
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 18 : Concurrency Control

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan18.2Database System Concepts - 7th Edition

Outline

 Lock-Based Protocols
 Timestamp-Based Protocols
 Validation-Based Protocols
 Multiple Granularity
 Multiversion Schemes
 Insert and Delete Operations
 Concurrency in Index Structures

©Silberschatz, Korth and Sudarshan18.3Database System Concepts - 7th Edition

Lock-Based Protocols

 A lock is a mechanism to control concurrent access to a data item
 Data items can be locked in two modes :

1. exclusive (X) mode. Data item can be both read as well as
written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is
requested using lock-S instruction.

 Lock requests are made to concurrency-control manager. Transaction
can proceed only after request is granted.

©Silberschatz, Korth and Sudarshan18.4Database System Concepts - 7th Edition

Lock-Based Protocols (Cont.)

 Lock-compatibility matrix

 A transaction may be granted a lock on an item if the requested lock
is compatible with locks already held on the item by other transactions

 Any number of transactions can hold shared locks on an item,
 But if any transaction holds an exclusive on the item no other

transaction may hold any lock on the item.

©Silberschatz, Korth and Sudarshan18.6Database System Concepts - 7th Edition

Schedule With Lock Grants

 Grants omitted in rest of
chapter
• Assume grant happens

just before the next
instruction following lock
request

 This schedule is not
serializable (why?)

 A locking protocol is a
set of rules followed by all
transactions while
requesting and releasing
locks.

 Locking protocols enforce
serializability by restricting
the set of possible
schedules.

©Silberschatz, Korth and Sudarshan18.7Database System Concepts - 7th Edition

Deadlock

 Consider the partial schedule

 Neither T3 nor T4 can make progress — executing lock-S(B) causes
T4 to wait for T3 to release its lock on B, while executing lock-X(A)
causes T3 to wait for T4 to release its lock on A.

 Such a situation is called a deadlock.
• To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.

©Silberschatz, Korth and Sudarshan18.8Database System Concepts - 7th Edition

Deadlock (Cont.)

 The potential for deadlock exists in most locking protocols. Deadlocks
are a necessary evil.

 Starvation is also possible if concurrency control manager is badly
designed. For example:
• A transaction may be waiting for an X-lock on an item, while a

sequence of other transactions request and are granted an S-lock
on the same item.

• The same transaction is repeatedly rolled back due to deadlocks.
 Concurrency control manager can be designed to prevent starvation.

©Silberschatz, Korth and Sudarshan18.9Database System Concepts - 7th Edition

The Two-Phase Locking Protocol

 A protocol which ensures conflict-serializable schedules.
 Phase 1: Growing Phase

• Transaction may obtain locks
• Transaction may not release locks

 Phase 2: Shrinking Phase
• Transaction may release locks
• Transaction may not obtain locks

 The protocol assures serializability. It can be proved that the
transactions can be serialized in the order of their lock points (i.e.,
the point where a transaction acquired its final lock).

Time

Lo
ck

s

©Silberschatz, Korth and Sudarshan18.10Database System Concepts - 7th Edition

The Two-Phase Locking Protocol (Cont.)

 Two-phase locking does not ensure freedom from deadlocks
 Extensions to basic two-phase locking needed to ensure

recoverability of freedom from cascading roll-back
• Strict two-phase locking: a transaction must hold all its exclusive locks

till it commits/aborts.

 Ensures recoverability and avoids cascading roll-backs

• Rigorous two-phase locking: a transaction must hold all locks till
commit/abort.

 Transactions can be serialized in the order in which they commit.

 Most databases implement rigorous two-phase locking, but refer to it
as simply two-phase locking

©Silberschatz, Korth and Sudarshan18.11Database System Concepts - 7th Edition

The Two-Phase Locking Protocol (Cont.)

 Two-phase locking is not a necessary
condition for serializability
• There are conflict serializable

schedules that cannot be obtained if the
two-phase locking protocol is used.

 In the absence of extra information
(e.g., ordering of access to data), two-
phase locking is necessary for conflict
serializability in the following sense:
• Given a transaction Ti that does not

follow two-phase locking, we can
find a transaction Tj that uses two-
phase locking, and a schedule for Ti
and Tj that is not conflict
serializable.

©Silberschatz, Korth and Sudarshan18.12Database System Concepts - 7th Edition

Locking Protocols

 Given a locking protocol (such as 2PL)
• A schedule S is legal under a locking protocol if it can be

generated by a set of transactions that follow the protocol
• A protocol ensures serializability if all legal schedules under that

protocol are serializable

©Silberschatz, Korth and Sudarshan18.13Database System Concepts - 7th Edition

Lock Conversions

 Two-phase locking protocol with lock conversions:
– Growing Phase:
• can acquire a lock-S on item
• can acquire a lock-X on item
• can convert a lock-S to a lock-X (upgrade)

– Shrinking Phase:
• can release a lock-S
• can release a lock-X
• can convert a lock-X to a lock-S (downgrade)

 This protocol ensures serializability

©Silberschatz, Korth and Sudarshan18.14Database System Concepts - 7th Edition

Automatic Acquisition of Locks

 A transaction Ti issues the standard read/write instruction, without
explicit locking calls.

