
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 25: Advanced Application
Development

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan25.3Database System Concepts - 7th Edition

Hardware Tuning: Choice of RAID Level

 To use RAID 1 or RAID 5?
• Depends on ratio of reads and writes

 RAID 5 requires 2 block reads and 2 block writes to write out one
data block

 If an application requires r reads and w writes per second
• RAID 1 requires r + 2w I/O operations per second
• RAID 5 requires: r + 4w I/O operations per second

 For reasonably large r and w, this requires lots of disks to handle
workload
• RAID 5 may require more disks than RAID 1 to handle load!
• Apparent saving of number of disks by RAID 5 (by using parity, as

opposed to the mirroring done by RAID 1) may be illusory!
 Thumb rule: RAID 5 is fine when writes are rare and data is very large,

but RAID 1 is preferable otherwise
• If you need more disks to handle I/O load, just mirror them since disk

capacities these days are enormous!

©Silberschatz, Korth and Sudarshan25.6Database System Concepts - 7th Edition

Tuning the Database Design (Cont.)

Materialized Views
 Materialized views can help speed up certain queries

• Particularly aggregate queries
 Overheads

• Space
• Time for view maintenance

 Immediate view maintenance: done as part of update txn
• time overhead paid by update transaction

 Deferred view maintenance: done only when required
• update transaction is not affected, but system time is spent

on view maintenance
 until updated, the view may be out-of-date

 Preferable to denormalized schema since view maintenance
is systems responsibility, not programmers
• Avoids inconsistencies caused by errors in update programs

©Silberschatz, Korth and Sudarshan25.7Database System Concepts - 7th Edition

Tuning the Database Design (Cont.)

 How to choose set of materialized views
• Helping one transaction type by introducing a materialized view

may hurt others
• Choice of materialized views depends on costs

 Users often have no idea of actual cost of operations
• Overall, manual selection of materialized views is tedious

 Some database systems provide tools to help DBA choose views to
materialize
• “Materialized view selection wizards”

©Silberschatz, Korth and Sudarshan25.9Database System Concepts - 7th Edition

Tuning of Transactions (Cont.)

 Reducing lock contention
 Long transactions (typically read-only) that examine large parts of

a relation result in lock contention with update transactions
• E.g., large query to compute bank statistics and regular bank

transactions

 To reduce contention
• Use multi-version concurrency control

 E.g., Oracle “snapshots” which support multi-version 2PL
• Use degree-two consistency (cursor-stability) for long transactions

 Drawback: result may be approximate

©Silberschatz, Korth and Sudarshan25.10Database System Concepts - 7th Edition

Tuning of Transactions (Cont.)
 Long update transactions cause several problems

• Exhaust lock space
• Exhaust log space

 and also greatly increase recovery time after a crash, and may
even exhaust log space during recovery if recovery algorithm is
badly designed!

 Use mini-batch transactions to limit number of updates that a single
transaction can carry out. E.g., if a single large transaction updates
every record of a very large relation, log may grow too big.
• Split large transaction into batch of “mini-transactions,'' each

performing part of the updates
• Hold locks across transactions in a mini-batch to ensure

serializability
 If lock table size is a problem can release locks, but at the cost

of serializability
• In case of failure during a mini-batch, must complete its

remaining portion on recovery, to ensure atomicity.

©Silberschatz, Korth and Sudarshan25.11Database System Concepts - 7th Edition

Performance Simulation

 Performance simulation using queuing model useful to predict
bottlenecks as well as the effects of tuning changes, even without
access to real system

 Queuing model as we saw earlier
• Models activities that go on in parallel

 Simulation model is quite detailed, but usually omits some low
level details
• Model service time, but disregard details of service
• E.g., approximate disk read time by using an average disk read

time
 Experiments can be run on model, and provide an estimate of

measures such as average throughput/response time
 Parameters can be tuned in model and then replicated in real

system
• E.g., number of disks, memory, algorithms, etc.

©Silberschatz, Korth and Sudarshan25.14Database System Concepts - 7th Edition

Database Application Classes
 Online transaction processing (OLTP)

• requires high concurrency and clever techniques to speed up commit
processing, to support a high rate of update transactions.

 Decision support applications
• including online analytical processing, or OLAP applications
• require good query evaluation algorithms and query optimization.

 Architecture of some database systems tuned to one of the two
classes
• E.g., Teradata is tuned to decision support

 Others try to balance the two requirements
• E.g., Oracle, with snapshot support for long read-only transaction

©Silberschatz, Korth and Sudarshan25.16Database System Concepts - 7th Edition

Benchmarks Suites (Cont.)

 TPC benchmarks (cont.)
• TPC-D: complex decision support application

 Superceded by TPC-H and TPC-R
• TPC-H: (H for ad hoc) based on TPC-D with some extra queries

 Models ad hoc queries which are not known beforehand
• Total of 22 queries with emphasis on aggregation

 prohibits materialized views
 permits indices only on primary and foreign keys

• TPC-R: (R for reporting) same as TPC-H, but without any
restrictions on materialized views and indices

• TPC-W: (W for Web) End-to-end Web service benchmark
modeling a Web bookstore, with combination of static and
dynamically generated pages

©Silberschatz, Korth and Sudarshan25.18Database System Concepts - 7th Edition

TPC Performance Measures

 Two types of tests for TPC-H and TPC-R
• Power test: runs queries and updates sequentially, then takes

mean to find queries per hour
• Throughput test: runs queries and updates concurrently

 multiple streams running in parallel each generates queries,
with one parallel update stream

• Composite query per hour metric: square root of product of
power and throughput metrics

• Composite price/performance metric

©Silberschatz, Korth and Sudarshan25.19Database System Concepts - 7th Edition

Other Benchmarks

 OODB transactions require a different set of benchmarks.
• OO7 benchmark has several different operations, and provides a

separate benchmark number for each kind of operation
• Reason: hard to define what is a typical OODB application

 Benchmarks for XML being discussed

©Silberschatz, Korth and Sudarshan25.23Database System Concepts - 7th Edition

SQL Standards History (Cont.)

