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Chapter 22: Parallel And Distributed 
Query Processing

 Overview
 Parallel Sort
 Parallel Join
 Other Operations
 Parallel Evaluation of Query Plans
 Query Processing on Shared Memory
 Query Optimization
 Distributed Query Processing
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Parallel Query Processing

 Different queries/transactions can be run in parallel with each other.
• Interquery parallelism
• Concurrency control takes care of conflicts in case of updates
• More on parallel transaction processing in Chapter 23 
• Focus in this chapter is on read-only queries

 Individual relational operations (e.g., sort, join, aggregation) can be 
executed in parallel
• data can be partitioned and each processor can work 

independently on its own partition.
 Queries are expressed in high level language (SQL, translated to 

relational algebra)
• makes parallelization easier.
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Intraquery Parallelism

 Intraquery parallelism: execution of a single query in parallel on 
multiple processors/disks; important for speeding up long-running 
queries.

 Two complementary forms of intraquery parallelism:
• Intraoperation Parallelism – parallelize the execution of each 

individual operation in the query
 Supports high degree of parallelism

• Interoperation Parallelism – execute the different operations in a 
query expression in parallel.
 Limited degree of parallelism
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Parallel Processing of Relational Operations

 Our discussion of parallel algorithms assumes:
• read-only queries
• shared-nothing architecture
• n nodes, N1, ..., Nn

 Each assumed to have disks and processors.
• Initial focus on parallelization to a shared-nothing node
 Parallel processing within a shared memory/shared disk node 

discussed later
• Shared-nothing architectures can be efficiently simulated on 

shared-memory and shared-disk systems.   
 Algorithms for shared-nothing systems can thus be run on 

shared-memory and shared-disk systems.  
 However, some optimizations may be possible.
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INTRAOPERATION 
PARALLELISM
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Range Partitioning

0-100) [100-175) [175-300) [300-500) [500-800) [800-1000]

Redistribute using
partitioning vector:  
100, 175, 300, 500, 800

…….
…….
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Range-Partitioning Parallel Sort

0-100) [100-175) [175-300) [300-500) [500-800) [800-1000]

1) Redistribute using
partitioning vector:  
100, 175, 300, 500, 800

…….
…….

2) (External) sort locally at each node
3) Merge if output required at one node
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Parallel Sort
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Parallel Sort

Range-Partitioning Sort
 Choose nodes N1, ..., Nm, where m ≤ n -1 to do sorting.
 Create range-partition vector with m-1 entries, on the sorting attributes
 Redistribute the relation using range partitioning
 Each node Ni sorts its partition of the relation locally.

• Example of data parallelism: each node executes same operation in 
parallel with other nodes, without any interaction with the others.

 Final merge operation is trivial: range-partitioning ensures that, 
if i < j, all key values in node Ni are all less than all key values in Nj.
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Parallel Sort (Cont.)

Parallel External Sort-Merge
 Assume the relation has already been partitioned among nodes N1, 

..., Nn (in whatever manner).
 Each node Ni locally sorts the data (using local disk as required)
 The sorted runs on each node are then merged in parallel:

• The sorted partitions at each node Ni are range-partitioned across the 
processors N1, ..., Nm.

• Each node Ni performs a merge on the streams as they are received, to 
get a single sorted run.

• The sorted runs on nodes N1,..., Nm are concatenated to get the final 
result.

 Algorithm as described vulnerable to execution skew
• all nodes send to node 1, then all nodes send data to node 2, …
• Can be modified so each node sends data to all other nodes in parallel 

(block at a time)
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Partitioned Parallel Join

Partition using range or hash partitioning, on join attributes
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Partitioned Parallel Join (Cont.)

 For equi-joins and natural joins, it is possible to partition the two input 
relations across the processors, and compute the join locally at each 
processor.

 Can use either range partitioning or hash partitioning.
 r and s must be partitioned on their join attributes r.A and s.B), using 

the same range-partitioning vector or hash function.
 Join can be computed at each site using any of

• Hash join, leading to partitioned parallel hash join
• Merge join, leading to partitioned parallel merge join
• Nested loops join, leading to partitioned parallel nested-loops join or 

partitioned parallel index nested-loops join
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Partitioned Parallel Hash-Join

Parallelizing partitioned hash join:
 A hash function h1 takes the join attribute value of each tuple in s and 

maps this tuple to one of the n nodes.
 As tuples of relation s are received at the destination nodes, they are 

partitioned further using another hash function, h2, which is used to 
compute the hash-join locally.

