
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 22: Parallel and Distributed
Query Processing

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan22.2Database System Concepts - 7th Edition

Chapter 22: Parallel And Distributed
Query Processing

 Overview
 Parallel Sort
 Parallel Join
 Other Operations
 Parallel Evaluation of Query Plans
 Query Processing on Shared Memory
 Query Optimization
 Distributed Query Processing

©Silberschatz, Korth and Sudarshan22.3Database System Concepts - 7th Edition

Parallel Query Processing

 Different queries/transactions can be run in parallel with each other.
• Interquery parallelism
• Concurrency control takes care of conflicts in case of updates
• More on parallel transaction processing in Chapter 23
• Focus in this chapter is on read-only queries

 Individual relational operations (e.g., sort, join, aggregation) can be
executed in parallel
• data can be partitioned and each processor can work

independently on its own partition.
 Queries are expressed in high level language (SQL, translated to

relational algebra)
• makes parallelization easier.

©Silberschatz, Korth and Sudarshan22.4Database System Concepts - 7th Edition

Intraquery Parallelism

 Intraquery parallelism: execution of a single query in parallel on
multiple processors/disks; important for speeding up long-running
queries.

 Two complementary forms of intraquery parallelism:
• Intraoperation Parallelism – parallelize the execution of each

individual operation in the query
 Supports high degree of parallelism

• Interoperation Parallelism – execute the different operations in a
query expression in parallel.
 Limited degree of parallelism

©Silberschatz, Korth and Sudarshan22.5Database System Concepts - 7th Edition

Parallel Processing of Relational Operations

 Our discussion of parallel algorithms assumes:
• read-only queries
• shared-nothing architecture
• n nodes, N1, ..., Nn

 Each assumed to have disks and processors.
• Initial focus on parallelization to a shared-nothing node
 Parallel processing within a shared memory/shared disk node

discussed later
• Shared-nothing architectures can be efficiently simulated on

shared-memory and shared-disk systems.
 Algorithms for shared-nothing systems can thus be run on

shared-memory and shared-disk systems.
 However, some optimizations may be possible.

©Silberschatz, Korth and Sudarshan22.6Database System Concepts - 7th Edition

INTRAOPERATION
PARALLELISM

©Silberschatz, Korth and Sudarshan22.7Database System Concepts - 7th Edition

Range Partitioning

0-100) [100-175) [175-300) [300-500) [500-800) [800-1000]

Redistribute using
partitioning vector:
100, 175, 300, 500, 800

…….
…….

©Silberschatz, Korth and Sudarshan22.8Database System Concepts - 7th Edition

Range-Partitioning Parallel Sort

0-100) [100-175) [175-300) [300-500) [500-800) [800-1000]

1) Redistribute using
partitioning vector:
100, 175, 300, 500, 800

…….
…….

2) (External) sort locally at each node
3) Merge if output required at one node

©Silberschatz, Korth and Sudarshan22.9Database System Concepts - 7th Edition

Parallel Sort

©Silberschatz, Korth and Sudarshan22.10Database System Concepts - 7th Edition

Parallel Sort

Range-Partitioning Sort
 Choose nodes N1, ..., Nm, where m ≤ n -1 to do sorting.
 Create range-partition vector with m-1 entries, on the sorting attributes
 Redistribute the relation using range partitioning
 Each node Ni sorts its partition of the relation locally.

• Example of data parallelism: each node executes same operation in
parallel with other nodes, without any interaction with the others.

 Final merge operation is trivial: range-partitioning ensures that,
if i < j, all key values in node Ni are all less than all key values in Nj.

©Silberschatz, Korth and Sudarshan22.11Database System Concepts - 7th Edition

Parallel Sort (Cont.)

Parallel External Sort-Merge
 Assume the relation has already been partitioned among nodes N1,

..., Nn (in whatever manner).
 Each node Ni locally sorts the data (using local disk as required)
 The sorted runs on each node are then merged in parallel:

• The sorted partitions at each node Ni are range-partitioned across the
processors N1, ..., Nm.

• Each node Ni performs a merge on the streams as they are received, to
get a single sorted run.

• The sorted runs on nodes N1,..., Nm are concatenated to get the final
result.

 Algorithm as described vulnerable to execution skew
• all nodes send to node 1, then all nodes send data to node 2, …
• Can be modified so each node sends data to all other nodes in parallel

(block at a time)

©Silberschatz, Korth and Sudarshan22.12Database System Concepts - 7th Edition

Partitioned Parallel Join

Partition using range or hash partitioning, on join attributes

©Silberschatz, Korth and Sudarshan22.13Database System Concepts - 7th Edition

Partitioned Parallel Join (Cont.)

 For equi-joins and natural joins, it is possible to partition the two input
relations across the processors, and compute the join locally at each
processor.

