
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

Chapter 14: Indexing

http://www.db-book.com/


©Silberschatz, Korth and Sudarshan14.2Database System Concepts - 7th Edition

Chapter 14:  Indexing

 Basic Concepts
 Ordered Indices 
 B+-Tree Index Files
 B-Tree Index Files
 Hashing
 Write-optimized indices 
 Spatio-Temporal Indexing



©Silberschatz, Korth and Sudarshan14.3Database System Concepts - 7th Edition

Basic Concepts

 Indexing mechanisms used to speed up access to desired data.
• E.g., author catalog in library

 Search Key - attribute to set of attributes used to look up 
records in a file.

 An index file consists of records (called index entries) of the 
form

 Index files are typically much smaller than the original file 
 Two basic kinds of indices:

• Ordered indices:  search keys are stored in sorted order
• Hash indices: search keys are distributed uniformly across 

“buckets” using a “hash function”. 

search-key pointer
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Index Evaluation Metrics

 Access types supported efficiently.  E.g., 
• records with a specified value in the attribute
• or records with an attribute value falling in a specified range 

of values.
 Access time
 Insertion time
 Deletion time
 Space overhead
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Ordered Indices

 In an ordered index, index entries are stored sorted on the 
search key value.  

 Clustering index: in a sequentially ordered file, the index whose 
search key specifies the sequential order of the file.
• Also called primary index
• The search key of a primary index is usually but not 

necessarily the primary key.
 Secondary index: an index whose search key specifies an order 

different from the sequential order of the file.  Also called 
nonclustering index.

 Index-sequential file: sequential file ordered on a search key, 
with a clustering index on the search key.
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Dense Index Files

 Dense index — Index record appears for every search-key 
value in the file. 

 E.g. index on ID attribute of instructor relation 
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Dense Index Files (Cont.)

 Dense index on dept_name, with instructor file sorted on 
dept_name
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Sparse Index Files

 Sparse Index:  contains index records for only some search-key 
values.
• Applicable when records are sequentially ordered on search-key

 To locate a record with search-key value K we:
• Find index record with largest search-key value < K
• Search file sequentially starting at the record to which the index 

record points
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Sparse Index Files (Cont.)

 Compared to dense indices:
• Less space and less maintenance overhead for insertions and deletions.
• Generally slower than dense index for locating records.

 Good tradeoff: 
• for clustered index: sparse index with an index entry for every block in 

file, corresponding to least search-key value in the block.

• For unclustered index: sparse index on top of dense index (multilevel 
index)
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Secondary Indices Example

 Index record points to a bucket that contains pointers to all the 
actual records with that particular search-key value.

 Secondary indices have to be dense

Secondary index on salary field of instructor
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Multilevel Index
 If index does not fit in memory, access becomes expensive.
 Solution: treat index kept on disk as a sequential file and 

construct a sparse index on it.
• outer index – a sparse index of the basic index
• inner index – the basic index file

 If even outer index is too large to fit in main memory, yet 
another level of index can be created, and so on.

 Indices at all levels must be updated on insertion or deletion 
from the file.
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Multilevel Index (Cont.)
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Indices on Multiple Keys

 Composite search key
• e.g. index on instructor relation on attributes (name, ID)
• Values are sorted lexicographically
 E.g.  (John, 12121) < (John, 13514)  and 

(John, 13514) < (Peter, 11223)
• Can query on just name, or on (name, ID)
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Example of B+-Tree
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B+-Tree Index Files (Cont.)

 All paths from root to leaf are of the same length
 Each node that is not a root or a leaf has between n/2 and 

n children.
 A leaf node has between (n–1)/2 and n–1 values
 Special cases: 

• If the root is not a leaf, it has at least 2 children.
• If the root is a leaf (that is, there are no other nodes in 

the tree), it can have between 0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:
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B+-Tree Node Structure

 Typical node

• Ki are the search-key values 
• Pi are pointers to children (for non-leaf nodes) or pointers to 

records or buckets of records (for leaf nodes).
 The search-keys in a node are ordered 

K1 < K2 < K3 < . . . < Kn–1

(Initially assume no duplicate keys, address duplicates later)
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Leaf Nodes in B+-Trees

 For i = 1, 2, . . ., n–1, pointer Pi points to a file record with 
search-key value Ki, 

