
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 21: Parallel and Distributed Storage

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan21.2Database System Concepts - 7th Edition

Introduction

 Parallel machines have become quite common and affordable
• prices of microprocessors, memory and disks have dropped

sharply
 Data storage needs are growing increasingly large

• user data at web-scale
 100’s of millions of users, petabytes of data

• transaction data are collected and stored for analysis.
• multimedia objects like images/videos

 Parallel storage system requirements
• storing large volumes of data
• processing time-consuming decision-support queries
• providing high throughput for transaction processing
• Very high demands on scalability and availability

©Silberschatz, Korth and Sudarshan21.3Database System Concepts - 7th Edition

Parallel/Distribted Data Storage History

 1980/1990s
• Distributed database systems with tens of nodes

 2000s:
• Distributed file systems with 1000s of nodes
 Millions of Large objects (100’s of megabytes)
 Web logs, images, videos, …
 Typically create/append only

• Distributed data storage systems with 1000s of nodes
 Billions to trillions of smaller (kilobyte to megabyte) objects
 Social media posts, email, online purchases, …
 Inserts, updates, deletes

• Key-value stores

 2010s: Distributed database systems with 1000s of nodes

©Silberschatz, Korth and Sudarshan21.4Database System Concepts - 7th Edition

I/O Parallelism

 Reduce the time required to retrieve relations from disk by partitioning
the relations on multiple disks, on multiple nodes (computers)
• Our description focuses on parallelism across nodes
• Same techniques can be used across disks on a node

 Horizontal partitioning – tuples of a relation are divided among
many nodes such that some subset of tuple resides on each node.
• Contrast with vertical partitioning, e.g. r(A,B,C,D) with primary key A

into r1(A,B) and r2(A,C,D)
• By default, the word partitioning refers to horizontal partitioning

©Silberschatz, Korth and Sudarshan21.5Database System Concepts - 7th Edition

I/O Parallelism

 Partitioning techniques (number of nodes = n):
Round-robin:

Send the ith tuple inserted in the relation to node i mod n.
Hash partitioning:
• Choose one or more attributes as the partitioning attributes.
• Choose hash function h with range 0…n - 1
• Let i denote result of hash function h applied to the partitioning

attribute value of a tuple. Send tuple to node i.

©Silberschatz, Korth and Sudarshan21.6Database System Concepts - 7th Edition

Range Partitioning

©Silberschatz, Korth and Sudarshan21.7Database System Concepts - 7th Edition

I/O Parallelism (Cont.)

Partitioning techniques (cont.):
 Range partitioning:

• Choose an attribute as the partitioning attribute.
• A partitioning vector [vo, v1, ..., vn-2] is chosen.
• Let v be the partitioning attribute value of a tuple. Tuples such that

vi ≤ vi+1 go to node I + 1. Tuples with v < v0 go to node 0 and
tuples with v ≥ vn-2 go to node n-1.

E.g., with a partitioning vector [5,11]
 a tuple with partitioning attribute value of 2 will go to node 0,
 a tuple with value 8 will go to node 1, while
 a tuple with value 20 will go to node2.

©Silberschatz, Korth and Sudarshan21.8Database System Concepts - 7th Edition

Comparison of Partitioning Techniques

 Evaluate how well partitioning techniques support the following types
of data access:
1. Scanning the entire relation.
2. Locating a tuple associatively – point queries.

 E.g., r.A = 25.
3. Locating all tuples such that the value of a given attribute

lies within a specified range – range queries.
 E.g., 10 ≤ r.A < 25.

 Do above evaluation for each of
• Round robin
• Hash partitioning
• Range partitioning

©Silberschatz, Korth and Sudarshan21.9Database System Concepts - 7th Edition

Comparison of Partitioning Techniques
(Cont.)

Round robin:
 Best suited for sequential scan of entire relation on each query.

