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Introduction

 Parallel machines have become quite common and affordable
• prices of microprocessors, memory and disks have dropped 

sharply
 Data storage needs are growing increasingly large

• user data at web-scale
 100’s of millions of users, petabytes of data

• transaction data are collected and stored for analysis.
• multimedia objects like images/videos

 Parallel storage system requirements
• storing large volumes of data
• processing time-consuming decision-support queries
• providing high throughput for transaction processing 
• Very high demands on scalability and availability
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Parallel/Distribted Data Storage History

 1980/1990s
• Distributed database systems with tens of nodes

 2000s: 
• Distributed file systems with 1000s of nodes
 Millions of Large objects (100’s of megabytes)
 Web logs, images, videos, …
 Typically create/append only

• Distributed data storage systems with 1000s of nodes
 Billions to trillions of smaller (kilobyte to megabyte) objects
 Social media posts, email, online purchases, …
 Inserts, updates, deletes

• Key-value stores

 2010s: Distributed database systems with 1000s of nodes
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I/O Parallelism

 Reduce the time required to retrieve relations from disk by partitioning 
the relations on multiple disks, on multiple nodes (computers)
• Our description focuses on parallelism across nodes
• Same techniques can be used across disks on a node

 Horizontal partitioning – tuples of a relation are divided among 
many nodes such that some subset of tuple resides on each node.
• Contrast with vertical partitioning, e.g. r(A,B,C,D) with primary key A

into r1(A,B) and r2(A,C,D)
• By default, the word partitioning refers to horizontal partitioning
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I/O Parallelism

 Partitioning techniques (number of nodes = n):
Round-robin: 

Send the ith tuple inserted in the relation to node i mod n.  
Hash partitioning:  
• Choose one or more attributes as the partitioning attributes.   
• Choose hash function h with range 0…n - 1
• Let i denote result of hash function h applied to the partitioning 

attribute value of a tuple. Send tuple to node i.
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Range Partitioning
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I/O Parallelism (Cont.)

Partitioning techniques (cont.):
 Range partitioning:

• Choose an attribute as the partitioning attribute.
• A partitioning vector [vo, v1, ..., vn-2]  is chosen.
• Let v be the partitioning attribute value of a tuple. Tuples such that 

vi ≤ vi+1 go to node I + 1. Tuples with v < v0 go to node 0 and 
tuples with v ≥ vn-2 go to node n-1.

E.g., with a partitioning vector [5,11]
 a tuple with partitioning attribute value of 2 will go to node 0,
 a tuple with value 8 will go to node 1, while 
 a  tuple with value 20 will go to node2.
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Comparison of Partitioning Techniques

 Evaluate how well partitioning techniques support the following types 
of data access:
1. Scanning the entire relation.
2. Locating a tuple associatively – point queries.

 E.g., r.A = 25.
3.    Locating all tuples such that the value of a given attribute 

lies  within a specified range – range queries.
 E.g.,  10 ≤ r.A < 25.

 Do above evaluation for each of 
• Round robin
• Hash partitioning
• Range partitioning
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Comparison of Partitioning Techniques 
(Cont.)

Round robin:
 Best suited for sequential scan of entire relation on each query.

• All nodes have almost an equal number of tuples; retrieval work is 
thus well balanced between nodes.

 All queries must be processed at all nodes
Hash partitioning:
 Good for sequential access 

• Assuming hash function is good, and partitioning attributes form a 
key, tuples will be equally distributed between nodes

 Good for point queries on partitioning attribute
• Can lookup single node, leaving others available for answering 

other queries. 

 Range queries inefficient, must be processed at all nodes
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Comparison of Partitioning Techniques 
(Cont.)

Range partitioning:
 Provides data clustering by partitioning attribute value.

• Good for sequential access
• Good for point queries on partitioning attribute: only one node needs to be 

accessed.

 For range queries on partitioning attribute, one to a few nodes may 
need to be accessed
• Remaining nodes are available for other queries.
• Good if result tuples are from one to a few blocks. 
• But if many blocks are to be fetched, they are still fetched from 

one to a few nodes, and potential parallelism  in disk access is 
wasted
 Example of execution skew.
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Handling Small Relations

 Partitioning not useful for small relations which fit into a single disk 
block or a small number of disk blocks
• Instead, assign the relation to a single node, or
• Replicate relation at all nodes

 For medium sized relations, choose how many nodes to partition 
across based on size of relation

 Large relations typically partitioned across all available nodes.
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Types of Skew

 Data-distribution skew: some nodes have many tuples, while others 
may have fewer tuples.  Could occur due to
• Attribute-value skew.
 Some partitioning-attribute values appear in many tuples
 All the tuples with the same value for the partitioning attribute 

end up in the same partition.
 Can occur with range-partitioning and hash-partitioning.