 Repeat above for each tupe in r.
 Each node Ni executes the build and probe phases of the hash-join 

algorithm on the local partitions ri and si of  r and s to produce a 
partition of the final result of the hash-join.

 Note: Hash-join optimizations can be applied to the parallel case
• e.g., the hybrid hash-join algorithm can be used to cache some of the 

incoming tuples in memory and avoid the cost of writing them and reading 
them back in.
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Fragment-and-Replicate Joins

Asymmetric   and   Symmetric Fragment-and-Replicate Joins
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Fragment-and-Replicate Join

 Partitioning not possible for some join conditions 
• e.g., non-equijoin conditions, such as r.A > s.B.

 For joins were partitioning is not applicable, parallelization  can be 
accomplished by fragment and replicate technique

 Special case – asymmetric fragment-and-replicate:
• One of the relations, say r, is partitioned; any partitioning technique can 

be used.
• The other relation, s, is replicated across all the processors.
• Node Ni then locally computes the join of ri with all of s using any join 

technique.
• Also referred to as broadcast join
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Fragment-and-Replicate Join (Cont.)

 Both versions of fragment-and-replicate work with any join condition, 
since every tuple in r can be tested with every tuple in s.

 Usually has a higher cost than partitioning, since one of the relations 
(for asymmetric fragment-and-replicate) or both relations (for general 
fragment-and-replicate) have to be replicated.

 Sometimes asymmetric fragment-and-replicate is preferable even 
though partitioning could be used.
• E.g., if s is small and r is large, and r is already partitioned, it may 

be cheaper to replicate s across all nodes, rather than repartition r
and s on the join attributes.

 Question: how do you implement left outer join using above join 
techniques?



©Silberschatz, Korth and Sudarshan22.18Database System Concepts - 7th Edition

Handling Skew

 Skew can significantly slow down parallel join
 Join skew avoidance

• Balanced partitioning vector
• Virtual node partitioning

 Dynamic handling of join skew
• Detect overloaded physical nodes
• If a physical node has no remaining work, take on a waiting task 

(virtual node) currently assigned to a different physical node that is 
overloaded

• Example of work stealing
 Cheaper to implement in shared memory system, but can be 

used even in shared nothing/shared disk system
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Other Relational Operations

Selection σθ(r)
 If θ is of the form ai = v, where ai is an attribute and v a value.

• If r is partitioned on ai the selection is performed at a single node.
 If θ is of the form l <= ai <= u  (i.e., θ is a range selection) and the 

relation has been range-partitioned on ai

• Selection is performed at each node whose partition overlaps with 
the specified range of values.

 In all other cases: the selection is performed in parallel at all the 
nodes.
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Other Relational Operations (Cont.)

 Duplicate elimination
• Perform by using either of the parallel sort techniques
 eliminate duplicates as soon as they are found during sorting.

• Can also partition the tuples (using either range- or hash-
partitioning) and perform duplicate elimination locally at each 
node.

 Projection
• Projection without duplicate elimination can be performed as 

tuples are read from disk, in parallel.
• If duplicate elimination is required, any of the above duplicate 

elimination techniques can be used.
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Grouping/Aggregation

 Step 1: Partition the relation on the grouping attributes 
 Step 2: Compute the aggregate values locally at each node.
 Optimization: Can reduce cost of transferring tuples during 

partitioning by partial aggregation before partitioning
• For distributive aggregate
• Can be done as part of run generation 
• Consider the sum aggregation operation:
 Perform aggregation operation at each node Ni on those tuples stored 

its local disk
• results in tuples with partial sums at each node.

 Result of the local aggregation is partitioned on the grouping 
attributes, and the aggregation performed again at each node Ni to get 
the final result.