 The operation read(D) is processed as:
if Ti has a lock on D

then
read(D)

else begin
if necessary wait until no other

transaction has a lock-X on D
grant Ti a lock-S on D;
read(D)

end

©Silberschatz, Korth and Sudarshan18.15Database System Concepts - 7th Edition

Automatic Acquisition of Locks (Cont.)

 write(D) is processed as:
if Ti has a lock-X on D

then
write(D)

else begin
if necessary wait until no other trans. has any lock on D,
if Ti has a lock-S on D

then
upgrade lock on D to lock-X

else
grant Ti a lock-X on D

write(D)
end;

 All locks are released after commit or abort

©Silberschatz, Korth and Sudarshan18.16Database System Concepts - 7th Edition

Implementation of Locking

 A lock manager can be implemented as a separate process
 Transactions can send lock and unlock requests as messages
 The lock manager replies to a lock request by sending a lock grant

messages (or a message asking the transaction to roll back, in case
of a deadlock)
• The requesting transaction waits until its request is answered

 The lock manager maintains an in-memory data-structure called a
lock table to record granted locks and pending requests

©Silberschatz, Korth and Sudarshan18.17Database System Concepts - 7th Edition

Lock Table

 Dark rectangles indicate granted locks,
light colored ones indicate waiting
requests

 Lock table also records the type of lock
granted or requested

 New request is added to the end of the
queue of requests for the data item, and
granted if it is compatible with all earlier
locks

 Unlock requests result in the request
being deleted, and later requests are
checked to see if they can now be
granted

 If transaction aborts, all waiting or
granted requests of the transaction are
deleted
• lock manager may keep a list of

locks held by each transaction, to
implement this efficiently

©Silberschatz, Korth and Sudarshan18.18Database System Concepts - 7th Edition

Graph-Based Protocols

 Graph-based protocols are an alternative to two-phase locking
 Impose a partial ordering → on the set D = {d1, d2 ,..., dh} of all data

items.
• If di → dj then any transaction accessing both di and dj must

access di before accessing dj.
• Implies that the set D may now be viewed as a directed acyclic

graph, called a database graph.
 The tree-protocol is a simple kind of graph protocol.

©Silberschatz, Korth and Sudarshan18.19Database System Concepts - 7th Edition

Tree Protocol

Tree protocol:
1. Only exclusive locks are allowed.
2. The first lock by Ti may be on any data item. Subsequently, a data Q

can be locked by Ti only if the parent of Q is currently locked by Ti.
3. Data items may be unlocked at any time.
4. A data item that has been locked and unlocked by Ti cannot

subsequently be relocked by Ti

©Silberschatz, Korth and Sudarshan18.20Database System Concepts - 7th Edition

Graph-Based Protocols (Cont.)

 The tree protocol ensures conflict serializability as well as freedom
from deadlock.

 Unlocking may occur earlier in the tree-locking protocol than in the
two-phase locking protocol.
• Shorter waiting times, and increase in concurrency
• Protocol is deadlock-free, no rollbacks are required

 Drawbacks
• Protocol does not guarantee recoverability or cascade freedom
 Need to introduce commit dependencies to ensure recoverability

• Transactions may have to lock data items that they do not access.
 increased locking overhead, and additional waiting time
 potential decrease in concurrency

 Schedules not possible under two-phase locking are possible under
the tree protocol, and vice versa.

©Silberschatz, Korth and Sudarshan18.21Database System Concepts - 7th Edition

Deadlock Handling

 System is deadlocked if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.

©Silberschatz, Korth and Sudarshan18.22Database System Concepts - 7th Edition

Deadlock Handling

 Deadlock prevention protocols ensure that the system will never
enter into a deadlock state. Some prevention strategies:
• Require that each transaction locks all its data items before it

begins execution (pre-declaration).
• Impose partial ordering of all data items and require that a

transaction can lock data items only in the order specified by the
partial order (graph-based protocol).

©Silberschatz, Korth and Sudarshan18.23Database System Concepts - 7th Edition

More Deadlock Prevention Strategies

 wait-die scheme — non-preemptive
• Older transaction may wait for younger one to release data item.
• Younger transactions never wait for older ones; they are rolled

back instead.
• A transaction may die several times before acquiring a lock

 wound-wait scheme — preemptive
• Older transaction wounds (forces rollback) of younger transaction

instead of waiting for it.
• Younger transactions may wait for older ones.
• Fewer rollbacks than wait-die scheme.

 In both schemes, a rolled back transactions is restarted with its
original timestamp.
• Ensures that older transactions have precedence over newer

ones, and starvation is thus avoided.

©Silberschatz, Korth and Sudarshan18.24Database System Concepts - 7th Edition

Deadlock prevention (Cont.)

 Timeout-Based Schemes:
• A transaction waits for a lock only for a specified amount of time.

After that, the wait times out and the transaction is rolled back.
• Ensures that deadlocks get resolved by timeout if they occur
• Simple to implement
• But may roll back transaction unnecessarily in absence of

deadlock
 difficult to determine good value of the timeout interval.

• Starvation is also possible

©Silberschatz, Korth and Sudarshan18.25Database System Concepts - 7th Edition

Deadlock Detection

 Wait-for graph
• Vertices: transactions
• Edge from Ti →Tj. : if Ti is waiting for a lock held in conflicting

mode byTj

 The system is in a deadlock state if and only if the wait-for graph has
a cycle.

 Invoke a deadlock-detection algorithm periodically to look for cycles.

Wait-for graph without a cycle Wait-for graph with a cycle

©Silberschatz, Korth and Sudarshan18.26Database System Concepts - 7th Edition

Deadlock Recovery

 When deadlock is detected :
• Some transaction will have to rolled back (made a victim) to break

deadlock cycle.
 Select that transaction as victim that will incur minimum cost

• Rollback -- determine how far to roll back transaction
 Total rollback: Abort the transaction and then restart it.
 Partial rollback: Roll back victim transaction only as far as

necessary to release locks that another transaction in cycle is
waiting for

 Starvation can happen (why?)
• One solution: oldest transaction in the deadlock set is never

chosen as victim

©Silberschatz, Korth and Sudarshan18.27Database System Concepts - 7th Edition

Multiple Granularity

 Allow data items to be of various sizes and define a hierarchy of data
granularities, where the small granularities are nested within larger
ones

 Can be represented graphically as a tree (but don't confuse with tree-
locking protocol)

 When a transaction locks a node in the tree explicitly, it implicitly locks
all the node's descendents in the same mode.