 If Li, Lj are leaf nodes and i < j, Li’s search-key values are less 
than or equal to Lj’s search-key values

 Pn points to next leaf node in search-key order

Properties of a leaf node:
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Non-Leaf Nodes in B+-Trees

 Non leaf nodes form a multi-level sparse index on the leaf nodes.  
For a non-leaf node with m pointers:
• All the search-keys in the subtree to which P1 points are less 

than K1 

• For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which Pi
points have values greater than or equal to Ki–1 and less than 
Ki 

• All the search-keys in the subtree to which Pn points have 
values greater than or equal to Kn–1
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Example of B+-tree

 Leaf nodes must have between 3 and 5 values 
((n–1)/2 and n –1, with n = 6).

 Non-leaf nodes other than root must have between 3 
and 6 children ((n/2 and n with n =6).

 Root must have at least 2 children.

B+-tree for instructor file (n = 6)
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Observations about B+-trees

 Since the inter-node connections are done by pointers, 
“logically” close blocks need not be “physically” close.

 The non-leaf levels of the B+-tree form a hierarchy of sparse 
indices.

 The B+-tree contains a relatively small number of levels
 Level below root has at least 2* n/2 values
 Next level has at least 2* n/2 * n/2 values
 .. etc.

• If there are K search-key values in the file, the tree height is 
no more than  logn/2(K)

• thus searches can be conducted efficiently.
 Insertions and deletions to the main file can be handled 

efficiently, as the index can be restructured in logarithmic time (as 
we shall see).
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Queries on B+-Trees
function find(v)

1. C=root
2. while (C is not a leaf node)

1. Let i be least number s.t. V ≤ Ki.
2. if there is no such number i then 
3. Set C = last non-null pointer in C
4. else if (v = C.Ki ) Set C = Pi +1  

5. else set C = C.Pi

3. if for some i, Ki = V  then return C.Pi

4. else return null /* no record with search-key value v exists. */
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Queries on B+-Trees (Cont.)

 Range queries find all records with search key values in a given range
• See book for details of function findRange(lb, ub) which returns set 

of all such records
• Real implementations usually provide an iterator interface to fetch 

matching records one at a time, using a next() function
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Queries on B+-Trees (Cont.)

 If there are K search-key values in the file, the height of the tree 
is no more than logn/2(K).

 A node is generally the same size as a disk block, typically 4 
kilobytes
• and n is typically around 100 (40 bytes per index entry).

 With 1 million search key values and n = 100
• at most log50(1,000,000) = 4 nodes are accessed in a lookup 

traversal from root to leaf.
 Contrast this with a balanced binary tree with 1 million search key 

values — around 20 nodes are accessed in a lookup
• above difference is significant since every node access may 

need a disk I/O, costing around 20 milliseconds
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Non-Unique Keys

 If a search key ai is not unique, create instead an index on a composite 
key (ai , Ap), which is unique
• Ap could be a primary key, record ID, or any other attribute that 

guarantees uniqueness
 Search for ai = v can be implemented by a range search on composite 

key, with range (v, - ∞) to (v, + ∞)
 But more I/O operations are needed to fetch the actual records

• If the index is clustering, all accesses are sequential
• If the index is non-clustering, each record access may need an I/O 

operation
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Updates on B+-Trees:  Insertion

Assume record already added to the file.  Let 
l pr be pointer to the record, and let 
l v be the search key value of the record

1. Find the leaf node in which the search-key value would appear
1. If there is room in the leaf node, insert (v, pr) pair in the leaf 

node
2. Otherwise, split the node (along with the new (v, pr)  entry) 

as discussed in the next slide, and propagate updates to 
parent nodes.



©Silberschatz, Korth and Sudarshan14.30Database System Concepts - 7th Edition

Updates on B+-Trees:  Insertion (Cont.)

 Splitting a leaf node:
• take the n (search-key value, pointer) pairs (including the one being 

inserted) in sorted order.  Place the first n/2 in the original node, 
and the rest in a new node.

• let the new node be p, and let k be the least key value in p.  Insert 
(k,p) in the parent of the node being split. 

• If the parent is full, split it and propagate the split further up.
 Splitting of nodes proceeds upwards till a node that is not full is found. 

• In the worst case the root node may be split increasing the height of 
the tree by 1. 