• Fewer tuples need to be sent to other nodes during partitioning.
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Map and Reduce Operations



©Silberschatz, Korth and Sudarshan22.23Database System Concepts - 7th Edition

Map and Reduce Operations

 Map and reduce workers
• Threads/processes that execute map and reduce functions

 Map and reduce tasks
• Units of map and reduce work
• Many more tasks than workers
 Similar to virtual node partitioning

 Skew handling
• Straggler tasks
 Can be handled by initiating an extra copy of the task at 

another node
• Partial aggregation (combiners) helps reduce skew at reduce 

nodes
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PARALLEL EVALUATION OF 
QUERY PLANS
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Interoperator Parallelism

 Pipelined parallelism
• Consider a join of four relations 
 r1 ⨝ r2 ⨝ r3 ⨝ r4

• Set up a pipeline that computes the three joins in parallel

Each of these operations can execute in parallel, sending result 
tuples it computes to the next operation even as it is computing 
further results
 Provided a pipelineable join evaluation algorithm (e.g. indexed 

nested loops join) is used

r1 r2

r3

r4
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Pipelined Parallelism

 Push model of 
computation 
appropriate for 
pipelining in parallel 
databases

 Buffer between 
consumer and 
producer

 Can batch tuples 
before sending to next 
operator
• Reduce number of 

messages, 
• reduce contention on 

shared buffers
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Utility of Pipeline Parallelism

 Limitations
• Does not provide a high degree of parallelism since pipeline 

chains are not very long
• Cannot pipeline operators which do not produce output until all 

inputs have been accessed (e.g. aggregate and sort)
• Little speedup is obtained for the frequent cases of skew in which 

one operator's execution cost is much higher than the others.
 But pipeline parallelism is still very useful since it avoids writing 

intermediate results to disk
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Independent Parallelism

 Independent parallelism
• Consider a join of four relations 

r1 ⨝ r2 ⨝ r3 ⨝ r4

 Let N1 be assigned the computation of 
temp1 = r1 ⨝ r2

 And N2 be assigned the computation of temp2 = r3 ⨝ r4

 And N3 be assigned the computation of temp1 ⨝ temp2

 N1 and N2 can work independently in parallel
 N3 has to wait for input from N1 and N2

• Can pipeline output of N1 and N2 to N3, combining 
independent parallelism and pipelined parallelism

• Does not provide a high degree of parallelism
 useful with a lower degree of parallelism.
 less useful in a highly parallel system, 
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Exchange Operator

 Repartitioning implemented using the exchange operator
• Partition and merge steps
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Exchange Operator Model

 Movement of data encapsulated in exchange operator
 Partitioning of data can be done by

• Hash partitioning
• Range partitioning
• Replicating data to all nodes (called broadcasting)
• Sending all data to a single node

 Destination nodes can receive data from multiple source nodes.  
Incoming data can be merged by:
• Random merge
• Ordered merge

 Other operators in a plan can be unaware of parallelism
• Data parallelism: each operator works purely on local data
• Not always best way, but works well in most cases
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Parallel Plans Using Exchange Operator

 Range partitioning sort:
1. Exchange operator using range partitioning, followed by
2. Local sort

 Parallel external sort merge
1. Local sort followed by
2. Exchange operator with ordered merge

 Partitioned join
1. Exchange operator with hash or range partitioning, followed by
2. Local join

 Asymmetric fragment and replicate
1. Exchange operator using broadcast replication, followed by 
2. Local join

 Exchange operator can also implement push model, with batching
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Parallel Plans
Dashed boxes denote pipelined segment
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Parallel Plans (Cont.)

(c) Parallel Plan

(c) Parallel Plan with Partial Aggregation



©Silberschatz, Korth and Sudarshan22.34Database System Concepts - 7th Edition

Fault Tolerance in Query Plans

 Alternative 1: Re-execute the query on failure
• Works well if mean time to failure >> query execution time
 Good for medium scale parallelism with 100’s of machines

• Works badly on massively parallel execution of long queries
 Where probability of some node failing during execution of a 

single query is high
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Fault Tolerance in Query Plans

 Alternative 2: Re-execute work of only failed nodes
• Works well if consumers process data only after it is completely 

generated
 Just discard partial data
 Used in map-reduce implementations

• Problems arise if consumers process data as it is generated (pipelined 
execution)
 Only new tuples must be consumed from re-execution
 Re-execution must generate tuples in exactly same order to efficiently 

determine which tuples are new

 Straggler nodes (nodes that are running slow) can be treated similar 
to failed nodes



©Silberschatz, Korth and Sudarshan22.36Database System Concepts - 7th Edition

Fault Tolerance in Map-Reduce
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Fault Tolerance in Map Reduce 
Implementation 