 Can use either range partitioning or hash partitioning.
 r and s must be partitioned on their join attributes r.A and s.B), using

the same range-partitioning vector or hash function.
 Join can be computed at each site using any of

• Hash join, leading to partitioned parallel hash join
• Merge join, leading to partitioned parallel merge join
• Nested loops join, leading to partitioned parallel nested-loops join or

partitioned parallel index nested-loops join

©Silberschatz, Korth and Sudarshan22.14Database System Concepts - 7th Edition

Partitioned Parallel Hash-Join

Parallelizing partitioned hash join:
 A hash function h1 takes the join attribute value of each tuple in s and

maps this tuple to one of the n nodes.
 As tuples of relation s are received at the destination nodes, they are

partitioned further using another hash function, h2, which is used to
compute the hash-join locally.

 Repeat above for each tupe in r.
 Each node Ni executes the build and probe phases of the hash-join

algorithm on the local partitions ri and si of r and s to produce a
partition of the final result of the hash-join.

 Note: Hash-join optimizations can be applied to the parallel case
• e.g., the hybrid hash-join algorithm can be used to cache some of the

incoming tuples in memory and avoid the cost of writing them and reading
them back in.

©Silberschatz, Korth and Sudarshan22.15Database System Concepts - 7th Edition

Fragment-and-Replicate Joins

Asymmetric and Symmetric Fragment-and-Replicate Joins

©Silberschatz, Korth and Sudarshan22.16Database System Concepts - 7th Edition

Fragment-and-Replicate Join

 Partitioning not possible for some join conditions
• e.g., non-equijoin conditions, such as r.A > s.B.

 For joins were partitioning is not applicable, parallelization can be
accomplished by fragment and replicate technique

 Special case – asymmetric fragment-and-replicate:
• One of the relations, say r, is partitioned; any partitioning technique can

be used.
• The other relation, s, is replicated across all the processors.
• Node Ni then locally computes the join of ri with all of s using any join

technique.
• Also referred to as broadcast join

©Silberschatz, Korth and Sudarshan22.17Database System Concepts - 7th Edition

Fragment-and-Replicate Join (Cont.)

 Both versions of fragment-and-replicate work with any join condition,
since every tuple in r can be tested with every tuple in s.

 Usually has a higher cost than partitioning, since one of the relations
(for asymmetric fragment-and-replicate) or both relations (for general
fragment-and-replicate) have to be replicated.

 Sometimes asymmetric fragment-and-replicate is preferable even
though partitioning could be used.
• E.g., if s is small and r is large, and r is already partitioned, it may

be cheaper to replicate s across all nodes, rather than repartition r
and s on the join attributes.

 Question: how do you implement left outer join using above join
techniques?

©Silberschatz, Korth and Sudarshan22.18Database System Concepts - 7th Edition

Handling Skew

 Skew can significantly slow down parallel join
 Join skew avoidance

• Balanced partitioning vector
• Virtual node partitioning

 Dynamic handling of join skew
• Detect overloaded physical nodes
• If a physical node has no remaining work, take on a waiting task

(virtual node) currently assigned to a different physical node that is
overloaded

• Example of work stealing
 Cheaper to implement in shared memory system, but can be

used even in shared nothing/shared disk system

©Silberschatz, Korth and Sudarshan22.19Database System Concepts - 7th Edition

Other Relational Operations

Selection σθ(r)
 If θ is of the form ai = v, where ai is an attribute and v a value.

• If r is partitioned on ai the selection is performed at a single node.
 If θ is of the form l <= ai <= u (i.e., θ is a range selection) and the

relation has been range-partitioned on ai

• Selection is performed at each node whose partition overlaps with
the specified range of values.

 In all other cases: the selection is performed in parallel at all the
nodes.

©Silberschatz, Korth and Sudarshan22.20Database System Concepts - 7th Edition

Other Relational Operations (Cont.)

 Duplicate elimination
• Perform by using either of the parallel sort techniques
 eliminate duplicates as soon as they are found during sorting.

• Can also partition the tuples (using either range- or hash-
partitioning) and perform duplicate elimination locally at each
node.

 Projection
• Projection without duplicate elimination can be performed as

tuples are read from disk, in parallel.
• If duplicate elimination is required, any of the above duplicate

elimination techniques can be used.

©Silberschatz, Korth and Sudarshan22.21Database System Concepts - 7th Edition

Grouping/Aggregation

 Step 1: Partition the relation on the grouping attributes
 Step 2: Compute the aggregate values locally at each node.
 Optimization: Can reduce cost of transferring tuples during

partitioning by partial aggregation before partitioning
• For distributive aggregate
• Can be done as part of run generation
• Consider the sum aggregation operation:
 Perform aggregation operation at each node Ni on those tuples stored

its local disk
• results in tuples with partial sums at each node.