 Granularity of locking (level in tree where locking is done):
• Fine granularity (lower in tree): high concurrency, high locking

overhead
• Coarse granularity (higher in tree): low locking overhead, low

concurrency

©Silberschatz, Korth and Sudarshan18.28Database System Concepts - 7th Edition

Example of Granularity Hierarchy

The levels, starting from the coarsest (top) level are
• database
• area
• file
• record

©Silberschatz, Korth and Sudarshan18.29Database System Concepts - 7th Edition

Intention Lock Modes

 In addition to S and X lock modes, there are three additional lock
modes with multiple granularity:
• intention-shared (IS): indicates explicit locking at a lower level of

the tree but only with shared locks.
• intention-exclusive (IX): indicates explicit locking at a lower level

with exclusive or shared locks
• shared and intention-exclusive (SIX): the subtree rooted by that

node is locked explicitly in shared mode and explicit locking is
being done at a lower level with exclusive-mode locks.

 intention locks allow a higher level node to be locked in S or X mode
without having to check all descendent nodes.

©Silberschatz, Korth and Sudarshan18.30Database System Concepts - 7th Edition

Compatibility Matrix with Intention Lock Modes

 The compatibility matrix for all lock modes is:

©Silberschatz, Korth and Sudarshan18.31Database System Concepts - 7th Edition

Multiple Granularity Locking Scheme

 Transaction Ti can lock a node Q, using the following rules:
1. The lock compatibility matrix must be observed.
2. The root of the tree must be locked first, and may be locked in any mode.
3. A node Q can be locked by Ti in S or IS mode only if the parent of Q is

currently locked by Ti in either IX or IS mode.
4. A node Q can be locked by Ti in X, SIX, or IX mode only if the parent of Q

is currently locked by Ti in either IX or SIX mode.
5. Ti can lock a node only if it has not previously unlocked any node (that is,

Ti is two-phase).
6. Ti can unlock a node Q only if none of the children of Q are currently

locked by Ti.
 Observe that locks are acquired in root-to-leaf order, whereas they

are released in leaf-to-root order.
 Lock granularity escalation: in case there are too many locks at a

particular level, switch to higher granularity S or X lock

©Silberschatz, Korth and Sudarshan18.32Database System Concepts - 7th Edition

Insert/Delete Operations and
Predicate Reads

 Locking rules for insert/delete operations
1. An exclusive lock must be obtained on an item before it is deleted
2. A transaction that inserts a new tuple into the database is automatically

given an X-mode lock on the tuple
 Ensures that

• reads/writes conflict with deletes
• Inserted tuple is not accessible by other transactions until the transaction

that inserts the tuple commits

©Silberschatz, Korth and Sudarshan18.33Database System Concepts - 7th Edition

Phantom Phenomenon

 Example of phantom phenomenon.
• A transaction T1 that performs predicate read (or scan) of a relation
 select count(*)

from instructor
where dept_name = 'Physics'

• and a transaction T2 that inserts a tuple while T1 is active but after
predicate read
 insert into instructor values ('11111', 'Feynman', 'Physics', 94000)
(conceptually) conflict in spite of not accessing any tuple in common.

 If only tuple locks are used, non-serializable schedules can result
• E.g. the scan transaction does not see the new instructor, but may read

some other tuple written by the update transaction
 Can also occur with updates

• E.g. update Wu’s department from Finance to Physics

©Silberschatz, Korth and Sudarshan18.34Database System Concepts - 7th Edition

Non-Serializable Execution Due to
Phantom Phenomenon

T1 T2

Read(instructor where
dept_name=‘Physics’)

Insert Instructor in Physics

Insert Instructor in Comp. Sci.

Read(instructor where
dept_name=‘Comp. Sci.’)

Another Example: T1 and T2 both find maximum instructor ID in
parallel, and create new instructors with ID = maximum ID + 1

• Both instructors get same ID, not possible in serializable
schedule

Commit

©Silberschatz, Korth and Sudarshan18.35Database System Concepts - 7th Edition

Handling Phantoms

 There is a conflict at the data level
• The transaction performing predicate read or scanning the relation is

reading information that indicates what tuples the relation contains
• The transaction inserting/deleting/updating a tuple updates the same

information.
• The conflict should be detected, e.g. by locking the information.

 One solution:
• Associate a data item with the relation, to represent the information about

what tuples the relation contains.
• Transactions scanning the relation acquire a shared lock in the data item,
• Transactions inserting or deleting a tuple acquire an exclusive lock on the

data item. (Note: locks on the data item do not conflict with locks on
individual tuples.)

 Above protocol provides very low concurrency for insertions/deletions.

©Silberschatz, Korth and Sudarshan18.36Database System Concepts - 7th Edition

Index Locking To Prevent Phantoms

 Index locking protocol to prevent phantoms
• Every relation must have at least one index.
• A transaction can access tuples only after finding them through one or

more indices on the relation
• A transaction Ti that performs a lookup must lock all the index leaf nodes

that it accesses, in S-mode
 Even if the leaf node does not contain any tuple satisfying the index

lookup (e.g. for a range query, no tuple in a leaf is in the range)
• A transaction Ti that inserts, updates or deletes a tuple ti in a relation r
 must update all indices to r
 must obtain exclusive locks on all index leaf nodes affected by the

insert/update/delete
• The rules of the two-phase locking protocol must be observed

 Guarantees that phantom phenomenon won’t occur

©Silberschatz, Korth and Sudarshan18.37Database System Concepts - 7th Edition

Next-Key Locking to Prevent Phantoms

 Index-locking protocol to prevent phantoms locks entire leaf node
• Can result in poor concurrency if there are many inserts

 Next-key locking protocol: provides higher concurrency
• Lock all values that satisfy index lookup (match lookup value, or

fall in lookup range)
• Also lock next key value in index
 even for inserts/deletes

• Lock mode: S for lookups, X for insert/delete/update
 Ensures detection of query conflicts with inserts, deletes and updates

3 5 8 11 14 18 24 38 55

Consider B+-tree leaf nodes as below, with query predicate 7 ≤ X ≤ 16.
Check what happens with next-key locking when inserting: (i) 15 and (ii) 7

©Silberschatz, Korth and Sudarshan18.38Database System Concepts - 7th Edition

TIMESTAMP BASED
CONCURRENCY CONTROL

©Silberschatz, Korth and Sudarshan18.39Database System Concepts - 7th Edition

Timestamp-Based Protocols

 Each transaction Ti is issued a timestamp TS(Ti) when it enters the
system.