 Map workers writes data to local disk
• Cheaper than writing to distributed file system

 When task is complete, data is sent to reducers
 Reducers use data only after it is fully received
 On map worker failure:

• Reexecute map tasks on a new node
• Reducers get data from new node, discarding partially received data (if 

any) from failed node

 On reduce worker failure
• Reexecute reduce task on new node
• Re-fetch data from map nodes

 On completion of a map-reduce phase, result is written to distributed 
file system
• Replication ensures result is safe from failures
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Fault Tolerant Query Execution

 Overheads of fault-tolerant query execution 
• Materialization cost
• Each step has to wait till the previous step finishes
 Stragglers can cause significant delays

 Pipelined execution can avoid these costs
• But harder to make pipelined execution fault-tolerant 
 E.g. duplication of tuples when failed task is reexecuted

 Apache Spark uses concept of Resilient Distributed Datasets (RDDs)
• Data can be replicated in memory/on disk
• But intermediate results are not materialized
 Query nodes can be reexecuted to regenerate results
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Query Processing in Shared Memory 
Systems

 Parallel query processing techniques discussed so far can be 
optimized if data is in shared memory

 Shared memory parallel processing usually based on threads, 
instead of processes
• Usually number of threads = number of cores * number off 

hardware threads per core
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Query Processing in Shared Memory 
Systems

Optimized algorithms for shared memory
 With asymmetric fragment-and-replicate join, the smaller relation can 

be in shared memory, instead of being replicated for each thread
 Hash join can be done by

• Partitioning build relation to each thread, OR
• Shared build relation with singe index, in shared memory
 Probe relation can be partitioned into small pieces (a.k.a. morsels)
 Each thread processes one piece of the probe at a time, in parallel 

with other threads 
 Shared index construction can be parallelized, but carefully

• Multiple threads may try to write to same location in shared 
memory

• Atomic instruction (test-and-set/compare-and-swap) can be used 
to add entries to hash table list
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Query Processing in Shared Memory 
Systems

 Skew can be handled by work stealing 
• Idle processors can take up tasks allocated to other processors
• Virtual node partitioning allows tasks to be broken into small pieces
 Cost of reallocating a partition is low in shared memory
 Even simpler if shared build relation is used

• only probe relation partitioned need to be reassigned

 Query processing algorithms should be are of NUMA: Non-uniform 
memory access
• Each thread scheduled as far as possible on same core every time it runs
• Data structures used by only 1 thread allocated in memory local to the 

core on which the thread is running
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Query Processing in Shared Memory 
Systems

 Cache-conscious algorithms used in main-memory centralized query 
processing should also be used in shared-memory systems

 Single Instruction Multiple Data (SIMD) parallelism is increasingly 
used
• In GPUs as well as Intel Xeon Phi co-processors
• Vector processing

 Vector processing can be used for relational operations 
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QUERY OPTIMIZATION FOR 
PARALLEL QUERY EXECUTION
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Query Optimization For Parallel 
Execution

 Query optimization in parallel databases is significantly more complex 
than query optimization in sequential databases.
• Different options for partitioning inputs and intermediate results
• Cost models are more complicated, since we must take into account 

partitioning costs and issues such as skew and resource contention.
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Parallel Query Plan Space
A parallel query plan must specify 
 How to parallelize  each operation, including which algorithm to use, 

and how to partition inputs and intermediate results (using exchange 
operators)

 How the plan is to be scheduled
• How many nodes to use for each operation
• What operations to pipeline within same node or different nodes
• What operations to execute independently in parallel, and 
• What operations to execute sequentially, one after the other.  

 E.g.  In query r.A 𝛾𝛾sum(s.C)(r ⋈ r.A=s.A r.B=s.B s)
• Partitioning r and s on (A,B) for join will require repartitioning for 

aggregation
• But partitioning r and s on (A) for join will allow aggregation with no further 

repartitioning
 Query optimizer has to choose best plan taking above issues into 

account
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Cost of Parallel Query Execution

 Resource consumption cost model 
• used for centralized databases

 Response time cost model
• attempts to better estimate the time to completion of a query
• E.g. If an operation performs I/O operations in parallel with CPU 

execution, the response time 
T = max(CPU cost, I/O cost)
 Resource consumption cost model uses (CPU cost + I/O cost).