 Result of the local aggregation is partitioned on the grouping
attributes, and the aggregation performed again at each node Ni to get
the final result.

• Fewer tuples need to be sent to other nodes during partitioning.

©Silberschatz, Korth and Sudarshan22.22Database System Concepts - 7th Edition

Map and Reduce Operations

©Silberschatz, Korth and Sudarshan22.23Database System Concepts - 7th Edition

Map and Reduce Operations

 Map and reduce workers
• Threads/processes that execute map and reduce functions

 Map and reduce tasks
• Units of map and reduce work
• Many more tasks than workers
 Similar to virtual node partitioning

 Skew handling
• Straggler tasks
 Can be handled by initiating an extra copy of the task at

another node
• Partial aggregation (combiners) helps reduce skew at reduce

nodes

©Silberschatz, Korth and Sudarshan22.24Database System Concepts - 7th Edition

PARALLEL EVALUATION OF
QUERY PLANS

©Silberschatz, Korth and Sudarshan22.25Database System Concepts - 7th Edition

Interoperator Parallelism

 Pipelined parallelism
• Consider a join of four relations
 r1 ⨝ r2 ⨝ r3 ⨝ r4

• Set up a pipeline that computes the three joins in parallel

Each of these operations can execute in parallel, sending result
tuples it computes to the next operation even as it is computing
further results
 Provided a pipelineable join evaluation algorithm (e.g. indexed

nested loops join) is used

r1 r2

r3

r4

©Silberschatz, Korth and Sudarshan22.26Database System Concepts - 7th Edition

Pipelined Parallelism

 Push model of
computation
appropriate for
pipelining in parallel
databases

 Buffer between
consumer and
producer

 Can batch tuples
before sending to next
operator
• Reduce number of

messages,
• reduce contention on

shared buffers

©Silberschatz, Korth and Sudarshan22.27Database System Concepts - 7th Edition

Utility of Pipeline Parallelism

 Limitations
• Does not provide a high degree of parallelism since pipeline

chains are not very long
• Cannot pipeline operators which do not produce output until all

inputs have been accessed (e.g. aggregate and sort)
• Little speedup is obtained for the frequent cases of skew in which

one operator's execution cost is much higher than the others.
 But pipeline parallelism is still very useful since it avoids writing

intermediate results to disk

©Silberschatz, Korth and Sudarshan22.28Database System Concepts - 7th Edition

Independent Parallelism

 Independent parallelism
• Consider a join of four relations

r1 ⨝ r2 ⨝ r3 ⨝ r4

 Let N1 be assigned the computation of
temp1 = r1 ⨝ r2

 And N2 be assigned the computation of temp2 = r3 ⨝ r4

 And N3 be assigned the computation of temp1 ⨝ temp2

 N1 and N2 can work independently in parallel
 N3 has to wait for input from N1 and N2

• Can pipeline output of N1 and N2 to N3, combining
independent parallelism and pipelined parallelism

• Does not provide a high degree of parallelism
 useful with a lower degree of parallelism.
 less useful in a highly parallel system,

©Silberschatz, Korth and Sudarshan22.29Database System Concepts - 7th Edition

Exchange Operator

 Repartitioning implemented using the exchange operator
• Partition and merge steps

©Silberschatz, Korth and Sudarshan22.30Database System Concepts - 7th Edition

Exchange Operator Model

 Movement of data encapsulated in exchange operator
 Partitioning of data can be done by

• Hash partitioning
• Range partitioning
• Replicating data to all nodes (called broadcasting)
• Sending all data to a single node

 Destination nodes can receive data from multiple source nodes.
Incoming data can be merged by:
• Random merge
• Ordered merge

 Other operators in a plan can be unaware of parallelism
• Data parallelism: each operator works purely on local data
• Not always best way, but works well in most cases

©Silberschatz, Korth and Sudarshan22.31Database System Concepts - 7th Edition

Parallel Plans Using Exchange Operator

 Range partitioning sort:
1. Exchange operator using range partitioning, followed by
2. Local sort

 Parallel external sort merge
1. Local sort followed by
2. Exchange operator with ordered merge

 Partitioned join
1. Exchange operator with hash or range partitioning, followed by
2. Local join

 Asymmetric fragment and replicate
1. Exchange operator using broadcast replication, followed by
2. Local join

 Exchange operator can also implement push model, with batching

©Silberschatz, Korth and Sudarshan22.32Database System Concepts - 7th Edition

Parallel Plans
Dashed boxes denote pipelined segment

©Silberschatz, Korth and Sudarshan22.33Database System Concepts - 7th Edition

Parallel Plans (Cont.)