• Each transaction has a unique timestamp

• Newer transactions have timestamps strictly greater than earlier ones

• Timestamp could be based on a logical counter

 Real time may not be unique

 Can use (wall-clock time, logical counter) to ensure

 Timestamp-based protocols manage concurrent execution such that
time-stamp order = serializability order

 Several alternative protocols based on timestamps

©Silberschatz, Korth and Sudarshan18.40Database System Concepts - 7th Edition

Timestamp-Ordering Protocol

The timestamp ordering (TSO) protocol
 Maintains for each data Q two timestamp values:

• W-timestamp(Q) is the largest time-stamp of any transaction that
executed write(Q) successfully.

• R-timestamp(Q) is the largest time-stamp of any transaction that
executed read(Q) successfully.

 Imposes rules on read and write operations to ensure that
• any conflicting operations are executed in timestamp order
• out of order operations cause transaction rollback

©Silberschatz, Korth and Sudarshan18.41Database System Concepts - 7th Edition

Timestamp-Based Protocols (Cont.)

 Suppose a transaction Ti issues a read(Q)
1. If TS(Ti) ≤ W-timestamp(Q), then Ti needs to read a value of Q

that was already overwritten.
 Hence, the read operation is rejected, and Ti is rolled back.

2. If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed,
and R-timestamp(Q) is set to

max(R-timestamp(Q), TS(Ti)).

©Silberschatz, Korth and Sudarshan18.42Database System Concepts - 7th Edition

Timestamp-Based Protocols (Cont.)

 Suppose that transaction Ti issues write(Q).
1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is

producing was needed previously, and the system assumed that
that value would never be produced.
Hence, the write operation is rejected, and Ti is rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an
obsolete value of Q.
Hence, this write operation is rejected, and Ti is rolled back.

3. Otherwise, the write operation is executed, and W-timestamp(Q)
is set to TS(Ti).

©Silberschatz, Korth and Sudarshan18.43Database System Concepts - 7th Edition

Example of Schedule Under TSO

 And how about this one,
where initially

R-TS(Q)=W-TS(Q)=0

Assume that initially:
R-TS(A) = W-TS(A) = 0
R-TS(B) = W-TS(B) = 0

Assume TS(T25) = 25 and
TS(T26) = 26

 Is this schedule valid under TSO?

©Silberschatz, Korth and Sudarshan18.44Database System Concepts - 7th Edition

Another Example Under TSO

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5, with all R-TS and W-TS = 0 initially

©Silberschatz, Korth and Sudarshan18.45Database System Concepts - 7th Edition

Correctness of Timestamp-Ordering Protocol

 The timestamp-ordering protocol guarantees serializability since all
the arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph
 Timestamp protocol ensures freedom from deadlock as no transaction

ever waits.
 But the schedule may not be cascade-free, and may not even be

recoverable.

©Silberschatz, Korth and Sudarshan18.46Database System Concepts - 7th Edition

Recoverability and Cascade Freedom

 Solution 1:
• A transaction is structured such that its writes are all performed at

the end of its processing
• All writes of a transaction form an atomic action; no transaction

may execute while a transaction is being written
• A transaction that aborts is restarted with a new timestamp

 Solution 2: Limited form of locking: wait for data to be committed
before reading it

 Solution 3: Use commit dependencies to ensure recoverability

©Silberschatz, Korth and Sudarshan18.47Database System Concepts - 7th Edition

Thomas’ Write Rule

 Modified version of the timestamp-ordering protocol in which obsolete
write operations may be ignored under certain circumstances.

 When Ti attempts to write data item Q, if TS(Ti) < W-timestamp(Q),
then Ti is attempting to write an obsolete value of {Q}.

• Rather than rolling back Ti as the timestamp ordering protocol
would have done, this {write} operation can be ignored.

 Otherwise this protocol is the same as the timestamp ordering
protocol.

 Thomas' Write Rule allows greater potential concurrency.

• Allows some view-serializable schedules that are not conflict-
serializable.

©Silberschatz, Korth and Sudarshan18.48Database System Concepts - 7th Edition

Validation-Based Protocol
 Idea: can we use commit time as serialization order?
 To do so:

• Postpone writes to end of transaction
• Keep track of data items read/written by transaction
• Validation performed at commit time, detect any out-of-serialization order

reads/writes

 Also called as optimistic concurrency control since transaction
executes fully in the hope that all will go well during validation

©Silberschatz, Korth and Sudarshan18.49Database System Concepts - 7th Edition

Validation-Based Protocol

 Execution of transaction Ti is done in three phases.
1. Read and execution phase: Transaction Ti writes only to

temporary local variables
2. Validation phase: Transaction Ti performs a '‘validation test''

to determine if local variables can be written without violating
serializability.

3. Write phase: If Ti is validated, the updates are applied to the
database; otherwise, Ti is rolled back.

 The three phases of concurrently executing transactions can be
interleaved, but each transaction must go through the three phases in
that order.
• We assume for simplicity that the validation and write phase occur

together, atomically and serially
 I.e., only one transaction executes validation/write at a time.

©Silberschatz, Korth and Sudarshan18.50Database System Concepts - 7th Edition

Validation-Based Protocol (Cont.)

 Each transaction Ti has 3 timestamps
• StartTS(Ti) : the time when Ti started its execution
• ValidationTS(Ti): the time when Ti entered its validation phase
• FinishTS(Ti) : the time when Ti finished its write phase

 Validation tests use above timestamps and read/write sets to ensure
that serializability order is determined by validation time
• Thus, TS(Ti) = ValidationTS(Ti)

 Validation-based protocol has been found to give greater degree of
concurrency than locking/TSO if probability of conflicts is low.