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams
Next step: insert entry with (Califieri, pointer-to-new-node) into parent
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B+-Tree  Insertion

B+-Tree before and after insertion of “Adams”

Affected nodes
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B+-Tree  Insertion

B+-Tree before and after insertion of “Lamport”
Affected nodes

Affected nodes
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 Splitting a non-leaf node: when inserting (k,p) into an already full internal 
node N
• Copy N to an in-memory area M with space for n+1 pointers and n 

keys
• Insert (k,p) into M
• Copy P1,K1, …, K n/2-1,P n/2 from M back into node N
• Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated node N'
• Insert (K n/2,N') into parent N

 Example

 Read pseudocode in book!

Insertion in B+-Trees (Cont.)
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Examples of B+-Tree Deletion

 Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

Affected nodes
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Examples of B+-Tree Deletion (Cont.)

 Leaf containing Singh and Wu became underfull, and borrowed a value 
Kim from its left sibling

 Search-key value in the parent changes as a result

Before and after deleting “Singh” and “Wu”

Affected nodes
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Example of B+-tree Deletion (Cont.)

 Node with Gold and Katz became underfull, and was merged with its sibling 
 Parent node becomes underfull, and is merged with its sibling

• Value separating two nodes (at the parent) is pulled down when merging
 Root node then has only one child, and is deleted

Before and after deletion of “Gold”
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Updates on B+-Trees: Deletion

Assume record already deleted from file.  Let V be the search key 
value of the record, and Pr be the pointer to the record.
 Remove (Pr, V) from the leaf node 
 If the node has too few entries due to the removal, and the 

entries in the node and a sibling fit into a single node, then 
merge siblings:
• Insert all the search-key values in the two nodes into a 

single node (the one on the left), and delete the other node.
• Delete the pair (Ki–1, Pi), where Pi is the pointer to the 

deleted node, from its parent, recursively using the above 
procedure.
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Updates on B+-Trees:  Deletion

 Otherwise, if the node has too few entries due to the removal, but 
the entries in the node and a sibling do not fit into a single node, 
then redistribute pointers:
• Redistribute the pointers between the node and a sibling such 

that both have more than the minimum number of entries.
• Update the corresponding search-key value in the parent of 

the node.
 The node deletions may cascade upwards till a node which has  

n/2 or more pointers is found.  
 If the root node has only one pointer after deletion, it is deleted 

and the sole child becomes the root. 
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Complexity of Updates

 Cost (in terms of number of I/O operations) of insertion and deletion of a 
single entry proportional to height of the tree
• With K entries and maximum fanout of n, worst case complexity of 

insert/delete of an entry is O(logn/2(K))
 In practice, number of I/O operations is less:

• Internal nodes tend to be in buffer
• Splits/merges are rare, most insert/delete operations only affect a 

leaf node
 Average node occupancy depends on insertion order

• 2/3rds with random, ½ with insertion in sorted order
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Non-Unique Search Keys

 Alternatives to scheme described earlier
• Buckets on separate block (bad idea)
• List of tuple pointers with each key
 Extra code to handle long lists
 Deletion of a tuple can be expensive if there are many 

duplicates on search key (why?)
• Worst case complexity may be linear!

 Low space overhead, no extra cost for queries
• Make search key unique by adding a record-identifier
 Extra storage overhead for keys
 Simpler code for insertion/deletion
 Widely used
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B+-Tree File Organization

 B+-Tree File Organization:
• leaf nodes in a B+-tree file organization store records, instead 

of pointers
• Helps keep data records clustered even when there are 

insertions/deletions/updates
 Leaf nodes are still required to be half full

• Since records are larger than pointers, the maximum number 
of records that can be stored in a leaf node is less than the 
number of pointers in a nonleaf node.

 Insertion and deletion are handled in the same way as insertion 
and deletion of entries in a B+-tree index.
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B+-Tree File Organization (Cont.)

 Good space utilization important since records use more space than 
pointers.  