(c) Parallel Plan

(c) Parallel Plan with Partial Aggregation

©Silberschatz, Korth and Sudarshan22.34Database System Concepts - 7th Edition

Fault Tolerance in Query Plans

 Alternative 1: Re-execute the query on failure
• Works well if mean time to failure >> query execution time
 Good for medium scale parallelism with 100’s of machines

• Works badly on massively parallel execution of long queries
 Where probability of some node failing during execution of a

single query is high

©Silberschatz, Korth and Sudarshan22.35Database System Concepts - 7th Edition

Fault Tolerance in Query Plans

 Alternative 2: Re-execute work of only failed nodes
• Works well if consumers process data only after it is completely

generated
 Just discard partial data
 Used in map-reduce implementations

• Problems arise if consumers process data as it is generated (pipelined
execution)
 Only new tuples must be consumed from re-execution
 Re-execution must generate tuples in exactly same order to efficiently

determine which tuples are new

 Straggler nodes (nodes that are running slow) can be treated similar
to failed nodes

©Silberschatz, Korth and Sudarshan22.36Database System Concepts - 7th Edition

Fault Tolerance in Map-Reduce

©Silberschatz, Korth and Sudarshan22.37Database System Concepts - 7th Edition

Fault Tolerance in Map Reduce
Implementation

 Map workers writes data to local disk
• Cheaper than writing to distributed file system

 When task is complete, data is sent to reducers
 Reducers use data only after it is fully received
 On map worker failure:

• Reexecute map tasks on a new node
• Reducers get data from new node, discarding partially received data (if

any) from failed node

 On reduce worker failure
• Reexecute reduce task on new node
• Re-fetch data from map nodes

 On completion of a map-reduce phase, result is written to distributed
file system
• Replication ensures result is safe from failures

©Silberschatz, Korth and Sudarshan22.38Database System Concepts - 7th Edition

Fault Tolerant Query Execution

 Overheads of fault-tolerant query execution
• Materialization cost
• Each step has to wait till the previous step finishes
 Stragglers can cause significant delays

 Pipelined execution can avoid these costs
• But harder to make pipelined execution fault-tolerant
 E.g. duplication of tuples when failed task is reexecuted

 Apache Spark uses concept of Resilient Distributed Datasets (RDDs)
• Data can be replicated in memory/on disk
• But intermediate results are not materialized
 Query nodes can be reexecuted to regenerate results

©Silberschatz, Korth and Sudarshan22.39Database System Concepts - 7th Edition

Query Processing in Shared Memory
Systems

 Parallel query processing techniques discussed so far can be
optimized if data is in shared memory

 Shared memory parallel processing usually based on threads,
instead of processes
• Usually number of threads = number of cores * number off

hardware threads per core

©Silberschatz, Korth and Sudarshan22.40Database System Concepts - 7th Edition

Query Processing in Shared Memory
Systems

Optimized algorithms for shared memory
 With asymmetric fragment-and-replicate join, the smaller relation can

be in shared memory, instead of being replicated for each thread
 Hash join can be done by

• Partitioning build relation to each thread, OR
• Shared build relation with singe index, in shared memory
 Probe relation can be partitioned into small pieces (a.k.a. morsels)
 Each thread processes one piece of the probe at a time, in parallel

with other threads
 Shared index construction can be parallelized, but carefully

• Multiple threads may try to write to same location in shared
memory

• Atomic instruction (test-and-set/compare-and-swap) can be used
to add entries to hash table list

©Silberschatz, Korth and Sudarshan22.41Database System Concepts - 7th Edition

Query Processing in Shared Memory
Systems

 Skew can be handled by work stealing
• Idle processors can take up tasks allocated to other processors
• Virtual node partitioning allows tasks to be broken into small pieces
 Cost of reallocating a partition is low in shared memory
 Even simpler if shared build relation is used

• only probe relation partitioned need to be reassigned

 Query processing algorithms should be are of NUMA: Non-uniform
memory access
• Each thread scheduled as far as possible on same core every time it runs
• Data structures used by only 1 thread allocated in memory local to the

core on which the thread is running

©Silberschatz, Korth and Sudarshan22.42Database System Concepts - 7th Edition

Query Processing in Shared Memory
Systems

 Cache-conscious algorithms used in main-memory centralized query
processing should also be used in shared-memory systems

 Single Instruction Multiple Data (SIMD) parallelism is increasingly
used
• In GPUs as well as Intel Xeon Phi co-processors
• Vector processing

 Vector processing can be used for relational operations

©Silberschatz, Korth and Sudarshan22.43Database System Concepts - 7th Edition

QUERY OPTIMIZATION FOR
PARALLEL QUERY EXECUTION

©Silberschatz, Korth and Sudarshan22.44Database System Concepts - 7th Edition

Query Optimization For Parallel
Execution

 Query optimization in parallel databases is significantly more complex
than query optimization in sequential databases.
• Different options for partitioning inputs and intermediate results
• Cost models are more complicated, since we must take into account

partitioning costs and issues such as skew and resource contention.