• All nodes have almost an equal number of tuples; retrieval work is
thus well balanced between nodes.

 All queries must be processed at all nodes
Hash partitioning:
 Good for sequential access

• Assuming hash function is good, and partitioning attributes form a
key, tuples will be equally distributed between nodes

 Good for point queries on partitioning attribute
• Can lookup single node, leaving others available for answering

other queries.

 Range queries inefficient, must be processed at all nodes

©Silberschatz, Korth and Sudarshan21.10Database System Concepts - 7th Edition

Comparison of Partitioning Techniques
(Cont.)

Range partitioning:
 Provides data clustering by partitioning attribute value.

• Good for sequential access
• Good for point queries on partitioning attribute: only one node needs to be

accessed.

 For range queries on partitioning attribute, one to a few nodes may
need to be accessed
• Remaining nodes are available for other queries.
• Good if result tuples are from one to a few blocks.
• But if many blocks are to be fetched, they are still fetched from

one to a few nodes, and potential parallelism in disk access is
wasted
 Example of execution skew.

©Silberschatz, Korth and Sudarshan21.11Database System Concepts - 7th Edition

Handling Small Relations

 Partitioning not useful for small relations which fit into a single disk
block or a small number of disk blocks
• Instead, assign the relation to a single node, or
• Replicate relation at all nodes

 For medium sized relations, choose how many nodes to partition
across based on size of relation

 Large relations typically partitioned across all available nodes.

©Silberschatz, Korth and Sudarshan21.12Database System Concepts - 7th Edition

Types of Skew

 Data-distribution skew: some nodes have many tuples, while others
may have fewer tuples. Could occur due to
• Attribute-value skew.
 Some partitioning-attribute values appear in many tuples
 All the tuples with the same value for the partitioning attribute

end up in the same partition.
 Can occur with range-partitioning and hash-partitioning.

• Partition skew.
 Imbalance, even without attribute –value skew
 Badly chosen range-partition vector may assign too many

tuples to some partitions and too few to others.
 Less likely with hash-partitioning

©Silberschatz, Korth and Sudarshan21.13Database System Concepts - 7th Edition

Types of Skew (Cont.)

 Note that execution skew can occur even without data
distribution skew
• E.g. relation range-partitioned on date, and most queries access

tuples with recent dates

 Data-distribution skew can be avoided with range-partitioning
by creating balanced range-partitioning vectors

 We assume for now that partitioning is static, that is
partitioning vector is created once and not changed
• Any change requires repartitioning
• Dynamic partitioning once allows partition vector to be changed

in a continuous manner
 More on this later

©Silberschatz, Korth and Sudarshan21.14Database System Concepts - 7th Edition

Handling Skew in Range-Partitioning

 To create a balanced partitioning vector
• Sort the relation on the partitioning attribute.
• Construct the partition vector by scanning the relation in sorted

order as follows.
 After every 1/nth of the relation has been read, the value of the

partitioning attribute of the next tuple is added to the partition
vector.

• n denotes the number of partitions to be constructed.
• Imbalances can result if duplicates are present in partitioning

attributes.
 To reduce cost

• Partitioning vector can be created using a random sample of tuples

• Alternatively histograms can be used to create the partitioning
vector

©Silberschatz, Korth and Sudarshan21.15Database System Concepts - 7th Edition

Histograms

 Histogram on attribute age of relation person

 Equi-width histograms
 Equi-depth histograms

• break up range such that each range has (approximately) the same
number of tuples

• E.g. (4, 8, 14, 19)

 Assume uniform distribution within each range of the histogram
 Create partitioning vector for required number of partitions based on

histogram

©Silberschatz, Korth and Sudarshan21.16Database System Concepts - 7th Edition

Virtual Node Partitioning

 Key idea: pretend there are several times (10x to 20x) as many
virtual nodes as real nodes
• Virtual nodes are mapped to real nodes
• Tuples partitioned across virtual nodes using range-partitioning vector
 Hash partitioning is also possible

