a free list
Record 3 deleted

©Silberschatz, Korth and Sudarshan13.5Database System Concepts - 7th Edition

Fixed-Length Records

 Deletion of record i: alternatives:
• move records i + 1, . . ., n to i, . . . , n – 1
• move record n to i
• do not move records, but link all free records on a free list
Record 3 deleted and replaced by record 11

©Silberschatz, Korth and Sudarshan13.6Database System Concepts - 7th Edition

Fixed-Length Records

 Deletion of record i: alternatives:
• move records i + 1, . . ., n to i, . . . , n – 1
• move record n to i
• do not move records, but link all free records on a free list

©Silberschatz, Korth and Sudarshan13.7Database System Concepts - 7th Edition

Variable-Length Records

 Variable-length records arise in database systems in several ways:
• Storage of multiple record types in a file.
• Record types that allow variable lengths for one or more fields such

as strings (varchar)
• Record types that allow repeating fields (used in some older data

models).
 Attributes are stored in order
 Variable length attributes represented by fixed size (offset, length), with

actual data stored after all fixed length attributes
 Null values represented by null-value bitmap

©Silberschatz, Korth and Sudarshan13.8Database System Concepts - 7th Edition

Variable-Length Records: Slotted Page Structure

 Slotted page header contains:
• number of record entries
• end of free space in the block
• location and size of each record

 Records can be moved around within a page to keep them contiguous
with no empty space between them; entry in the header must be
updated.

 Pointers should not point directly to record — instead they should
point to the entry for the record in header.

©Silberschatz, Korth and Sudarshan13.9Database System Concepts - 7th Edition

Storing Large Objects

 E.g. blob/clob types
 Records must be smaller than pages
 Alternatives:

• Store as files in file systems
• Store as files managed by database
• Break into pieces and store in multiple tuples in separate relation

 PostgreSQL TOAST

©Silberschatz, Korth and Sudarshan13.10Database System Concepts - 7th Edition

Organization of Records in Files

 Heap – record can be placed anywhere in the file where there is
space

 Sequential – store records in sequential order, based on the value
of the search key of each record

 In a multitable clustering file organization records of several
different relations can be stored in the same file
• Motivation: store related records on the same block to

minimize I/O
 B+-tree file organization

• Ordered storage even with inserts/deletes
• More on this in Chapter 14

 Hashing – a hash function computed on search key; the result
specifies in which block of the file the record should be placed
• More on this in Chapter 14

©Silberschatz, Korth and Sudarshan13.11Database System Concepts - 7th Edition

Heap File Organization

 Records can be placed anywhere in the file where there is free space
 Records usually do not move once allocated
 Important to be able to efficiently find free space within file
 Free-space map

• Array with 1 entry per block. Each entry is a few bits to a byte,
and records fraction of block that is free

• In example below, 3 bits per block, value divided by 8 indicates
fraction of block that is free

• Can have second-level free-space map
• In example below, each entry stores maximum from 4 entries of

first-level free-space map

 Free space map written to disk periodically, OK to have wrong (old)
values for some entries (will be detected and fixed)

©Silberschatz, Korth and Sudarshan13.12Database System Concepts - 7th Edition

Sequential File Organization

 Suitable for applications that require sequential processing of
the entire file

 The records in the file are ordered by a search-key

©Silberschatz, Korth and Sudarshan13.13Database System Concepts - 7th Edition

Sequential File Organization (Cont.)