©Silberschatz, Korth and Sudarshan22.45Database System Concepts - 7th Edition

Parallel Query Plan Space
A parallel query plan must specify
 How to parallelize each operation, including which algorithm to use,

and how to partition inputs and intermediate results (using exchange
operators)

 How the plan is to be scheduled
• How many nodes to use for each operation
• What operations to pipeline within same node or different nodes
• What operations to execute independently in parallel, and
• What operations to execute sequentially, one after the other.

 E.g. In query r.A 𝛾𝛾sum(s.C)(r ⋈ r.A=s.A r.B=s.B s)
• Partitioning r and s on (A,B) for join will require repartitioning for

aggregation
• But partitioning r and s on (A) for join will allow aggregation with no further

repartitioning
 Query optimizer has to choose best plan taking above issues into

account

©Silberschatz, Korth and Sudarshan22.46Database System Concepts - 7th Edition

Cost of Parallel Query Execution

 Resource consumption cost model
• used for centralized databases

 Response time cost model
• attempts to better estimate the time to completion of a query
• E.g. If an operation performs I/O operations in parallel with CPU

execution, the response time
T = max(CPU cost, I/O cost)
 Resource consumption cost model uses (CPU cost + I/O cost).

• E.g., if two operations o1 and o2 are in a pipeline, with CPU and I/O costs
c1; io1 and c2; io2 respectively, then response time

T = max(c1 + c2, io1 + io2).
• Operators in parallel: T = max (T1, T1, …, Tn)
 Skew is an issue

©Silberschatz, Korth and Sudarshan22.47Database System Concepts - 7th Edition

Cost of Parallel Query Execution (Cont.)

 Response time cost model would have to take into account
• Start-up costs for initiating an operation on multiple nodes
• Skew in distribution of work

 Response time cost model better suited for parallel databases
• But not used much since it increases cost of query optimization

©Silberschatz, Korth and Sudarshan22.48Database System Concepts - 7th Edition

Choosing Query Plans

 The number of parallel evaluation plans from which to choose from is
much larger than the number of sequential evaluation plans
• Many alternative partitioning options
• Choosing a good physical organization (partitioning technique) is

important to speed up queries.
 Two alternatives often used for choosing parallel plans:

• First choose most efficient sequential plan and then choose how
best to parallelize the operations in that plan
 Heuristic, since best sequential plan may not lead to best

parallel plan
• Parallelize every operation across all nodes
 Use exchange operator to perform (re)partitioning
 Use standard query optimizer with extended cost model

©Silberschatz, Korth and Sudarshan22.49Database System Concepts - 7th Edition

Physical Schema

 Partitioning scheme important for queries
 Colocate data that is accessed together

• E.g., all records for a particular user
• E.g., student record with all takes records of the student

 Store multiple copies of a relation, partitioned on different attributes
• E.g., extra copy of takes partitioned on (course id, year, semester,

sec id) for colocation with section record
 Materialized views to avoid joins at query time

• Materialized view itself is stored partitioned across nodes
• Speeds up queries, but extra cost for updates
• Extra copy of materialized view may be stored partitioned on

different attributes

 See book for details of parallel maintenance of materialized
views

©Silberschatz, Korth and Sudarshan22.50Database System Concepts - 7th Edition

STREAMING DATA

©Silberschatz, Korth and Sudarshan22.51Database System Concepts - 7th Edition

Streaming Data

 Real-time analytics is increasingly important
 Online processing of incoming data
 But data must also be stored for later processing
 Architecture alternatives:

• Lambda architecture: sends a copy of data to real time stream
analytics system, and another copy to data storage system

• Increasingly, same system provides storage and real time stream
analytics

©Silberschatz, Korth and Sudarshan22.52Database System Concepts - 7th Edition

Logical Routing of Streams

©Silberschatz, Korth and Sudarshan22.53Database System Concepts - 7th Edition

Parallel Processing of Streaming Data

 Logical routing of tuples is done by creating a Directed Acyclic Graph
(DAG)
• Can be done by creating a configuration file
 Called a topology in the Apache Storm system

• OR, can be done dynamically by using publish-subscribe system
 E.g., Apache Kafka
 Producers publish to topic/stream, consumers subscribe to

topic/streams

©Silberschatz, Korth and Sudarshan22.54Database System Concepts - 7th Edition

Parallel Processing of Streaming Data

 Physical DAG reflects parallel execution of operator instances
 Parallel implementation of publish-subscribe system

• Each topic/stream is partitioned (topic-partition)
 Multiple instances of each operator, running in parallel