 Mapping of virtual nodes to real nodes
• Round-robin: virtual node i mapped to real node (i mod n)+1
• Mapping table: mapping table virtual_to_real_map[] tracks which virtual

node is on which real node
 Allows skew to be handled by moving virtual nodes from more loaded

nodes to less loaded nodes
 Both data distribution skew and execution skew can be handled

©Silberschatz, Korth and Sudarshan21.17Database System Concepts - 7th Edition

Handling Skew Using Virtual Node
Partitioning

 Basic idea:
• If any normal partition would have been skewed, it is very likely the skew

is spread over a number of virtual partitions
• Skewed virtual partitions tend to get spread across a number of nodes, so

work gets distributed evenly!

 Virtual node approach also allows elasticity of storage
• If relation size grows, more nodes can be added and virtual nodes moved

to new nodes

©Silberschatz, Korth and Sudarshan21.18Database System Concepts - 7th Edition

Dynamic Repartitioning

 Virtual node approach with a fixed partitioning vector cannot handle
significant changes in data distribution over time

 Complete repartitioning is expensive and intrusive
 Dynamic repartitioning can be done incrementally using virtual node

scheme
• Virtual nodes that become too big can be split
 Much like B+-tree node splits

• Some virtual nodes can be moved from a heavily loaded node to a less
loaded node

 Virtual nodes in such a scheme are often called tablets

©Silberschatz, Korth and Sudarshan21.19Database System Concepts - 7th Edition

Dynamic Repartitioning
 Virtual nodes in such a scheme are often called tablets
 Example of initial partition table and partition table after a split of

tablet 6 and move of tablet 1

Tablet move

Tablet split

©Silberschatz, Korth and Sudarshan21.20Database System Concepts - 7th Edition

Routing of Queries

 Partition table typically stored at a master node, and at multiple
routers

 Queries are sent first to routers, which forward them to appropriate
node

 Consistent hashing is an alternative fully-distributed scheme
• without any master nodes, works in a completely peer-to-peer fashion

 Distributed hash tables are based on consistent hashing
• work without master nodes or routers; each peer-node stores data and

performs routing
• See book for details of consistent hashing and distributed hash tables

©Silberschatz, Korth and Sudarshan21.21Database System Concepts - 7th Edition

Replication

 Goal: availability despite failures
 Data replicated at 2, often 3 nodes
 Unit of replication typically a partition (tablet)
 Requests for data at failed node automatically routed to a replica
 Partition table with each tablet replicated at two nodes

©Silberschatz, Korth and Sudarshan21.22Database System Concepts - 7th Edition

Basics: Data Replication

 Location of replicas
• Replication within a data center
 Handles machine failures
 Reduces latency if copy available locally on a machine
 Replication within/across racks

• Replication across data centers
 Handles data center failures (power, fire, earthquake, ..), and network

partitioning of an entire data center
 Provides lower latency for end users if copy is available on nearby

data center

©Silberschatz, Korth and Sudarshan21.23Database System Concepts - 7th Edition

Updates and Consistency of Replicas

 Replicas must be kept consistent on update
• Despite failures resulting in different replicas having different values

(temporarily), reads must get the latest value.
• Special concurrency control and atomic commit mechanisms to ensure

consistency

 Master replica (primary copy) scheme
• All updates are sent to master, and then replicated to other nodes
• Reads are performed at master
• But what if master fails? Who takes over? How do other nodes know who

is the new master?
• Details in Chapter 23

©Silberschatz, Korth and Sudarshan21.24Database System Concepts - 7th Edition

Protocols to Update Replicas

 Two-phase commit
• Coming up in Chapter 23
• Assumes all replicas are available

 Persistent messaging
• Updates are sent as messages with guaranteed delivery
• Replicas are updated asynchronously (after original transaction commits)
 Eventual consistency