 Deletion – use pointer chains
 Insertion –locate the position where the record is to be inserted

• if there is free space insert there
• if no free space, insert the record in an overflow block
• In either case, pointer chain must be updated

 Need to reorganize the file
from time to time to restore
sequential order

©Silberschatz, Korth and Sudarshan13.14Database System Concepts - 7th Edition

Multitable Clustering File Organization
Store several relations in one file using a multitable clustering
file organization

department

instructor

multitable clustering
of department and
instructor

©Silberschatz, Korth and Sudarshan13.15Database System Concepts - 7th Edition

Multitable Clustering File Organization (cont.)

 good for queries involving department ⨝ instructor, and for
queries involving one single department and its instructors

 bad for queries involving only department
 results in variable size records
 Can add pointer chains to link records of a particular relation

©Silberschatz, Korth and Sudarshan13.16Database System Concepts - 7th Edition

Partitioning

 Table partitioning: Records in a relation can be partitioned into
smaller relations that are stored separately

 E.g. transaction relation may be partitioned into
transaction_2018, transaction_2019, etc.

 Queries written on transaction must access records in all partitions
• Unless query has a selection such as year=2019, in which case

only one partition in needed
 Partitioning

• Reduces costs of some operations such as free space
management

• Allows different partitions to be stored on different storage
devices
 E.g. transaction partition for current year on SSD, for older

years on magnetic disk

©Silberschatz, Korth and Sudarshan13.17Database System Concepts - 7th Edition

Data Dictionary Storage

 Information about relations
• names of relations
• names, types and lengths of attributes of each relation
• names and definitions of views
• integrity constraints

 User and accounting information, including passwords
 Statistical and descriptive data

• number of tuples in each relation
 Physical file organization information

• How relation is stored (sequential/hash/…)
• Physical location of relation

 Information about indices (Chapter 14)

The Data dictionary (also called system catalog) stores
metadata; that is, data about data, such as

©Silberschatz, Korth and Sudarshan13.18Database System Concepts - 7th Edition

Relational Representation of System Metadata

 Relational
representation on
disk

 Specialized data
structures
designed for
efficient access, in
memory

©Silberschatz, Korth and Sudarshan13.19Database System Concepts - 7th Edition

Storage Access

 Blocks are units of both storage allocation and data transfer.
 Database system seeks to minimize the number of block transfers

between the disk and memory. We can reduce the number of disk
accesses by keeping as many blocks as possible in main memory.

 Buffer – portion of main memory available to store copies of disk
blocks.

 Buffer manager – subsystem responsible for allocating buffer space
in main memory.

©Silberschatz, Korth and Sudarshan13.20Database System Concepts - 7th Edition

Buffer Manager

 Programs call on the buffer manager when they need a block from
disk.
• If the block is already in the buffer, buffer manager returns the

address of the block in main memory
• If the block is not in the buffer, the buffer manager

 Allocates space in the buffer for the block
• Replacing (throwing out) some other block, if required, to

make space for the new block.
• Replaced block written back to disk only if it was modified

since the most recent time that it was written to/fetched
from the disk.

 Reads the block from the disk to the buffer, and returns the
address of the block in main memory to requester.

©Silberschatz, Korth and Sudarshan13.21Database System Concepts - 7th Edition

Buffer Manager

 Buffer replacement strategy (details coming up!)
 Pinned block: memory block that is not allowed to be written back to disk

• Pin done before reading/writing data from a block
• Unpin done when read /write is complete
• Multiple concurrent pin/unpin operations possible

 Keep a pin count, buffer block can be evicted only if pin count = 0
 Shared and exclusive locks on buffer

• Needed to prevent concurrent operations from reading page contents
as they are moved/reorganized, and to ensure only one
move/reorganize at a time

• Readers get shared lock, updates to a block require exclusive lock
• Locking rules:

 Only one process can get exclusive lock at a time
 Shared lock cannot be concurrently with exclusive lock
 Multiple processes may be given shared lock concurrently

©Silberschatz, Korth and Sudarshan13.22Database System Concepts - 7th Edition

Buffer-Replacement Policies

 Most operating systems replace the block least recently used (LRU
strategy)
• Idea behind LRU – use past pattern of block references as a

predictor of future references
• LRU can be bad for some queries

 Queries have well-defined access patterns (such as sequential
scans), and a database system can use the information in a user’s
query to predict future references

 Mixed strategy with hints on replacement strategy provided
by the query optimizer is preferable

 Example of bad access pattern for LRU: when computing the join of 2
relations r and s by a nested loops
for each tuple tr of r do

for each tuple ts of s do
if the tuples tr and ts match …

©Silberschatz, Korth and Sudarshan13.23Database System Concepts - 7th Edition

Buffer-Replacement Policies (Cont.)