• Partition skew.
 Imbalance, even without attribute –value skew
 Badly chosen range-partition vector may assign too many 

tuples to some partitions and too few to others.
 Less likely with hash-partitioning
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Types of Skew (Cont.)

 Note that execution skew can occur even without data 
distribution skew
• E.g. relation range-partitioned on date, and most queries access 

tuples with recent dates

 Data-distribution skew can be avoided with range-partitioning 
by creating balanced range-partitioning vectors

 We assume for now that partitioning is static, that is 
partitioning vector is created once and not changed
• Any change requires repartitioning
• Dynamic partitioning once allows partition vector to be changed 

in a continuous manner
 More on this later
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Handling Skew in Range-Partitioning

 To create a balanced partitioning vector
• Sort the relation on the partitioning attribute.
• Construct the partition vector by scanning the relation in sorted 

order as follows.
 After every 1/nth of the relation has been read, the value of  the 

partitioning attribute of the next tuple is added to the partition   
vector.

• n denotes the number of partitions to be constructed.
• Imbalances can result if duplicates are present in partitioning 

attributes.
 To reduce cost

• Partitioning vector can be created using a random sample of tuples

• Alternatively histograms can be used to create the partitioning 
vector
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Histograms

 Histogram on attribute age of relation person

 Equi-width histograms
 Equi-depth histograms 

• break up range such that each range has (approximately) the same 
number of tuples

• E.g. (4, 8, 14, 19) 

 Assume uniform distribution within each range of the histogram
 Create partitioning vector for required number of partitions based on 

histogram
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Virtual Node Partitioning

 Key idea: pretend there are several times (10x to 20x) as many 
virtual nodes as real nodes
• Virtual nodes are mapped to real nodes
• Tuples partitioned across virtual nodes using range-partitioning vector
 Hash partitioning is also possible

 Mapping of virtual nodes to real nodes
• Round-robin: virtual node i mapped to real node (i mod n)+1
• Mapping table: mapping table virtual_to_real_map[] tracks which virtual 

node is on which real node
 Allows skew to be handled by moving virtual nodes from more loaded 

nodes to less loaded nodes
 Both data distribution skew and execution skew can be handled 
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Handling Skew Using Virtual Node 
Partitioning 

 Basic idea:
• If any normal partition would have been skewed, it is very likely the skew 

is spread over a number of virtual partitions
• Skewed virtual partitions tend to get spread across a number of nodes, so 

work gets distributed evenly!

 Virtual node approach also allows elasticity of storage
• If relation size grows, more nodes can be added and virtual nodes moved 

to new nodes 
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Dynamic Repartitioning

 Virtual node approach with a fixed partitioning vector cannot handle 
significant changes in data distribution over time

 Complete repartitioning is expensive and intrusive
 Dynamic repartitioning can be done incrementally using virtual node 

scheme 
• Virtual nodes that become too big can be split
 Much like B+-tree node splits

• Some virtual nodes can be moved from a heavily loaded node to a less 
loaded node

 Virtual nodes in such a scheme are often called tablets
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Dynamic Repartitioning
 Virtual nodes in such a scheme are often called tablets
 Example of initial partition table and partition table after a split of 

tablet 6 and move of tablet 1

Tablet move

Tablet split
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Routing of Queries

 Partition table typically stored at a master node, and at multiple 
routers

 Queries are sent first to routers, which forward them to appropriate 
node

 Consistent hashing is an alternative fully-distributed scheme 
• without any master nodes, works in a completely peer-to-peer fashion

 Distributed hash tables are based on consistent hashing
• work without master nodes or routers; each peer-node stores data and 

performs routing
• See book for details of consistent hashing and distributed hash tables
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Replication

 Goal: availability despite failures
 Data replicated at 2, often 3 nodes
 Unit of replication typically a partition (tablet)
 Requests for data at failed node automatically routed to a replica
 Partition table with each tablet replicated at two nodes
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Basics: Data Replication

 Location of replicas
• Replication within a data center
 Handles machine failures
 Reduces latency if copy available locally on a machine
 Replication within/across racks

• Replication across data centers
 Handles data center failures (power, fire, earthquake, ..), and network 

partitioning of an entire data center
 Provides lower latency for end users if copy is available on nearby 

data center
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Updates and Consistency of Replicas

 Replicas must be kept consistent on update
• Despite failures resulting in different replicas having different values 