• Can lead to inconsistency on reads from replicas

 Consensus protocols
• Protocol followed by a set of replicas to agree on what updates to perform

in what order
• Can work even without a designated master

©Silberschatz, Korth and Sudarshan21.25Database System Concepts - 7th Edition

Parallel Indexing

 Local index
• Index built only on local data

 Global index
• Index built on all data, regardless of where it is stored
• Index itself is usually partitioned across nodes

 Global primary index
• Data partitioned on the index attribute

 Global secondary index
• Data partitioned on the attribute other than the index attribute

©Silberschatz, Korth and Sudarshan21.26Database System Concepts - 7th Edition

Global Primary and Secondary Indices

©Silberschatz, Korth and Sudarshan21.27Database System Concepts - 7th Edition

Global Secondary Index

 Given relation r which is partitioned on Kp, to create global secondary
index on attributes Ki,
• create a relation
 ri

s (Ki, Kp) if Kp is unique, otherwise
 ri

s(Ki, Kp, Ku) where (Kp, Ku) is a key for r

• Partition ri
s on Ki

• At each node containing a partition of r, create index on (Kp) if Kp is a
key, otherwise create index on (Kp, Ku)

• Update the relation ri
s on any updates to r on attributes in ri

s

©Silberschatz, Korth and Sudarshan21.28Database System Concepts - 7th Edition

Distributed File Systems

 Google File System (GFS)
 Hadoop File System (HDFS)
 And older ones like CODA
 And more recent ones such as Google Colossus
 Basic architecture:

• Master: responsible for metadata
• Chunk servers: responsible for reading and writing large chunks of data
• Chunks replicated on 3 machines, master responsible for managing

replicas
• Replication is in GFS/HDFS is within a single data center

©Silberschatz, Korth and Sudarshan21.29Database System Concepts - 7th Edition

Hadoop File System (HDFS)

 Client: sends filename to
NameNode

 NameNode
• Maps a filename to list of

Block IDs
• Maps each Block ID to

DataNodes containing a
replica of the block

• Returns list of BlockIDs
along with locations of
their replicas

 DataNode:
• Maps a Block ID to a

physical location on disk
• Sends data back to client

©Silberschatz, Korth and Sudarshan21.30Database System Concepts - 7th Edition

Hadoop Distributed File System

Hadoop Distributed File System (HDFS)
 Modeled after Google File System (GFS)
 Single Namespace for entire cluster
 Data Coherency

• Write-once-read-many access model
• Client can only append to existing files

 Files are broken up into blocks
• Typically 64 MB block size
• Each block replicated on multiple (e.g. 3) DataNodes

 Client
• Finds location of blocks from NameNode
• Accesses data directly from DataNode

©Silberschatz, Korth and Sudarshan21.31Database System Concepts - 7th Edition

Limitations of GFS/HDFS

 Central master becomes bottleneck
• Keep directory/inode information in memory to avoid IO
• Memory size limits number of files
• Colossus file system supports distributed master
 With smaller (1MB) block size

 File system directory overheads per file
• Not appropriate for storing very large number of objects

 File systems do not provide consistency guarantees
• File systems cache blocks locally
• Ideal for write-once and and append only data
• Can be used as underlying storage for a data storage system
 E.g. BigTable uses GFS underneath

©Silberschatz, Korth and Sudarshan21.32Database System Concepts - 7th Edition

Sharding

Sharding (recall from Chapter 10)
 Divide data amongst many cheap databases (MySQL/PostgreSQL)
 Manage parallel access in the application

• Partition tables map keys to nodes
• Application decides where to route storage or lookup requests

 Scales well for both reads and writes
 Limitations

• Not transparent
 application needs to be partition-aware
 AND application needs to deal with replication

• (Not a true parallel database, since parallel queries and transactions
spanning nodes are not supported)