 Toss-immediate strategy – frees the space occupied by a block as soon
as the final tuple of that block has been processed

 Most recently used (MRU) strategy – system must pin the block
currently being processed. After the final tuple of that block has been
processed, the block is unpinned, and it becomes the most recently used
block.

 Buffer manager can use statistical information regarding the probability
that a request will reference a particular relation
• E.g., the data dictionary is frequently accessed. Heuristic: keep

data-dictionary blocks in main memory buffer
 Operating system or buffer manager may reorder writes

• Can lead to corruption of data structures on disk
 E.g. linked list of blocks with missing block on disk
 File systems perform consistency check to detect such situations

• Careful ordering of writes can avoid many such problems

©Silberschatz, Korth and Sudarshan13.24Database System Concepts - 7th Edition

Optimization of Disk Block Access (Cont.)

 Buffer managers support forced output of blocks for the purpose of recovery
(more in Chapter 19)

 Nonvolatile write buffers speed up disk writes by writing blocks to a non-
volatile RAM or flash buffer immediately
• Writes can be reordered to minimize disk arm movement

 Log disk – a disk devoted to writing a sequential log of block updates
• Used exactly like nonvolatile RAM

 Write to log disk is very fast since no seeks are required
 Journaling file systems write data in-order to NV-RAM or log disk

• Reordering without journaling: risk of corruption of file system data

©Silberschatz, Korth and Sudarshan13.25Database System Concepts - 7th Edition

Column-Oriented Storage

 Also known as columnar representation
 Store each attribute of a relation separately

©Silberschatz, Korth and Sudarshan13.26Database System Concepts - 7th Edition

Columnar Representation

 Benefits:
• Reduced IO if only some attributes are accessed
• Improved CPU cache performance
• Improved compression
• Vector processing on modern CPU architectures

 Drawbacks
• Cost of tuple reconstruction from columnar representation
• Cost of tuple deletion and update
• Cost of decompression

 Columnar representation found to be more efficient for decision
support than row-oriented representation

 Traditional row-oriented representation preferable for transaction
processing

 Some databases support both representations
• Called hybrid row/column stores

©Silberschatz, Korth and Sudarshan13.27Database System Concepts - 7th Edition

Columnar File Representation

 ORC and Parquet: file
formats with columnar
storage inside file

 Very popular for big-data
applications

 Orc file format shown on
right:

©Silberschatz, Korth and Sudarshan13.28Database System Concepts - 7th Edition

Storage Organization in
Main-Memory Databases

 Can store records directly in
memory without a buffer
manager

 Column-oriented storage can be
used in-memory for decision
support applications
• Compression reduces

memory requirement

©Silberschatz, Korth and Sudarshan13.29Database System Concepts - 7th Edition

End of Chapter 13

	Chapter 13: Data Storage Structures
	File Organization
	Fixed-Length Records
	Fixed-Length Records
	Fixed-Length Records
	Fixed-Length Records
	Variable-Length Records
	Variable-Length Records: Slotted Page Structure
	Storing Large Objects
	Organization of Records in Files
	Heap File Organization
	Sequential File Organization
	Sequential File Organization (Cont.)
	Multitable Clustering File Organization
	Multitable Clustering File Organization (cont.)
	Partitioning
	Data Dictionary Storage
	Relational Representation of System Metadata
	Storage Access
	Buffer Manager
	Buffer Manager
	Buffer-Replacement Policies
	Buffer-Replacement Policies (Cont.)
	Optimization of Disk Block Access (Cont.)
	Column-Oriented Storage
	Columnar Representation
	Columnar File Representation
	Storage Organization in �Main-Memory Databases
	End of Chapter 13