• Each subscribes to one or more partitions of a topic

 In Kafka, multiple instances of an operator register with an associated
consumer group
• Each topic-partition sent to a single consumer from the consumer group

 Streaming operators often need to store state
• Can be stored locally (cheaper) or in a parallel data-store (better for fault

tolerance)

©Silberschatz, Korth and Sudarshan22.55Database System Concepts - 7th Edition

Fault Tolerance

 Possible semantics when dealing with failures
• At-least once
• At-most once
• Exactly once

 Can be implemented in the publish-subscribe/routing system
• Need to store tuples, including intermediate results, persistently
• Can lower overhead by checkpointing operator state, and

replaying operator from checkpoint, instead of persisting operator
output
 But need to ensure duplicates are removed

 Replication of operators: Copy of operator running concurrently with
original
• Similar to hot-spare
• Allows instant recovery from failure

Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Distributed Query Processing

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan22.57Database System Concepts - 7th Edition

Data Integration From Multiple Sources

 Many database applications require data from multiple databases
 A federated database system is a software layer on top of existing

database systems, which is designed to manipulate information in
heterogeneous databases
• Creates an illusion of logical database integration without any physical

database integration
• Each database has its local schema
• Global schema integrates all the local schema
 Schema integration

• Queries can be issued against global schema, and translated to queries
on local schemas
 Databases that support common schema and queries, but not

updates, are referred to as mediator systems

©Silberschatz, Korth and Sudarshan22.58Database System Concepts - 7th Edition

Data Integration From Multiple Sources

 Data virtualization
• Allows data access from multiple databases, but without a common

schema

 External data approach: allows database to treat external data as a
database relation (foreign tables)
• Many databases today allow a local table to be defined as a view on

external data
• SQL Management of External Data (SQL MED) standard

 Wrapper for a data source is a view that translates data from local to
a global schema
• Wrappers must also translate updates on global schema to

updates on local schema

©Silberschatz, Korth and Sudarshan22.59Database System Concepts - 7th Edition

Data Warehouses and Data Lakes

 Data warehouse is an alternative to data integration
• Migrates data to a common schema, avoiding run-time overhead
• Cost of translating schema/data to a common warehouse schema can be

significant

 Data lake: architecture where data is stored in multiple data storage
systems, in different storage formats, but which can be queried from a
single system.

©Silberschatz, Korth and Sudarshan22.60Database System Concepts - 7th Edition

Schema and Data Integration

 Schema integration: creating a unified conceptual schema
• Requires creation of global schema, integrating a number of local

schema

 Global-as-view approach
• At each site, create a view of local data, mapping it to the global schema
• Union of local views is the global view
• Good for queries, but not for updates
 E.g., which local database should an insert go to?

 Local-as-view approach
• Create a view defining contents of local data as a view of global data
 Site stores local data as before, the view is for update processing

• Updates on global schema are mapped to updates to the local views

 See book for more details with an example

©Silberschatz, Korth and Sudarshan22.61Database System Concepts - 7th Edition

Unified View of Data

 Agreement on a common data model
• Typically the relational model

 Agreement on a common conceptual schema
• Different names for same relation/attribute
• Same relation/attribute name means different things

 Agreement on a single representation of shared data
• E.g., data types, precision,
• Character sets
 ASCII vs EBCDIC
 Sort order variations

 Agreement on units of measure

©Silberschatz, Korth and Sudarshan22.62Database System Concepts - 7th Edition

Unified View of Data (Cont.)

 Variations in names
• E.g., Köln vs Cologne, Mumbai vs Bombay

 One approach: globally unique naming system
• E.g. GeoNames database (www.geonames.org)

 Another approach: specification of name equivalences
• E.g. used in the Linked Data project supporting integration of a large

number of databases storing data in RDF data

http://www.geonames.org/

©Silberschatz, Korth and Sudarshan22.63Database System Concepts - 7th Edition

Query Processing Across Data Sources

 Several issues in query processing across multiple sources
 Limited query capabilities

• Some data sources allow only restricted forms of selections
 E.g., web forms, flat file data sources

• Queries have to be broken up and processed partly at the source
and partly at a different site

 Removal of duplicate information when sites have overlapping
information
• Decide which sites to execute query

 Global query optimization

©Silberschatz, Korth and Sudarshan22.64Database System Concepts - 7th Edition

Join Locations and Join Ordering

 Consider the following relational algebra expression in which the three
relations are neither replicated nor fragmented
r1 ⨝ r2 ⨝ r3

 r1 is stored at site S1

 r2 at S2

 r3 at S3

 For a query issued at site SI, the system needs to produce the result
at site SI

©Silberschatz, Korth and Sudarshan22.65Database System Concepts - 7th Edition

Possible Query Processing Strategies

 Ship copies of all three relations to site SI and choose a strategy for
processing the entire locally at site SI.