• E.g., if two operations o1 and o2 are in a pipeline, with CPU and I/O costs 
c1; io1 and c2; io2 respectively, then response time 

T = max(c1 + c2, io1 + io2). 
• Operators in parallel:  T = max (T1, T1, …, Tn)
 Skew is an issue
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Cost of Parallel Query Execution (Cont.)

 Response time cost model would have to take into account
• Start-up costs for initiating an operation on multiple nodes
• Skew in distribution of work

 Response time cost model better suited for parallel databases
• But not used much since it increases cost of query optimization
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Choosing Query Plans

 The number of parallel evaluation plans from which to choose from is 
much larger than the number of sequential evaluation plans
• Many alternative partitioning options
• Choosing a good physical organization (partitioning technique) is 

important to speed up queries.
 Two alternatives often used for choosing parallel plans:

• First choose most efficient sequential plan and then choose how 
best to parallelize the operations in that plan
 Heuristic, since best sequential plan may not lead to best 

parallel plan
• Parallelize every operation across all nodes
 Use exchange operator to perform (re)partitioning
 Use standard query optimizer with extended cost model
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Physical Schema

 Partitioning scheme important for queries
 Colocate data that is accessed together

• E.g., all records for a particular user
• E.g., student record with all takes records of the student

 Store multiple copies of a relation, partitioned on different attributes
• E.g., extra copy of  takes partitioned on (course id, year, semester, 

sec id) for colocation with section record
 Materialized views to avoid joins at query time

• Materialized view itself is stored partitioned across nodes
• Speeds up queries, but extra cost for updates
• Extra copy of materialized view may be stored partitioned on 

different attributes

 See book for details of parallel maintenance of materialized 
views
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STREAMING DATA
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Streaming Data

 Real-time analytics is increasingly important
 Online processing of incoming data
 But data must also be stored for later processing
 Architecture alternatives:

• Lambda architecture: sends a copy of data to real time stream 
analytics system, and another copy to data storage system

• Increasingly, same system provides storage and real time stream 
analytics



©Silberschatz, Korth and Sudarshan22.52Database System Concepts - 7th Edition

Logical Routing of Streams
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Parallel Processing of Streaming Data

 Logical routing of tuples is done by creating a Directed Acyclic Graph 
(DAG)
• Can be done by creating a configuration file
 Called a topology in the Apache Storm system

• OR, can be done dynamically by using publish-subscribe system
 E.g., Apache Kafka
 Producers publish to topic/stream, consumers subscribe to 

topic/streams
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Parallel Processing of Streaming Data

 Physical DAG reflects parallel execution of operator instances
 Parallel implementation of publish-subscribe system

• Each topic/stream is partitioned (topic-partition)
 Multiple instances of each operator, running in parallel

• Each subscribes to one or more partitions of a topic

 In Kafka, multiple instances of an operator register with an associated 
consumer group
• Each topic-partition sent to a single consumer from the consumer group

 Streaming operators often need to store state
• Can be stored locally (cheaper) or in a parallel data-store (better for fault 

tolerance) 
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Fault Tolerance

 Possible semantics when dealing with failures
• At-least once
• At-most once
• Exactly once

 Can be implemented in the publish-subscribe/routing system
• Need to store tuples, including intermediate results, persistently
• Can lower overhead by checkpointing operator state, and 

replaying operator from checkpoint, instead of persisting operator 
output
 But need to ensure duplicates are removed

 Replication of operators: Copy of operator running concurrently with 
original
• Similar to hot-spare 
• Allows instant recovery from failure
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Data Integration From Multiple Sources

 Many database applications require data from multiple databases
 A federated database system is a software layer on top of existing 

database systems, which is designed to manipulate information in 
heterogeneous databases
• Creates an illusion of logical database integration without any physical 

database integration
• Each database has its local schema
• Global schema integrates all the local schema
 Schema integration

• Queries can be issued against global schema, and translated to queries 
on local schemas
 Databases that support common schema and queries, but not 

updates, are referred to as mediator systems
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Data Integration From Multiple Sources

 Data virtualization
• Allows data access from multiple databases, but without a common 

schema

 External data approach: allows database to treat external data as a 
database relation (foreign tables)
• Many databases today allow a local table to be defined as a view on 

external data
• SQL Management of External Data (SQL MED) standard

 Wrapper for a data source is a view that translates data from local to 
a global schema
• Wrappers must also translate updates on global schema to 

updates on local schema
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Data Warehouses and Data Lakes