 To improve space utilization, involve more sibling nodes in redistribution 
during splits and merges
• Involving 2 siblings in redistribution (to avoid split / merge where 

possible) results in each node having at least     entries

Example of B+-tree File Organization

 3/2n
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Other Issues in Indexing

 Record relocation and secondary indices
• If a record moves, all secondary indices that store record 

pointers have to be updated 
• Node splits in B+-tree file organizations become very 

expensive
• Solution: use search key of B+-tree file organization instead of 

record pointer in secondary index
 Add record-id if B+-tree file organization search key is non-

unique
 Extra traversal of file organization to locate record

• Higher cost for queries, but node splits are cheap
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Indexing Strings

 Variable length strings as keys
• Variable fanout
• Use space utilization as criterion for splitting, not number of 

pointers
 Prefix compression

• Key values at internal nodes can be prefixes of full key
 Keep enough characters to distinguish entries in the 

subtrees separated by the key value
• E.g. “Silas” and “Silberschatz” can be separated by 

“Silb”

• Keys in leaf node can be compressed by sharing common 
prefixes
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Bulk Loading and Bottom-Up Build

 Inserting entries one-at-a-time into a B+-tree requires ≥ 1 IO per entry 
• assuming leaf level does not fit in memory
• can be very inefficient for loading a large number of entries at a time 

(bulk loading)
 Efficient alternative 1:

• sort entries first (using efficient external-memory sort algorithms 
discussed later in Section 12.4)

• insert in sorted order
 insertion will go to existing page (or cause a split)
 much improved IO performance, but most leaf nodes half full

 Efficient alternative 2: Bottom-up B+-tree construction
• As before sort entries
• And then create tree layer-by-layer, starting with leaf level
 details as an exercise

• Implemented as part of bulk-load utility by most database systems



©Silberschatz, Korth and Sudarshan14.48Database System Concepts - 7th Edition

B-Tree Index File Example

B-tree (above) and B+-tree (below) on same data
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Indexing on Flash

 Random I/O cost much lower on flash
• 20 to 100 microseconds for read/write

 Writes are not in-place, and (eventually) require a more expensive erase
 Optimum page size therefore much smaller
 Bulk-loading still useful since it minimizes page erases
 Write-optimized tree structures (discussed later) have been adapted to 

minimize page writes for flash-optimized search trees
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Indexing in Main Memory

 Random access in memory 
• Much cheaper than on disk/flash
• But still expensive compared to cache read
• Data structures that make best use of cache preferable
• Binary search for a key value within a large B+-tree node results in 

many cache misses
 B+- trees with small nodes that fit in cache line are preferable to reduce 

cache misses
 Key idea:  use large node size to optimize disk access, but structure 

data within a node using a tree with small node size, instead of using an 
array.



Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

Hashing

http://www.db-book.com/


©Silberschatz, Korth and Sudarshan14.52Database System Concepts - 7th Edition

Static Hashing

 A bucket is a unit of storage containing one or more entries 
(a bucket is typically a disk block). 
• we obtain the bucket of an entry from its search-key value 

using a hash function
 Hash function h is a function from the set of all search-key 

values K to the set of all bucket addresses B.
 Hash function is used to locate entries for access, insertion 

as well as deletion.
 Entries with different search-key values may be mapped to 

the same bucket; thus entire bucket has to be searched 
sequentially to locate an entry. 

 In a hash index, buckets store entries with pointers to 
records

 In a hash file-organization buckets store records



©Silberschatz, Korth and Sudarshan14.53Database System Concepts - 7th Edition

Handling of Bucket Overflows

 Bucket overflow can occur because of 
• Insufficient buckets 
• Skew in distribution of records.  This can occur due to two 

reasons:
 multiple records have same search-key value
 chosen hash function produces non-uniform distribution 

of key values
 Although the probability of bucket overflow can be reduced, it 

cannot be eliminated; it is handled by using overflow buckets.
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Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given bucket are chained 
together in a linked list.

 Above scheme is called closed addressing (also called closed hashing or 
open hashing depending on the book you use)
• An alternative, called 

open addressing 
(also called 
open hashing or
closed hashing 
depending on the book 
you use) which does not
use overflow buckets,  
is not suitable for 
database applications.
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Example of Hash File Organization 

Hash file organization of instructor file, using dept_name as key.
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Deficiencies of Static Hashing

 In static hashing, function h maps search-key values to a fixed 
set of B of bucket addresses. Databases grow or shrink with 
time. 
• If initial number of buckets is too small, and file grows, 

performance will degrade due to too much overflows.
• If space is allocated for anticipated growth, a significant 

amount of space will be wasted initially (and buckets will be 
underfull).