(temporarily), reads must get the latest value.
• Special concurrency control and atomic commit mechanisms to ensure 

consistency

 Master replica (primary copy) scheme
• All updates are sent to master, and then replicated to other nodes
• Reads are performed at master
• But what if master fails? Who takes over?  How do other nodes know who 

is the new master?
• Details in Chapter 23
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Protocols to Update Replicas

 Two-phase commit 
• Coming up in Chapter 23
• Assumes all replicas are available

 Persistent messaging
• Updates are sent as messages with guaranteed delivery
• Replicas are updated asynchronously (after original transaction commits)
 Eventual consistency

• Can lead to inconsistency on reads from replicas

 Consensus protocols
• Protocol followed by a set of replicas to agree on what updates to perform 

in what order
• Can work even without a designated master
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Parallel Indexing

 Local index
• Index built only on local data

 Global index
• Index built on all data, regardless of where it is stored
• Index itself is usually partitioned across nodes

 Global primary index
• Data partitioned on the index attribute

 Global secondary index
• Data partitioned on the attribute other than the index attribute
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Global Primary and Secondary Indices
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Global Secondary Index

 Given relation r which is partitioned on Kp, to create global secondary 
index on attributes Ki, 
• create a relation 
 ri

s (Ki, Kp) if Kp is unique, otherwise
 ri

s(Ki, Kp, Ku) where (Kp, Ku) is a key for r 

• Partition ri
s on Ki

• At each node containing a partition of r,  create index on (Kp) if Kp is a 
key, otherwise create index on (Kp, Ku)

• Update the relation ri
s on any updates to r on attributes  in ri

s
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Distributed File Systems

 Google File System (GFS)
 Hadoop File System (HDFS)
 And older ones like CODA
 And more recent ones such as Google Colossus
 Basic architecture:

• Master: responsible for metadata
• Chunk servers: responsible for reading and writing large chunks of data
• Chunks replicated on 3 machines, master responsible for managing 

replicas
• Replication is in GFS/HDFS is within a single data center
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Hadoop File System (HDFS)

 Client: sends filename to 
NameNode

 NameNode
• Maps a filename to list of 

Block IDs
• Maps each Block ID to 

DataNodes containing a 
replica of the block

• Returns list of BlockIDs 
along with locations of 
their replicas 

 DataNode: 
• Maps a Block ID to a 

physical location on disk
• Sends data back to client
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Hadoop Distributed File System

Hadoop Distributed File System (HDFS)
 Modeled after Google File System (GFS)
 Single Namespace for entire cluster
 Data Coherency

• Write-once-read-many access model
• Client can only append to existing files 

 Files are broken up into blocks
• Typically 64 MB block size
• Each block replicated on multiple (e.g. 3) DataNodes

 Client
• Finds location of blocks from NameNode
• Accesses data directly from DataNode
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Limitations of GFS/HDFS

 Central master becomes bottleneck
• Keep directory/inode information in memory to avoid IO
• Memory size limits number of files
• Colossus file system supports distributed master
 With smaller (1MB) block size

 File system directory overheads per file
• Not appropriate for storing very large number of objects

 File systems do not provide consistency guarantees
• File systems cache blocks locally
• Ideal for write-once and and append only data
• Can be used as underlying storage for a data storage system
 E.g. BigTable uses GFS underneath
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Sharding

Sharding (recall from Chapter 10) 
 Divide data amongst many cheap databases (MySQL/PostgreSQL)
 Manage parallel access in the application

• Partition tables map keys to nodes
• Application decides where to route storage or lookup requests

 Scales well for both reads and writes
 Limitations

• Not transparent
 application needs to be partition-aware
 AND application needs to deal with replication

• (Not a true parallel database, since parallel queries and transactions 
spanning nodes are not supported)
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Key Value Storage Systems

Recall from Chapter 10
 Key-value stores may store 

• uninterpreted bytes, with an associated key
 E.g. Amazon S3, Amazon Dynamo

• Wide-column stores (can have arbitrarily many attribute names) with 
associated key

• Google BigTable, Apache Cassandra, Apache HBase, Amazon 
DynamoDB, Microsoft Azure Cloud store

• Allows some operations (e.g. filtering) to execute on storage node
• Google MegaStore and Spanner and Yahoo! PNUTS/Sherpa 

support relational schema
• JSON
 MongoDB, CouchDB (document model)

 Document stores store semi-structured data, typically JSON
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Typical Data Storage Access API

 Basic API access:
• get(key) -- Extract the value given a key
• put(key, value) -- Create or update the value given its key
• delete(key) -- Remove the key and its associated value
• execute(key, operation, parameters) -- Invoke an operation to the 

value (given its key) which is a special data structure (e.g., List, 
Set, Map .... Etc.)