 Data warehouse is an alternative to data integration 
• Migrates data to a common schema, avoiding run-time overhead
• Cost of translating schema/data to a common warehouse schema can be 

significant

 Data lake: architecture where data is stored in multiple data storage 
systems, in different storage formats, but which can be queried from a 
single system.
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Schema and Data Integration

 Schema integration: creating a unified conceptual schema
• Requires creation of global schema, integrating a number of local 

schema

 Global-as-view approach
• At each site, create a view of local data, mapping it to the global schema
• Union of local views is the global view
• Good for queries, but not for updates
 E.g., which local database should an insert go to?

 Local-as-view approach
• Create a view defining contents of local data as a view of global data
 Site stores local data as before, the view is for update processing

• Updates on global schema are mapped to updates to the local views

 See book for more details with an example
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Unified View of Data

 Agreement on a common data model
• Typically the relational model

 Agreement on a common conceptual schema
• Different names for same relation/attribute
• Same relation/attribute name means different things

 Agreement on a single representation of shared data 
• E.g., data types, precision, 
• Character sets
 ASCII vs EBCDIC
 Sort order variations

 Agreement on units of measure 
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Unified View of Data (Cont.)

 Variations in names
• E.g., Köln vs Cologne, Mumbai vs Bombay

 One approach: globally unique naming system
• E.g. GeoNames database (www.geonames.org)

 Another approach:  specification of name equivalences
• E.g. used in the Linked Data project supporting integration of a large 

number of databases storing data in RDF data

http://www.geonames.org/
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Query Processing Across Data Sources

 Several issues in query processing across multiple sources
 Limited query capabilities

• Some data sources allow only restricted forms of selections
 E.g., web forms, flat file data sources

• Queries have to be broken up and processed partly at the source 
and partly at a different site

 Removal of duplicate information when sites have overlapping 
information
• Decide which sites to execute query

 Global query optimization
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Join Locations and Join Ordering

 Consider the following relational algebra expression in which the three 
relations are neither replicated nor fragmented
r1 ⨝ r2 ⨝ r3

 r1 is stored at site S1

 r2 at S2

 r3 at S3

 For a query issued at site SI, the system needs to produce the result 
at site SI 
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Possible Query Processing Strategies

 Ship copies of all three relations to site SI and choose a strategy for 
processing the entire locally at site SI.

• Ship a copy of the r1 relation to site S2 and compute 
temp1 = r1 ⨝ r2 at S2. 

• Ship temp1 from S2 to S3, and compute
temp2 = temp1 ⨝ r3 at S3

• Ship the result temp2 to SI.
 Devise similar strategies, exchanging the roles S1, S2, S3

 Must consider following factors:
• amount of data being shipped 
• cost of transmitting a data block between sites
• relative processing speed at each site 
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Semijoin Strategy

 Let r1 be a relation with schema R1 stores at site S1

Let r2 be a relation with schema R2 stores at site S2

 Evaluate the expression r1 ⨝ r2 and obtain the result at S1.
1. Compute temp1 ← ∏R1 ∩ R2 (r1) at S1.
2. Ship  temp1 from S1 to S2.
3. Compute temp2 ← r2 ⨝ temp1 at S2

4. Ship temp2 from S2 to S1.
5. Compute r1 ⨝ temp2 at S1. This is the same as r1 ⨝ r2. 
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Semijoin Reduction

 The semijoin of r1 with r2, is denoted by:
r1 ⋉ r2 ∏R1 (r1 ⨝ r2) 

 Thus, r1 ⋉ r2 selects those tuples of r1 that contributed to r1 ⨝ r2.
 In step 3 above, temp2=r2 ⋉ r1.
 For joins of several relations, the above strategy can be extended to a 

series of semijoin steps.
 Semijoin can be computed approximately by using a Bloom filter

• For each tuple of r2 compute hash value on join attribute; if hash 
value is i, and set bit i of the bitmap

• Send bitmap to site containing r1

• Fetch only tuples of r1 whose join attribute value hashes to a bit 
that is set to 1 in the bitmap