©Silberschatz, Korth and Sudarshan18.51Database System Concepts - 7th Edition

Validation Test for Transaction Tj

 If for all Ti with TS (Ti) < TS (Tj) either one of the following condition
holds:
• finishTS(Ti) < startTS(Tj)
• startTS(Tj) < finishTS(Ti) < validationTS(Tj) and the set of data items

written by Ti does not intersect with the set of data items read by Tj.

then validation succeeds and Tj can be committed.
 Otherwise, validation fails and Tj is aborted.
 Justification:

• First condition applies when execution is not concurrent
 The writes of Tj do not affect reads of Ti since they occur after Ti has

finished its reads.
• If the second condition holds, execution is concurrent, Tj does not read

any item written by Ti.

©Silberschatz, Korth and Sudarshan18.52Database System Concepts - 7th Edition

Schedule Produced by Validation

 Example of schedule produced using validation

©Silberschatz, Korth and Sudarshan18.53Database System Concepts - 7th Edition

MULTIVERSION
CONCURRENCY CONTROL

©Silberschatz, Korth and Sudarshan18.54Database System Concepts - 7th Edition

Multiversion Schemes

 Multiversion schemes keep old versions of data item to increase
concurrency. Several variants:
• Multiversion Timestamp Ordering
• Multiversion Two-Phase Locking
• Snapshot isolation

 Key ideas:
• Each successful write results in the creation of a new version of

the data item written.
• Use timestamps to label versions.
• When a read(Q) operation is issued, select an appropriate version

of Q based on the timestamp of the transaction issuing the read
request, and return the value of the selected version.

 reads never have to wait as an appropriate version is returned
immediately.

©Silberschatz, Korth and Sudarshan18.55Database System Concepts - 7th Edition

Multiversion Timestamp Ordering

 Each data item Q has a sequence of versions <Q1, Q2,...., Qm>. Each
version Qk contains three data fields:
• Content -- the value of version Qk.
• W-timestamp(Qk) -- timestamp of the transaction that created

(wrote) version Qk

• R-timestamp(Qk) -- largest timestamp of a transaction that
successfully read version Qk

©Silberschatz, Korth and Sudarshan18.56Database System Concepts - 7th Edition

Multiversion Timestamp Ordering (Cont)

 Suppose that transaction Ti issues a read(Q) or write(Q) operation.
Let Qk denote the version of Q whose write timestamp is the largest
write timestamp less than or equal to TS(Ti).
1. If transaction Ti issues a read(Q), then
 the value returned is the content of version Qk

 If R-timestamp(Qk) < TS(Ti), set R-timestamp(Qk) = TS(Ti),
2. If transaction Ti issues a write(Q)

1. if TS(Ti) < R-timestamp(Qk), then transaction Ti is rolled back.
2. if TS(Ti) = W-timestamp(Qk), the contents of Qk are overwritten
3. Otherwise, a new version Qi of Q is created

• W-timestamp(Qi) and R-timestamp(Qi) are initialized to
TS(Ti).

©Silberschatz, Korth and Sudarshan18.57Database System Concepts - 7th Edition

Multiversion Timestamp Ordering (Cont)

 Observations
• Reads always succeed
• A write by Ti is rejected if some other transaction Tj that (in the

serialization order defined by the timestamp values) should read
Ti's write, has already read a version created by a transaction
older than Ti.

 Protocol guarantees serializability

©Silberschatz, Korth and Sudarshan18.58Database System Concepts - 7th Edition

Multiversion Two-Phase Locking

 Differentiates between read-only transactions and update transactions
 Update transactions acquire read and write locks, and hold all locks

up to the end of the transaction. That is, update transactions follow
rigorous two-phase locking.
• Read of a data item returns the latest version of the item
• The first write of Q by Ti results in the creation of a new version Qi

of the data item Q written
 W-timestamp(Qi) set to ∞ initially

• When update transaction Ti completes, commit processing occurs:
 Value ts-counter stored in the database is used to assign timestamps

• ts-counter is locked in two-phase manner
 Set TS(Ti) = ts-counter + 1
 Set W-timestamp(Qi) = TS(Ti) for all versions Qi that it creates
 ts-counter = ts-counter + 1

©Silberschatz, Korth and Sudarshan18.59Database System Concepts - 7th Edition

Multiversion Two-Phase Locking (Cont.)

 Read-only transactions
• are assigned a timestamp = ts-counter when they start execution
• follow the multiversion timestamp-ordering protocol for performing

reads
 Do not obtain any locks

 Read-only transactions that start after Ti increments ts-counter will
see the values updated by Ti.

 Read-only transactions that start before Ti increments the
ts-counter will see the value before the updates by Ti.

 Only serializable schedules are produced.

©Silberschatz, Korth and Sudarshan18.60Database System Concepts - 7th Edition

MVCC: Implementation Issues

 Creation of multiple versions increases storage overhead
• Extra tuples
• Extra space in each tuple for storing version information

 Versions can, however, be garbage collected
• E.g. if Q has two versions Q5 and Q9, and the oldest active

transaction has timestamp > 9, than Q5 will never be required
again

 Issues with
• primary key and foreign key constraint checking
• Indexing of records with multiple versions
See textbook for details

©Silberschatz, Korth and Sudarshan18.61Database System Concepts - 7th Edition

Snapshot Isolation

 Motivation: Decision support queries that read large amounts of data
have concurrency conflicts with OLTP transactions that update a few
rows
• Poor performance results

 Solution 1: Use multiversion 2-phase locking
• Give logical “snapshot” of database state to read only transaction
 Reads performed on snapshot

• Update (read-write) transactions use normal locking
• Works well, but how does system know a transaction is read only?

 (Partial) Solution 2: Give snapshot of database state to every
transaction
• Reads performed on snapshot
• Use 2-phase locking on updated data items
• Problem: variety of anomalies such as lost update can result
• Better solution: snapshot isolation level (next slide)

©Silberschatz, Korth and Sudarshan18.62Database System Concepts - 7th Edition

Snapshot Isolation

 A transaction T1 executing with Snapshot
Isolation

• takes snapshot of committed data at
start

• always reads/modifies data in its own
snapshot

• updates of concurrent transactions are
not visible to T1

• writes of T1 complete when it commits
• First-committer-wins rule:

 Commits only if no other concurrent
transaction has already written data
that T1 intends to write.