 Extensions to add range queries, version numbering, etc.
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Data Storage Systems vs. Databases

Distributed data storage implementations:
 May have limited support for relational model (no schema, or flexible 

schema)
 But usually do provide flexible schema and other features

• Structured objects e.g. using JSON
• Multiple versions of data items 

 Often do not support referential integrity constraints
 Often provide no support or limited support for transactions

• But some do!
 Provide only lowest layer of database
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Data Representation

 In wide-column stores like BigTable, records may be vertically 
partitioned by attribute (columnar storage)
• (record-identifier, attribute-name) forms a key

 Multiple attributes may be stored in one file (column family)
• In BigTable records are sorted by key, ensuring all attributes of a logical 

record in that file are contiguous
 Attributes can be fetched by a prefix/range query

• Record-identifiers can be structured hierarchically to exploit sorting
 E.g. url:  www.cs.yale.edu/people/silberschatz.html

can be mapped to  record identifier   
edu.yale.cs.www/people/silberschatz.html

 Now all records for cs.yale.edu would be contiguous, as would all 
records for yale.edu

http://www.cs.yale.edu/people/silberschatz.html
http://www.edu.yale.cs.www/people/silberschatz.html
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Storing and Retrieving Data

Architecture of BigTable key-value store
 Table split into multiple tablets
 Tablet servers manage tablets, multiple tablets per server. Each tablet 

is 100-200 MB
• Each tablet controlled by only one server
• Tablet server splits tablets that get too big

 Master responsible for load balancing and fault tolerance
 All data and logs stored in GFS

• Leverage GFS replication/fault tolerance
• Data can be accessed if required from any node to aid in recovery
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Architecture of Key-Value Store
(modelled after Yahoo! PNUTS)
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Geographically Distributed Storage

 Many storage systems today support geographical distribution of 
storage
• Motivations: Fault tolerance, latency (close to user), governmental 

regulations

 Latency of replication across geographically distributed data centers
much higher than within data center
• Some key-value stores support synchronous replication
 Must wait for replicas to be updated before committing an update

• Others support asynchronous replication
 update is committed in one data center, but sent subsequently (in a 

fault-tolerant way) to remote data centers
 Must deal with small risk of data loss if data center fails.



©Silberschatz, Korth and Sudarshan21.40Database System Concepts - 7th Edition

Index Structures in Key-Value Stores

 Storing data in each tablet in clustered on key benefits range queries
 B+-tree file organization works well for range queries
 Write optimized trees, especially LSM trees (Section 24.2) work well 

for updates as well as for range queries
• Used in BigTable, HBase and many other key-value stores

 Some key-value stores organize records on each node by hashing, or 
just build a hash index on the records
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Transactions in Key-Value Stores

 Most key-value stores don’t support full-fledged transactions
• But treat each update as a transaction, to ensure integrity of internal data 

structure

 Some key-value stores allow multiple updates to one data item to be 
committed as a single transaction

 Without support for transactions, secondary indices cannot be 
maintained consistently
• Some key-value stores do not support secondary indices at all
• Some key-value stores support asynchronous maintenance of secondary 

indices

 Some key-value stores support ACID transactions across multiple 
data items along with two-phase commit across nodes
• Google MegaStore and Spanner

 More details in Chapter 23
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Transactions in Key-Value Stores

 Some key-value stores support concurrency control via locking and 
snapshots

 Some support atomic test-and-set and increment on data items 
• Others do not support concurrency control

 Key-value stores implement recovery protocols based on logging to 
ensure durability
• Log must be replicated, to ensure availability in spite of failures

 Distributed file systems are used to store log and data files in some 
key-value stores such as BigTable, HBase
• But distributed file systems do not support (atomic) updates of files except 

for appends
• LSM trees provide a nice way to index data without requiring updates of 

files

 Some systems use persistent messaging to manage logs
 Details in Chapter 23
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Querying and Performance Optimizations

 Many key-value stores do not provide a declarative query language 
 Applications must manage joins, aggregates, etc on their own
 Some applications avoid computing joins at run-time by creating (what 

is in effect) materialized views
• Application code maintains materialized views
• E.g. If a user makes a post, the application may add a summary of the 

post to the data items representing all the friends of the user

 Many key-value stores allow related data items to be stored together
• Related data items form an entity-group
• e.g. user data item along with all posts of that user 
• Makes joining the related tuples very cheap

 Other functionality includes
• Stored procedures executed at the nodes storing the data
• Versioning of data, along with automated deletion of old versions
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