• Ship a copy of the r1 relation to site S2 and compute
temp1 = r1 ⨝ r2 at S2.

• Ship temp1 from S2 to S3, and compute
temp2 = temp1 ⨝ r3 at S3

• Ship the result temp2 to SI.
 Devise similar strategies, exchanging the roles S1, S2, S3

 Must consider following factors:
• amount of data being shipped
• cost of transmitting a data block between sites
• relative processing speed at each site

©Silberschatz, Korth and Sudarshan22.66Database System Concepts - 7th Edition

Semijoin Strategy

 Let r1 be a relation with schema R1 stores at site S1

Let r2 be a relation with schema R2 stores at site S2

 Evaluate the expression r1 ⨝ r2 and obtain the result at S1.
1. Compute temp1 ← ∏R1 ∩ R2 (r1) at S1.
2. Ship temp1 from S1 to S2.
3. Compute temp2 ← r2 ⨝ temp1 at S2

4. Ship temp2 from S2 to S1.
5. Compute r1 ⨝ temp2 at S1. This is the same as r1 ⨝ r2.

©Silberschatz, Korth and Sudarshan22.67Database System Concepts - 7th Edition

Semijoin Reduction

 The semijoin of r1 with r2, is denoted by:
r1 ⋉ r2 ∏R1 (r1 ⨝ r2)

 Thus, r1 ⋉ r2 selects those tuples of r1 that contributed to r1 ⨝ r2.
 In step 3 above, temp2=r2 ⋉ r1.
 For joins of several relations, the above strategy can be extended to a

series of semijoin steps.
 Semijoin can be computed approximately by using a Bloom filter

• For each tuple of r2 compute hash value on join attribute; if hash
value is i, and set bit i of the bitmap

• Send bitmap to site containing r1

• Fetch only tuples of r1 whose join attribute value hashes to a bit
that is set to 1 in the bitmap

• Bloom filter is an optimized bitmap filter structure (Section 24.1)

©Silberschatz, Korth and Sudarshan22.68Database System Concepts - 7th Edition

Distributed Query Optimization

 New physical property for each relation: location of data
 Operators also need to be annotated with the site where they are

executed
• Operators typically operate only on local data
• Remote data is typically fetched locally before operator is

executed
 Optimizer needs to find best plan taking data location and operator

execution location into account.

©Silberschatz, Korth and Sudarshan22.69Database System Concepts - 7th Edition

Distributed Directory Systems

 Distributed directory systems are widely used
• Internet Domain Name Service (DNS)
• Lightweight Directory Access Protocol (LDAP)
 Widely used to store organizational data, especially user profiles

 Data in a distributed directory system are stored and controlled in a
distributed hierarchical manner
• E.g. data about yale.edu is provided by a Yale, and about IIT Bombay by

an IIT Bombay server
• Data can be queries in a uniform manner regardless of where it is stored
 Queries get forwarded to the site where the information is stored

Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan22.71Database System Concepts - 7th Edition

Join Strategies that Exploit Parallelism

 Consider r1 ⨝ r2 ⨝ r3 ⨝ r4 where relation ri is stored at site Si. The

result must be presented at site S1.

 r1 is shipped to S2 and r1 ⨝ r2 is computed at S2: simultaneously r3 is
shipped to S4 and r3 ⨝ r4 is computed at S4

 S2 ships tuples of (r1 ⨝ r2) to S1 as they produced;
S4 ships tuples of (r3 ⨝ r4) to S1

 Once tuples of (r1 ⨝ r2) and (r3 ⨝ r4) arrive at S1 (r1 ⨝ r2) ⨝ (r3 r4)
is computed in parallel with the computation of (r1 ⨝ r2) at S2 and the
computation of (r3 ⨝ r4) at S4.

©Silberschatz, Korth and Sudarshan22.72Database System Concepts - 7th Edition

Mediator Systems

 Mediator systems are systems that integrate multiple heterogeneous
data sources by providing an integrated global view, and providing
query facilities on global view
• Unlike full fledged multidatabase systems, mediators generally do

not bother about transaction processing
• But the terms mediator and multidatabase are sometimes used

interchangeably
• The term virtual database is also used to refer to

mediator/multidatabase systems

©Silberschatz, Korth and Sudarshan22.73Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan22.74Database System Concepts - 7th Edition

Distributed Query Processing

 For centralized systems, the primary criterion for measuring the cost
of a particular strategy is the number of disk accesses.

 In a distributed system, other issues must be taken into account:
• The cost of a data transmission over the network.
• The potential gain in performance from having several sites

process parts of the query in parallel.

©Silberschatz, Korth and Sudarshan22.75Database System Concepts - 7th Edition

Query Transformation

 Translating algebraic queries on fragments.