• If database shrinks, again space will be wasted.
 One solution: periodic re-organization of the file with a new hash 

function
• Expensive, disrupts normal operations

 Better solution: allow the number of buckets to be modified 
dynamically. 
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Dynamic Hashing

 Periodic rehashing
• If number of entries in a hash table becomes (say) 1.5 times 

size of hash table, 
 create new hash table of size  (say) 2 times the size of the 

previous hash table
 Rehash all entries to new table

 Linear Hashing
• Do rehashing in an incremental manner

 Extendable Hashing
• Tailored to disk based hashing, with buckets shared by 

multiple hash values
• Doubling of # of entries in hash table, without doubling # of 

buckets



©Silberschatz, Korth and Sudarshan14.59Database System Concepts - 7th Edition

Comparison of Ordered Indexing and Hashing

 Cost of periodic re-organization
 Relative frequency of insertions and deletions
 Is it desirable to optimize average access time at the expense of 

worst-case access time?
 Expected type of queries:

• Hashing is generally better at retrieving records having a 
specified value of the key.

• If range queries are common, ordered indices are to be 
preferred

 In practice:
• PostgreSQL supports hash indices, but discourages use due to 

poor performance
• Oracle supports static hash organization, but not hash indices
• SQLServer supports only B+-trees
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Multiple-Key Access

 Use multiple indices for certain types of queries.
 Example: 

select ID
from instructor
where dept_name = “Finance” and salary = 80000

 Possible strategies for processing query using indices on 
single attributes:
1. Use index on dept_name to find instructors with 

department name Finance; test salary = 80000 
2. Use index on salary to find instructors with a salary of 

$80000; test dept_name = “Finance”.
3. Use dept_name index to find pointers to all records 

pertaining to the “Finance” department.  Similarly use 
index on salary.  Take intersection of both sets of pointers 
obtained.



©Silberschatz, Korth and Sudarshan14.61Database System Concepts - 7th Edition

Indices on Multiple Keys

 Composite search keys are search keys containing more than 
one attribute
• E.g. (dept_name, salary)

 Lexicographic ordering: (a1, a2) < (b1, b2) if either 
• a1 < b1, or 
• a1=b1 and  a2 < b2
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Indices on Multiple Attributes

 With the where clause
where dept_name = “Finance” and salary = 80000

the index on (dept_name, salary) can be used to fetch only 
records that satisfy both conditions.
• Using separate indices in less efficient — we may fetch 

many records (or pointers) that satisfy only one of the 
conditions.

 Can also efficiently handle 
where dept_name = “Finance” and salary < 80000

 But cannot efficiently handle
where dept_name < “Finance” and balance = 80000

• May fetch many records that satisfy the first but not the 
second condition

Suppose we have an index on combined search-key
(dept_name, salary).



©Silberschatz, Korth and Sudarshan14.63Database System Concepts - 7th Edition

Other Features

 Covering indices
• Add extra attributes to index so (some) queries can avoid 

fetching the actual records
• Store extra attributes only at leaf
 Why?

 Particularly useful for secondary indices 
• Why?
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Creation of Indices

 E.g.
create index takes_pk on takes (ID,course_ID, year, semester, section)
drop index takes_pk

 Most database systems allow specification of type of index, and clustering.
 Indices on primary key created automatically by all databases

• Why?
 Some database also create indices on foreign key attributes

• Why might such an index be useful for this query:
 takes ⨝ σname='Shankar' (student)

 Indices can greatly speed up lookups, but impose cost on updates
• Index tuning assistants/wizards supported on several databases to 

help choose indices, based on query and update workload
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Index Definition in SQL

 Create an index
create index <index-name> on <relation-name>

(<attribute-list>)
E.g.:  create index b-index on branch(branch_name)

 Use create unique index to indirectly specify and enforce the 
condition that the search key is a candidate key is a candidate 
key.
• Not really required if SQL unique integrity constraint is 

supported
 To drop an index 

drop index <index-name>
 Most database systems allow specification of type of index, and 

clustering.
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Write Optimized Indices

 Performance of 
 B+-trees can be poor for write-intensive workloads

• One I/O per leaf, assuming all internal nodes are in memory
• With magnetic disks, < 100 inserts per second per disk
• With flash memory, one page overwrite per insert