T1 T2 T3

W(Y := 1)
Commit

Start
R(X)  0
R(Y) 1

W(X:=2)
W(Z:=3)
Commit

R(Z)  0
R(Y)  1
W(X:=3)
Commit-Req
Abort

Concurrent updates not visible
Own updates are visible
Not first-committer of X

Serialization error, T2 is rolled back

©Silberschatz, Korth and Sudarshan18.63Database System Concepts - 7th Edition

Snapshot Read
 Concurrent updates invisible to snapshot read

©Silberschatz, Korth and Sudarshan18.64Database System Concepts - 7th Edition

Snapshot Write: First Committer Wins

• Variant: “First-updater-wins”

 Check for concurrent updates when write occurs by locking item
– But lock should be held till all concurrent transactions have finished

 (Oracle uses this plus some extra features)
 Differs only in when abort occurs, otherwise equivalent

©Silberschatz, Korth and Sudarshan18.65Database System Concepts - 7th Edition

Benefits of SI

 Reads are never blocked,
• and also don’t block other txns activities

 Performance similar to Read Committed
 Avoids several anomalies

• No dirty read, i.e. no read of uncommitted data
• No lost update
 i.e. update made by a transaction is overwritten by another transaction

that did not see the update)
• No non-repeatable read
 i.e. if read is executed again, it will see the same value

 Problems with SI
• SI does not always give serializable executions
 Serializable: among two concurrent txns, one sees the effects of the

other
 In SI: neither sees the effects of the other

• Result: Integrity constraints can be violated

©Silberschatz, Korth and Sudarshan18.66Database System Concepts - 7th Edition

Snapshot Isolation

 E.g. of problem with SI
• Initially A = 3 and B = 17
 Serial execution: A = ??, B = ??
 if both transactions start at the same time,

with snapshot isolation: A = ?? , B = ??

 Called skew write
 Skew also occurs with inserts

• E.g:
 Find max order number among all orders
 Create a new order with order number = previous max + 1
 Two transaction can both create order with same number

• Is an example of phantom phenomenon

©Silberschatz, Korth and Sudarshan18.67Database System Concepts - 7th Edition

Snapshot Isolation Anomalies

 SI breaks serializability when transactions modify different items, each
based on a previous state of the item the other modified
• Not very common in practice
 E.g., the TPC-C benchmark runs correctly under SI
 when txns conflict due to modifying different data, there is usually also

a shared item they both modify, so SI will abort one of them
• But problems do occur
 Application developers should be careful about write skew

 SI can also cause a read-only transaction anomaly, where read-only
transaction may see an inconsistent state even if updaters are
serializable
• We omit details

 Using snapshots to verify primary/foreign key integrity can lead to
inconsistency
• Integrity constraint checking usually done outside of snapshot

©Silberschatz, Korth and Sudarshan18.68Database System Concepts - 7th Edition

Serializable Snapshot Isolation

 Serializable snapshot isolation (SSI): extension of snapshot
isolation that ensures serializability

 Snapshot isolation tracks write-write conflicts, but does not track read-
write conflicts
• where Ti writes a data a data item Q, Tj reads an earlier version of Q, but

Tj is serialized after Ti

 Idea: track read-write dependencies separately, and roll-back
transactions where cycles can occur
• Ensures serializability
• Details in book

 Implemented in PostgreSQL from version 9.1 onwards
• PostgreSQL implementation of SSI also uses index locking to detect

phantom conflicts, thus ensuring true serializability

©Silberschatz, Korth and Sudarshan18.69Database System Concepts - 7th Edition

SI Implementations

 Snapshot isolation supported by many databases
• Including Oracle, PostgreSQL, SQL Server, IBM DB2, etc
• Isolation level can be set to snapshot isolation

 Oracle implements “first updater wins” rule (variant of “first
committer wins”)
• concurrent writer check is done at time of write, not at commit time
• Allows transactions to be rolled back earlier

 Warning: even if isolation level is set to serializable, Oracle actually
uses snapshot isolation
• Old versions of PostgreSQL prior to 9.1 did this too
• Oracle and PostgreSQL < 9.1 do not support true serializable execution

©Silberschatz, Korth and Sudarshan18.70Database System Concepts - 7th Edition

Working Around SI Anomalies

 Can work around SI anomalies for specific queries by using select ..
for update (supported e.g. in Oracle)
• E.g.,
 select max(orderno) from orders for update
 read value into local variable maxorder
 insert into orders (maxorder+1, …)

 select for update (SFU) clause treats all data read by the query as if
it were also updated, preventing concurrent updates

 Can be added to queries to ensure serializability in many applications
• Does not handle phantom phenomenon/predicate reads though

©Silberschatz, Korth and Sudarshan18.71Database System Concepts - 7th Edition

WEAK LEVELS OF
CONCURRENCY

©Silberschatz, Korth and Sudarshan18.72Database System Concepts - 7th Edition

Weak Levels of Consistency

 Degree-two consistency: differs from two-phase locking in that S-
locks may be released at any time, and locks may be acquired at any
time
• X-locks must be held till end of transaction
• Serializability is not guaranteed, programmer must ensure that no

erroneous database state will occur]
 Cursor stability:

• For reads, each tuple is locked, read, and lock is immediately
released

• X-locks are held till end of transaction
• Special case of degree-two consistency

©Silberschatz, Korth and Sudarshan18.73Database System Concepts - 7th Edition

Weak Levels of Consistency in SQL

 SQL allows non-serializable executions
• Serializable: is the default
• Repeatable read: allows only committed records to be read, and

repeating a read should return the same value (so read locks
should be retained)
 However, the phantom phenomenon need not be prevented

• T1 may see some records inserted by T2, but may not see others
inserted by T2

• Read committed: same as degree two consistency, but most
systems implement it as cursor-stability