• It must be possible to construct relation r from its fragments

• Replace relation r by the expression to construct relation r from its
fragments

 Consider the horizontal fragmentation of the account relation into

account1 = σ branch_name = “Hillside” (account)

account2 = σ branch_name = “Valleyview” (account)

 The query σ branch_name = “Hillside” (account) becomes

σ branch_name = “Hillside” (account1 ∪ account2)

which is optimized into

σ branch_name = “Hillside” (account1) ∪ σ branch_name = “Hillside” (account2)

©Silberschatz, Korth and Sudarshan22.76Database System Concepts - 7th Edition

Example Query (Cont.)

 Since account1 has only tuples pertaining to the Hillside branch, we
can eliminate the selection operation.

 Apply the definition of account2 to obtain
σ branch_name = “Hillside” (σ branch_name = “Valleyview” (account)

 This expression is the empty set regardless of the contents of the
account relation.

 Final strategy is for the Hillside site to return account1 as the result of
the query.

©Silberschatz, Korth and Sudarshan22.77Database System Concepts - 7th Edition

Advantages

 Preservation of investment in existing
• hardware
• system software
• Applications

 Local autonomy and administrative control
 Allows use of special-purpose DBMSs
 Step towards a unified homogeneous DBMS

• Full integration into a homogeneous DBMS faces
 Technical difficulties and cost of conversion
 Organizational/political difficulties

• Organizations do not want to give up control on their data
• Local databases wish to retain a great deal of autonomy

Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 22

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan22.80Database System Concepts - 7th Edition

Cost of Parallel Evaluation of Operations

 If there is no skew in the partitioning, and there is no overhead due to
the parallel evaluation, expected speed-up will be 1/n

 If skew and overheads are also to be taken into account, the time
taken by a parallel operation can be estimated as

Tpart + Tasm + max (T1, T1, …, Tn)
• Tpart is the time for partitioning the relations
• Tasm is the time for assembling the results
• Ti is the time taken for the operation at node Ni

 this needs to be estimated taking into account the skew, and
the time wasted in contention.

	Chapter 22: Parallel and Distributed Query Processing
	Chapter 22: Parallel And Distributed Query Processing
	Parallel Query Processing
	Intraquery Parallelism
	Parallel Processing of Relational Operations
	Intraoperation Parallelism
	Range Partitioning
	Range-Partitioning Parallel Sort
	Parallel Sort
	Parallel Sort
	Parallel Sort (Cont.)
	Partitioned Parallel Join
	Partitioned Parallel Join (Cont.)
	Partitioned Parallel Hash-Join
	Fragment-and-Replicate Joins
	Fragment-and-Replicate Join
	Fragment-and-Replicate Join (Cont.)
	Handling Skew
	Other Relational Operations
	Other Relational Operations (Cont.)
	Grouping/Aggregation
	Map and Reduce Operations
	Map and Reduce Operations
	Parallel Evaluation of query plans
	Interoperator Parallelism
	Pipelined Parallelism
	Utility of Pipeline Parallelism
	Independent Parallelism
	Exchange Operator
	Exchange Operator Model
	Parallel Plans Using Exchange Operator
	Parallel Plans
	Parallel Plans (Cont.)
	Fault Tolerance in Query Plans
	Fault Tolerance in Query Plans
	Fault Tolerance in Map-Reduce
	Fault Tolerance in Map Reduce Implementation
	Fault Tolerant Query Execution
	Query Processing in Shared Memory Systems
	Query Processing in Shared Memory Systems
	Query Processing in Shared Memory Systems
	Query Processing in Shared Memory Systems
	Query Optimization for Parallel Query Execution
	Query Optimization For Parallel Execution
	Parallel Query Plan Space
	Cost of Parallel Query Execution
	Cost of Parallel Query Execution (Cont.)
	Choosing Query Plans
	Physical Schema
	Streaming Data
	Streaming Data
	Logical Routing of Streams
	Parallel Processing of Streaming Data
	Parallel Processing of Streaming Data
	Fault Tolerance
	Distributed Query Processing
	Data Integration From Multiple Sources
	Data Integration From Multiple Sources
	Data Warehouses and Data Lakes
	Schema and Data Integration
	Unified View of Data
	Unified View of Data (Cont.)
	Query Processing Across Data Sources
	Join Locations and Join Ordering
	Possible Query Processing Strategies
	Semijoin Strategy
	Semijoin Reduction
	Distributed Query Optimization
	Distributed Directory Systems
	End of Chapter
	Join Strategies that Exploit Parallelism
	Mediator Systems
	Slide Number 73
	Distributed Query Processing
	Query Transformation
	Example Query (Cont.)
	Advantages
	End of Chapter 22
	Cost of Parallel Evaluation of Operations