 Two approaches to reducing cost of writes
• Log-structured merge tree
• Buffer tree
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Log Structured Merge (LSM) Tree

 Consider only inserts/queries for 
now

 Records inserted first into in-memory 
tree (L0 tree)

 When in-memory tree is full, records 
moved to disk (L1 tree)
• B+-tree constructed using 

bottom-up build by merging 
existing L1 tree with records from 
L0 tree

 When L1 tree exceeds some 
threshold, merge into L2 tree
• And so on for more levels
• Size threshold for Li+1 tree is k 

times size threshold for Li tree 
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LSM Tree (Cont.)

 Benefits of LSM approach
• Inserts are done using only sequential I/O operations
• Leaves are full, avoiding space wastage
• Reduced number of I/O operations per record inserted as compared 

to normal B+-tree (up to some size)
 Drawback of LSM approach

• Queries have to search multiple trees
• Entire content of each level copied multiple times

 Stepped-merge index
• Variant of LSM tree with multiple trees at each level
• Reduces write cost compared to LSM tree
• But queries are even more expensive
 Bloom filters to avoid lookups in most trees 

 Details are covered in Chapter 24 
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LSM Trees (Cont.)

 Deletion handled by adding special “delete” entries
• Lookups will find both original entry and the delete entry, and must 

return only those entries that do not have matching delete entry
• When trees are merged, if we find a delete entry matching an 

original entry, both are dropped.
 Update handled using insert+delete
 LSM trees were introduced for disk-based indices

• But useful to minimize erases with flash-based indices
• The stepped-merge variant of LSM trees is used in many BigData

storage systems
 Google BigTable, Apache Cassandra, MongoDB
 And more recently in SQLite4, LevelDB, and MyRocks storage 

engine of MySQL 
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Buffer Tree

 Alternative to LSM tree
 Key idea: each internal node of B+-tree has a buffer to store inserts

• Inserts are moved to lower levels when buffer is full
• With a large buffer, many records are moved to lower level each 

time
• Per record I/O decreases correspondingly 

 Benefits
• Less overhead on queries
• Can be used with any tree index structure
• Used in PostgreSQL Generalized Search Tree (GiST) indices

 Drawback: more random I/O than LSM tree
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Bitmap Indices

 Bitmap indices are a special type of index designed for efficient 
querying on multiple keys

 Records in a relation are assumed to be numbered sequentially 
from, say, 0
• Given a number n it must be easy to retrieve record n
 Particularly easy if records are of fixed size

 Applicable on attributes that take on a relatively small number of 
distinct values
• E.g. gender, country, state, …
• E.g. income-level (income broken up into a small number of  

levels such as 0-9999, 10000-19999, 20000-50000, 50000-
infinity)

 A bitmap is simply an array of bits
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Bitmap Indices (Cont.)
 In its simplest form a bitmap index on an attribute has a bitmap 

for each value of the attribute
• Bitmap has as many bits as records
• In a bitmap for value v, the bit for a record is 1 if the record 

has the value v for the attribute, and is 0 otherwise
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Bitmap Indices (Cont.)
 Bitmap indices are useful for queries on multiple attributes 

• not particularly useful for single attribute queries
 Queries are answered using bitmap operations

• Intersection (and)
• Union (or)

 Each operation takes two bitmaps of the same size and applies 
the operation on corresponding bits to get the result bitmap
• E.g.   100110  AND 110011 = 100010

100110  OR  110011 = 110111
NOT 100110  = 011001

• Males with income level L1:   10010 AND 10100 = 10000
 Can then retrieve required tuples.
 Counting number of matching tuples is even faster
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Bitmap Indices (Cont.)