• Read uncommitted: allows even uncommitted data to be read
 In most database systems, read committed is the default consistency

level
• Can be changed as database configuration parameter, or per

transaction
 set isolation level serializable

©Silberschatz, Korth and Sudarshan18.74Database System Concepts - 7th Edition

Concurrency Control across User
Interactions

 Many applications need transaction support across user interactions
• Can’t use locking for long durations

 Application level concurrency control
• Each tuple has a version number
• Transaction notes version number when reading tuple
 select r.balance, r.version into :A, :version

from r where acctId =23
• When writing tuple, check that current version number is same as

the version when tuple was read
 update r set r.balance = r.balance + :deposit, r.version =

r.version+1
where acctId = 23 and r.version = :version

©Silberschatz, Korth and Sudarshan18.75Database System Concepts - 7th Edition

Concurrency Control across User
Interactions

 Equivalent to optimistic concurrency control without validating
read set
• Unlike SI, reads are not guaranteed to be from a single snapshot.
• Does not guarantee serializability
• But avoids some anomalies such as “lost update anomaly”

 Used internally in Hibernate ORM system
 Implemented manually in many applications
 Version numbers stored in tuples can also be used to support first

committer wins check of snapshot isolation

©Silberschatz, Korth and Sudarshan18.76Database System Concepts - 7th Edition

ADVANCED TOPICS IN
CONCURRENCY CONTROL

©Silberschatz, Korth and Sudarshan18.77Database System Concepts - 7th Edition

Online Index Creation

 Problem: how to create an index on a large relation without affecting
concurrent updates
• Index construction may take a long time
• Two-phase locking will block all concurrent updates

 Key ideas:
• build index on a snapshot of the relation, but keep track of all updates that

occur after snapshot
 Updates are not applied on the index at this point

• Then apply subsequent updates to catch up
• Acquire relation lock towards end of catchup phase to block concurrent

updates
• Catch up with remaining updates, and add index to system catalog
• Subsequent transactions will find the index in catalog and update it

©Silberschatz, Korth and Sudarshan18.78Database System Concepts - 7th Edition

Concurrency in Index Structures

 Indices are unlike other database items in that their only job is to help
in accessing data.

 Index-structures are typically accessed very often, much more than
other database items.
• Treating index-structures like other database items, e.g. by 2-

phase locking of index nodes can lead to low concurrency.
 There are several index concurrency protocols where locks on

internal nodes are released early, and not in a two-phase fashion.
• It is acceptable to have nonserializable concurrent access to an

index as long as the accuracy of the index is maintained.
 In particular, the exact values read in an internal node of a

B+-tree are irrelevant so long as we land up in the correct leaf
node.

©Silberschatz, Korth and Sudarshan18.79Database System Concepts - 7th Edition

Concurrency in Index Structures (Cont.)

 Crabbing protocol used instead of two-phase locking on the nodes
of the B+-tree during search/insertion/deletion:
• First lock the root node in shared mode.
• After locking all required children of a node in shared mode, release the

lock on the node
• During insertion/deletion, upgrade leaf node locks to exclusive mode.
• When splitting or coalescing requires changes to a parent, lock the parent

in exclusive mode.

 Above protocol can cause excessive deadlocks
• Searches coming down the tree deadlock with updates going up the tree
• Can abort and restart search, without affecting transaction

 The B-link tree locking protocol improves concurrency
• Intuition: release lock on parent before acquiring lock on child
 And deal with changes that may have happened between lock release

and acquire

©Silberschatz, Korth and Sudarshan18.80Database System Concepts - 7th Edition

Concurrency Control in Main-Memory
Databases

 Index locking protocols can be simplified with main-memory
databases
• Short term lock can be obtained on entire index for duration of an

operation, serializing updates on the index
 Avoids overheads of multiple lock acquire/release
 No major penalty since operations finish fast, since there is no disk

wait

 Latch-free techniques for data-structure update can speed up
operations further

©Silberschatz, Korth and Sudarshan18.81Database System Concepts - 7th Edition

Latch-Free Data-structure Updates

 This code is not safe without latches if executed concurrently:
insert(value, head) {

node = new node
node−>value = value
node−>next = head
head = node

}
 This code is safe

insert latchfree(head, value) {
node = new node
node−>value = value
repeat

oldhead = head
node−>next = oldhead
result = CAS(head, oldhead, node)

until (result == success)
}

©Silberschatz, Korth and Sudarshan18.82Database System Concepts - 7th Edition

Latch-Free Data-structure Updates

 This code is not safe without latches if executed concurrently:
insert(value, head) {

node = new node
node−>value = value
node−>next = head
head = node

}
 This code is safe

insert latchfree(head, value) {
node = new node
node−>value = value
repeat

oldhead = head
node−>next = oldhead
result = CAS(head, oldhead, node)

until (result == success)
}

©Silberschatz, Korth and Sudarshan18.83Database System Concepts - 7th Edition

Latch-Free Data-structures (Cont.)

 Consider:
delete latchfree(head) {

/* This function is not quite safe; see explanation in text. */
repeat

oldhead = head
newhead = oldhead−>next
result = CAS(head, oldhead, newhead)

until (result == success)
}

 Above code is almost correct, but has a concurrency bug
• P1 initiates delete with N1 as head; concurrently P2 deletes N1 and next

node N2, and then reinserts N1 as head, with N3 as next
• P1 may set head as N2 instead of N3.

 Known as ABA problem
 See book for details of how to avoid this problem

©Silberschatz, Korth and Sudarshan18.84Database System Concepts - 7th Edition

Concurrency Control with Operations

 Consider this non-two phase schedule,
which preserves database integrity
constraints

 Can be understood as transaction
performing increment operation
• E.g. increment(A, -50), increment (B, 50)
• As long as increment operation does not

return actual value, increments can be
reordered
 Increments commute

• New increment-mode lock to support
reordering

• Conflict matrix with increment lock mode
 Two increment operations do not

conflict with each other

©Silberschatz, Korth and Sudarshan18.85Database System Concepts - 7th Edition

Concurrency Control with Operations
(Cont.)