©Silberschatz, Korth and Sudarshan21.33Database System Concepts - 7th Edition

Key Value Storage Systems

Recall from Chapter 10
 Key-value stores may store

• uninterpreted bytes, with an associated key
 E.g. Amazon S3, Amazon Dynamo

• Wide-column stores (can have arbitrarily many attribute names) with
associated key

• Google BigTable, Apache Cassandra, Apache HBase, Amazon
DynamoDB, Microsoft Azure Cloud store

• Allows some operations (e.g. filtering) to execute on storage node
• Google MegaStore and Spanner and Yahoo! PNUTS/Sherpa

support relational schema
• JSON
 MongoDB, CouchDB (document model)

 Document stores store semi-structured data, typically JSON

©Silberschatz, Korth and Sudarshan21.34Database System Concepts - 7th Edition

Typical Data Storage Access API

 Basic API access:
• get(key) -- Extract the value given a key
• put(key, value) -- Create or update the value given its key
• delete(key) -- Remove the key and its associated value
• execute(key, operation, parameters) -- Invoke an operation to the

value (given its key) which is a special data structure (e.g., List,
Set, Map Etc.)

 Extensions to add range queries, version numbering, etc.

©Silberschatz, Korth and Sudarshan21.35Database System Concepts - 7th Edition

Data Storage Systems vs. Databases

Distributed data storage implementations:
 May have limited support for relational model (no schema, or flexible

schema)
 But usually do provide flexible schema and other features

• Structured objects e.g. using JSON
• Multiple versions of data items

 Often do not support referential integrity constraints
 Often provide no support or limited support for transactions

• But some do!
 Provide only lowest layer of database

©Silberschatz, Korth and Sudarshan21.36Database System Concepts - 7th Edition

Data Representation

 In wide-column stores like BigTable, records may be vertically
partitioned by attribute (columnar storage)
• (record-identifier, attribute-name) forms a key

 Multiple attributes may be stored in one file (column family)
• In BigTable records are sorted by key, ensuring all attributes of a logical

record in that file are contiguous
 Attributes can be fetched by a prefix/range query

• Record-identifiers can be structured hierarchically to exploit sorting
 E.g. url: www.cs.yale.edu/people/silberschatz.html

can be mapped to record identifier
edu.yale.cs.www/people/silberschatz.html

 Now all records for cs.yale.edu would be contiguous, as would all
records for yale.edu

http://www.cs.yale.edu/people/silberschatz.html
http://www.edu.yale.cs.www/people/silberschatz.html

©Silberschatz, Korth and Sudarshan21.37Database System Concepts - 7th Edition

Storing and Retrieving Data

Architecture of BigTable key-value store
 Table split into multiple tablets
 Tablet servers manage tablets, multiple tablets per server. Each tablet

is 100-200 MB
• Each tablet controlled by only one server
• Tablet server splits tablets that get too big

 Master responsible for load balancing and fault tolerance
 All data and logs stored in GFS

• Leverage GFS replication/fault tolerance
• Data can be accessed if required from any node to aid in recovery

©Silberschatz, Korth and Sudarshan21.38Database System Concepts - 7th Edition

Architecture of Key-Value Store
(modelled after Yahoo! PNUTS)

©Silberschatz, Korth and Sudarshan21.39Database System Concepts - 7th Edition

Geographically Distributed Storage

 Many storage systems today support geographical distribution of
storage
• Motivations: Fault tolerance, latency (close to user), governmental

regulations

 Latency of replication across geographically distributed data centers
much higher than within data center
• Some key-value stores support synchronous replication
 Must wait for replicas to be updated before committing an update

• Others support asynchronous replication
 update is committed in one data center, but sent subsequently (in a

fault-tolerant way) to remote data centers
 Must deal with small risk of data loss if data center fails.