• Bloom filter is an optimized bitmap filter structure (Section 24.1)



©Silberschatz, Korth and Sudarshan22.68Database System Concepts - 7th Edition

Distributed Query Optimization

 New physical property for each relation: location of data
 Operators also need to be annotated with the site where they are 

executed
• Operators typically operate only on local data
• Remote data is typically fetched locally before operator is 

executed
 Optimizer needs to find best plan taking data location and operator 

execution location into account.
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Distributed Directory Systems

 Distributed directory systems are widely used
• Internet Domain Name Service (DNS)
• Lightweight Directory Access Protocol (LDAP)
 Widely used to store organizational data, especially user profiles

 Data in a distributed directory system are stored and controlled in a 
distributed hierarchical manner
• E.g. data about yale.edu is provided by a Yale, and about IIT Bombay by 

an IIT Bombay server
• Data can be queries in a uniform manner regardless of where it is stored
 Queries get forwarded to the site where the information is stored
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Join Strategies that Exploit Parallelism

 Consider r1 ⨝ r2 ⨝ r3 ⨝ r4 where relation ri is stored at site Si. The 

result must be presented at site S1.

 r1 is shipped to S2 and r1 ⨝ r2 is computed at S2: simultaneously r3 is 
shipped to S4 and r3 ⨝ r4 is computed at S4

 S2 ships tuples of (r1 ⨝ r2) to S1 as they produced; 
S4 ships tuples of (r3 ⨝ r4) to S1

 Once tuples of (r1 ⨝ r2) and (r3 ⨝ r4) arrive at S1 (r1 ⨝ r2) ⨝ (r3 r4) 
is computed in parallel with the computation of (r1 ⨝ r2) at S2 and the 
computation of (r3 ⨝ r4) at S4.  
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Mediator Systems

 Mediator systems are systems that integrate multiple heterogeneous 
data sources by providing an integrated global view, and providing 
query facilities on global view
• Unlike full fledged multidatabase systems, mediators generally do 

not bother about transaction processing
• But the terms mediator and multidatabase are sometimes used 

interchangeably
• The term virtual database is also used to refer to 

mediator/multidatabase systems
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Distributed Query Processing

 For centralized systems, the primary criterion for measuring the cost 
of a particular strategy is the number of disk accesses.

 In a distributed system, other issues must be taken into account:
• The cost of a data transmission over the network.
• The potential gain in performance from having several sites 

process parts of the query in parallel.
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Query Transformation

 Translating algebraic queries on fragments.

• It must be possible to construct relation r from its fragments

• Replace relation r by the expression to construct relation r from its 
fragments

 Consider the horizontal fragmentation of the account relation into

account1 = σ branch_name = “Hillside” (account )

account2 = σ branch_name = “Valleyview” (account )

 The query σ branch_name = “Hillside” (account ) becomes

σ branch_name = “Hillside” (account1 ∪ account2)

which is optimized into

σ branch_name = “Hillside” (account1) ∪ σ branch_name = “Hillside” (account2)
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Example Query (Cont.)

 Since account1 has only tuples pertaining to the Hillside branch, we 
can eliminate the selection operation.

 Apply the definition of account2 to obtain
σ branch_name = “Hillside” (σ branch_name = “Valleyview” (account )

 This expression is the empty set regardless of the contents of the 
account relation.

 Final strategy is for the Hillside site to return account1 as the result of 
the query.
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Advantages

 Preservation of investment in existing
• hardware
• system software
• Applications

 Local autonomy and administrative control 
 Allows use of special-purpose DBMSs
 Step towards a unified homogeneous DBMS

• Full integration into a homogeneous DBMS faces
 Technical difficulties and cost of conversion
 Organizational/political difficulties

• Organizations do not want to give up control on their data
• Local databases wish to retain a great deal of autonomy
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Cost of Parallel Evaluation of Operations

 If there is no skew in the partitioning, and there is no overhead due to 
the parallel evaluation, expected speed-up will be 1/n   

 If skew and overheads are also to be taken into account, the time 
taken by a parallel operation can be estimated as 

Tpart + Tasm + max (T1, T1, …, Tn)
• Tpart is the time for partitioning the relations
• Tasm is the time for assembling the results
• Ti is the time taken for the operation at node Ni

 this needs to be estimated taking into account the skew, and 
the time wasted in contention. 
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