 Undo of increment(v, n) is performed by increment (v, -n)
 Increment_conditional(v, n):

• Updates v by adding n to it, as long as final v > 0, fails otherwise
• Can be used to model, e.g. number of available tickets, avail_tickets, for a

concert
• Increment_conditional is NOT commutative
 E.g. last few tickets for a concert

• But reordering may still be acceptable

©Silberschatz, Korth and Sudarshan18.86Database System Concepts - 7th Edition

Real-Time Transaction Systems

 Transactions in a system may have deadlines within which they must
be completed.
• Hard deadline: missing deadline is an error
• Firm deadline: value of transaction is 0 in case deadline is missed
• Soft deadline: transaction still has some value if done after deadline

 Locking can cause blocking
 Optimistic concurrency control (validation protocol) has been shown

to do will in a real-time setting

Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 18

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan18.88Database System Concepts - 7th Edition

View Serializability
 Let S and S´ be two schedules with the same set of

transactions. S and S´ are view equivalent if the following
three conditions are met, for each data item Q,
1. If in schedule S, transaction Ti reads the initial value of Q,

then in schedule S’ also transaction Ti must read the initial
value of Q.

2. If in schedule S transaction Ti executes read(Q), and that
value was produced by transaction Tj (if any), then in
schedule S’ also transaction Ti must read the value of Q
that was produced by the same write(Q) operation of
transaction Tj .

3. The transaction (if any) that performs the final write(Q)
operation in schedule S must also perform the final
write(Q) operation in schedule S’.

 As can be seen, view equivalence is also based purely on
reads and writes alone.

©Silberschatz, Korth and Sudarshan18.89Database System Concepts - 7th Edition

View Serializability (Cont.)

 A schedule S is view serializable if it is view equivalent to a
serial schedule.

 Every conflict serializable schedule is also view serializable.
 Below is a schedule which is view-serializable but not conflict

serializable.

 What serial schedule is above equivalent to?
 Every view serializable schedule that is not conflict serializable

has blind writes.

©Silberschatz, Korth and Sudarshan18.90Database System Concepts - 7th Edition

Test for View Serializability

 The precedence graph test for conflict serializability cannot be
used directly to test for view serializability.
• Extension to test for view serializability has cost exponential

in the size of the precedence graph.
 The problem of checking if a schedule is view serializable falls in

the class of NP-complete problems.
• Thus existence of an efficient algorithm is extremely unlikely.

 However practical algorithms that just check some sufficient
conditions for view serializability can still be used.

©Silberschatz, Korth and Sudarshan18.91Database System Concepts - 7th Edition

Other Notions of Serializability

 The schedule below produces same outcome as the serial
schedule < T1, T5 >, yet is not conflict equivalent or view
equivalent to it.

 Determining such equivalence requires analysis of operations
other than read and write.
• Operation-conflicts, operation locks

	Chapter 18 : Concurrency Control
	Outline
	Lock-Based Protocols
	Lock-Based Protocols (Cont.)
	Schedule With Lock Grants
	Deadlock
	Deadlock (Cont.)
	The Two-Phase Locking Protocol
	The Two-Phase Locking Protocol (Cont.)
	The Two-Phase Locking Protocol (Cont.)
	Locking Protocols
	Lock Conversions
	Automatic Acquisition of Locks
	Automatic Acquisition of Locks (Cont.)
	Implementation of Locking
	Lock Table
	Graph-Based Protocols
	Tree Protocol
	Graph-Based Protocols (Cont.)
	Deadlock Handling
	Deadlock Handling
	More Deadlock Prevention Strategies
	Deadlock prevention (Cont.)
	Deadlock Detection
	Deadlock Recovery
	Multiple Granularity
	Example of Granularity Hierarchy
	Intention Lock Modes
	Compatibility Matrix with Intention Lock Modes
	Multiple Granularity Locking Scheme
	Insert/Delete Operations and� Predicate Reads
	Phantom Phenomenon
	Non-Serializable Execution Due to Phantom Phenomenon
	Handling Phantoms
	Index Locking To Prevent Phantoms
	Next-Key Locking to Prevent Phantoms
	Timestamp Based Concurrency control
	Timestamp-Based Protocols
	Timestamp-Ordering Protocol
	Timestamp-Based Protocols (Cont.)
	Timestamp-Based Protocols (Cont.)
	Example of Schedule Under TSO
	Another Example Under TSO
	Correctness of Timestamp-Ordering Protocol
	Recoverability and Cascade Freedom
	Thomas’ Write Rule
	Validation-Based Protocol
	Validation-Based Protocol
	Validation-Based Protocol (Cont.)
	Validation Test for Transaction Tj
	Schedule Produced by Validation
	Multiversion Concurrency control
	Multiversion Schemes
	Multiversion Timestamp Ordering
	Multiversion Timestamp Ordering (Cont)
	Multiversion Timestamp Ordering (Cont)
	Multiversion Two-Phase Locking
	Multiversion Two-Phase Locking (Cont.)
	MVCC: Implementation Issues
	Snapshot Isolation	
	Snapshot Isolation
	Snapshot Read
	Snapshot Write: First Committer Wins
	Benefits of SI
	Snapshot Isolation
	Snapshot Isolation Anomalies
	Serializable Snapshot Isolation
	SI Implementations
	Working Around SI Anomalies
	Weak levels of concurrency
	Weak Levels of Consistency
	Weak Levels of Consistency in SQL
	Concurrency Control across User Interactions
	Concurrency Control across User Interactions
	Advanced topics in concurrency control
	Online Index Creation
	Concurrency in Index Structures
	Concurrency in Index Structures (Cont.)
	Concurrency Control in Main-Memory Databases
	Latch-Free Data-structure Updates
	Latch-Free Data-structure Updates
	Latch-Free Data-structures (Cont.)
	Concurrency Control with Operations
	Concurrency Control with Operations (Cont.)
	Real-Time Transaction Systems
	End of Chapter 18
	View Serializability
	View Serializability (Cont.)
	Test for View Serializability
	Other Notions of Serializability