©Silberschatz, Korth and Sudarshan21.40Database System Concepts - 7th Edition

Index Structures in Key-Value Stores

 Storing data in each tablet in clustered on key benefits range queries
 B+-tree file organization works well for range queries
 Write optimized trees, especially LSM trees (Section 24.2) work well

for updates as well as for range queries
• Used in BigTable, HBase and many other key-value stores

 Some key-value stores organize records on each node by hashing, or
just build a hash index on the records

©Silberschatz, Korth and Sudarshan21.41Database System Concepts - 7th Edition

Transactions in Key-Value Stores

 Most key-value stores don’t support full-fledged transactions
• But treat each update as a transaction, to ensure integrity of internal data

structure

 Some key-value stores allow multiple updates to one data item to be
committed as a single transaction

 Without support for transactions, secondary indices cannot be
maintained consistently
• Some key-value stores do not support secondary indices at all
• Some key-value stores support asynchronous maintenance of secondary

indices

 Some key-value stores support ACID transactions across multiple
data items along with two-phase commit across nodes
• Google MegaStore and Spanner

 More details in Chapter 23

©Silberschatz, Korth and Sudarshan21.42Database System Concepts - 7th Edition

Transactions in Key-Value Stores

 Some key-value stores support concurrency control via locking and
snapshots

 Some support atomic test-and-set and increment on data items
• Others do not support concurrency control

 Key-value stores implement recovery protocols based on logging to
ensure durability
• Log must be replicated, to ensure availability in spite of failures

 Distributed file systems are used to store log and data files in some
key-value stores such as BigTable, HBase
• But distributed file systems do not support (atomic) updates of files except

for appends
• LSM trees provide a nice way to index data without requiring updates of

files

 Some systems use persistent messaging to manage logs
 Details in Chapter 23

©Silberschatz, Korth and Sudarshan21.43Database System Concepts - 7th Edition

Querying and Performance Optimizations

 Many key-value stores do not provide a declarative query language
 Applications must manage joins, aggregates, etc on their own
 Some applications avoid computing joins at run-time by creating (what

is in effect) materialized views
• Application code maintains materialized views
• E.g. If a user makes a post, the application may add a summary of the

post to the data items representing all the friends of the user

 Many key-value stores allow related data items to be stored together
• Related data items form an entity-group
• e.g. user data item along with all posts of that user
• Makes joining the related tuples very cheap

 Other functionality includes
• Stored procedures executed at the nodes storing the data
• Versioning of data, along with automated deletion of old versions

Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

END OF CHAPTER

http://www.db-book.com/

	Chapter 21: Parallel and Distributed Storage
	Introduction
	Parallel/Distribted Data Storage History
	I/O Parallelism
	I/O Parallelism
	Range Partitioning
	I/O Parallelism (Cont.)
	Comparison of Partitioning Techniques
	Comparison of Partitioning Techniques (Cont.)
	Comparison of Partitioning Techniques (Cont.)
	Handling Small Relations
	Types of Skew
	Types of Skew (Cont.)
	Handling Skew in Range-Partitioning
	Histograms
	Virtual Node Partitioning
	Handling Skew Using Virtual Node Partitioning
	Dynamic Repartitioning
	Dynamic Repartitioning
	Routing of Queries
	Replication
	Basics: Data Replication
	Updates and Consistency of Replicas
	Protocols to Update Replicas
	Parallel Indexing
	Global Primary and Secondary Indices
	Global Secondary Index
	Distributed File Systems
	Hadoop File System (HDFS)
	Hadoop Distributed File System
	Limitations of GFS/HDFS
	Sharding
	Key Value Storage Systems
	Typical Data Storage Access API
	Data Storage Systems vs. Databases
	Data Representation
	Storing and Retrieving Data
	Architecture of Key-Value Store�(modelled after Yahoo! PNUTS)
	Geographically Distributed Storage
	Index Structures in Key-Value Stores
	Transactions in Key-Value Stores
	Transactions in Key-Value Stores
	Querying and Performance Optimizations
	END OF CHAPTER