 Bitmap indices generally very small compared with relation size
• E.g. if record is 100 bytes, space for a single bitmap is 1/800 of 

space used by relation.  
 If number of distinct attribute values is 8, bitmap is only 1% 

of relation size
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Efficient Implementation of Bitmap Operations

 Bitmaps are packed into words;  a single word and (a basic CPU 
instruction) computes and of 32 or 64 bits at once
• E.g. 1-million-bit maps can be and-ed with just 31,250 instruction

 Counting number of 1s can be done fast by a trick:
• Use each byte to index into a precomputed array of 256 elements 

each storing the count of 1s in the binary representation
 Can use pairs of bytes to speed up further at a higher memory 

cost
• Add up the retrieved counts

 Bitmaps can be used instead of Tuple-ID lists at leaf levels of 
B+-trees, for values that have a large number of matching records
• Worthwhile if > 1/64 of the records have that value, assuming a 

tuple-id is 64 bits
• Above technique merges benefits of bitmap and B+-tree indices
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SPATIAL AND TEMPORAL 
INDICES
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Spatial Data

 Databases can store data types such as lines, polygons, in 
addition to raster images 
• allows relational databases to store and retrieve spatial 

information
• Queries can use spatial conditions (e.g. contains or overlaps).
• queries can mix spatial and nonspatial conditions 

 Nearest neighbor queries, given a point or an object, find the 
nearest object that satisfies given conditions.

 Range queries deal with spatial regions. e.g., ask for objects 
that lie partially or fully inside a specified region.

 Queries that compute intersections or unions of regions.
 Spatial join of two spatial relations with the location playing the 

role of join attribute.
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Indexing of Spatial Data

 k-d tree - early structure used for 
indexing in multiple dimensions.

 Each level of a k-d tree partitions the 
space into two.
• choose one dimension for partitioning 

at the root level of the tree.
• choose another dimensions for 

partitioning in nodes at the next level 
and so on, cycling through the 
dimensions.

 In each node, approximately half of the 
points stored in the sub-tree fall on one 
side and half on the other.

 Partitioning stops when a node has 
less than a given number of points.

 The k-d-B tree extends the 
k-d tree to allow multiple 
child nodes for each 
internal node; well-suited 
for secondary storage.
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Division of Space by Quadtrees

Quadtrees
 Each node of a quadtree is associated with  a rectangular region of space; the top 

node is associated with the entire target space.
 Each non-leaf  nodes divides its region into four equal sized quadrants

• correspondingly each such node has four child nodes corresponding to the 
four quadrants and so on

 Leaf nodes have between zero and some fixed maximum number of points (set to 
1 in example).
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R-Trees

 R-trees are a N-dimensional extension of B+-trees, useful for 
indexing sets of rectangles and other polygons.

 Supported in many modern database systems, along with 
variants like R+ -trees and R*-trees.

 Basic idea: generalize the notion of a one-dimensional interval 
associated with each B+ -tree node to an 
N-dimensional interval, that is, an N-dimensional rectangle.

 Will consider only the two-dimensional case (N = 2) 
• generalization for N > 2 is  straightforward, although R-trees 

work well only for relatively small N
 The bounding box of a node is a minimum  sized rectangle that 

contains all the rectangles/polygons associated with the node
• Bounding boxes of children of a node are allowed to overlap
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Example R-Tree

 A set of rectangles (solid line) and the bounding boxes (dashed line) of 
the nodes of an R-tree for the rectangles.

 The R-tree is shown on the right.
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Search in R-Trees

 To find data items intersecting a given query point/region, do the 
following, starting from the root node:
• If the node is a leaf node, output the data items whose keys intersect the 

given query point/region.
• Else, for each child of the current node whose bounding box intersects 

the query point/region, recursively search the child
 Can be very inefficient in worst case since multiple paths may need to be 

searched, but works acceptably in practice.
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Indexing Temporal Data

 Temporal data refers to data that has an associated time period 
(interval)

 Time interval has a start and end time
• End time set to infinity (or large date such as 9999-12-31) if a tuple 

is currently valid and its validity end time is not currently known
 Query may ask for all tuples that are valid at a point in time or during a 

time interval
• Index on valid time period speeds up this task
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Indexing Temporal Data (Cont.)

 To create a temporal index on attribute a:
• Use spatial index, such as R-tree, with attribute a as one dimension, 

and time as another dimension
 Valid time forms an interval in the time dimension

• Tuples that are currently valid cause problems, since value is infinite or 
very large
 Solution:  store all current tuples (with end time as infinity) in a 

separate index, indexed on (a, start-time)
• To find tuples valid at a point in time t in the current tuple index, 

search for tuples in the range (a, 0) to (a,t)
 Temporal index on primary key can help enforce temporal primary key 

constraint
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End of Chapter 14
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Example of Hash Index

hash index on instructor, on attribute ID
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