 SQL:1999
• Adds variety of new features --- extended data types, object

orientation, procedures, triggers, etc.
• Broken into several parts

 SQL/Framework (Part 1): overview
 SQL/Foundation (Part 2): types, schemas, tables,

query/update statements, security, etc.
 SQL/CLI (Call Level Interface) (Part 3): API interface
 SQL/PSM (Persistent Stored Modules) (Part 4): procedural

extensions
 SQL/Bindings (Part 5): embedded SQL for different embedding

languages

©Silberschatz, Korth and Sudarshan25.24Database System Concepts - 7th Edition

SQL Standards History (Cont.)

 More parts undergoing standardization process
• Part 7: SQL/Temporal: temporal data
• Part 9: SQL/MED (Management of External Data)

 Interfacing of database to external data sources
• Allows other databases, even files, can be viewed as part

of the database
• Part 10 SQL/OLB (Object Language Bindings): embedding SQL

in Java
• Missing part numbers 6 and 8 cover features that are not near

standardization yet

©Silberschatz, Korth and Sudarshan25.27Database System Concepts - 7th Edition

XML-Based Standards

 Several XML based Standards for E-commerce
• E.g., RosettaNet (supply chain), BizTalk
• Define catalogs, service descriptions, invoices, purchase orders,

etc.
• XML wrappers are used to export information from relational

databases to XML

 Simple Object Access Protocol (SOAP): XML based remote
procedure call standard
• Uses XML to encode data, HTTP as transport protocol
• Standards based on SOAP for specific applications

 E.g., OLAP and Data Mining standards from Microsoft

©Silberschatz, Korth and Sudarshan25.28Database System Concepts - 7th Edition

E-Commerce

 E-commerce is the process of carrying out various activities
related to commerce through electronic means

 Activities include:
• Presale activities: catalogs, advertisements, etc.
• Sale process: negotiations on price/quality of service
• Marketplace: e.g., stock exchange, auctions, reverse auctions
• Payment for sale
• Delivery related activities: electronic shipping, or electronic

tracking of order processing/shipping
• Customer support and post-sale service

©Silberschatz, Korth and Sudarshan25.29Database System Concepts - 7th Edition

E-Catalogs

 Product catalogs must provide searching and browsing facilities
• Organize products into intuitive hierarchy
• Keyword search
• Help customer with comparison of products

 Customization of catalog
• Negotiated pricing for specific organizations
• Special discounts for customers based on past history

 E.g., loyalty discount
• Legal restrictions on sales

 Certain items not exposed to under-age customers

 Customization requires extensive customer-specific information

©Silberschatz, Korth and Sudarshan25.30Database System Concepts - 7th Edition

Marketplaces

 Marketplaces help in negotiating the price of a product when there
are multiple sellers and buyers

 Several types of marketplaces
• Reverse auction
• Auction
• Exchange

 Real world marketplaces can be quite complicated due to product
differentiation

 Database issues:
• Authenticate bidders
• Record buy/sell bids securely
• Communicate bids quickly to participants

 Delays can lead to financial loss to some participants
• Need to handle very large volumes of trade at times

 E.g., at the end of an auction

©Silberschatz, Korth and Sudarshan25.31Database System Concepts - 7th Edition

Types of Marketplace
 Reverse auction system: single buyer, multiple sellers.

• Buyer states requirements, sellers bid for supplying items. Lowest
bidder wins. (also known as tender system)

• Open bidding vs. closed bidding
 Auction: Multiple buyers, single seller

• Simplest case: only one instance of each item is being sold
• Highest bidder for an item wins
• More complicated with multiple copies, and buyers bid for specific

number of copies
 Exchange: multiple buyers, multiple sellers

• E.g., stock exchange
• Buyers specify maximum price, sellers specify minimum price
• exchange matches buy and sell bids, deciding on price for the

trade
 e.g., average of buy/sell bids

©Silberschatz, Korth and Sudarshan25.32Database System Concepts - 7th Edition

Order Settlement
 Order settlement: payment for goods and delivery
 Insecure means for electronic payment: send credit card number

• Buyers may present some one else’s credit card numbers
• Seller has to be trusted to bill only for agreed-on item
• Seller has to be trusted not to pass on the credit card number to

unauthorized people

 Need secure payment systems
• Avoid above-mentioned problems
• Provide greater degree of privacy

 E.g., not reveal buyers identity to seller
• Ensure that anyone monitoring the electronic transmissions

cannot access critical information

©Silberschatz, Korth and Sudarshan25.33Database System Concepts - 7th Edition

Secure Payment Systems

 All information must be encrypted to prevent eavesdropping
• Public/private key encryption widely used

 Must prevent person-in-the-middle attacks
• E.g., someone impersonates seller or bank/credit card company and

fools buyer into revealing information
 Encrypting messages alone doesn’t solve this problem
 More on this in next slide

 Three-way communication between seller, buyer and credit-card
company to make payment
• Credit card company credits amount to seller
• Credit card company consolidates all payments from a buyer and

collects them together
 E.g., via buyer’s bank through physical/electronic

check payment

©Silberschatz, Korth and Sudarshan25.34Database System Concepts - 7th Edition

Secure Payment Systems (Cont.)

 Digital certificates are used to prevent impersonation/man-in-the
middle attack
• Certification agency creates digital certificate by encrypting, e.g.,

seller’s public key using its own private key
 Verifies sellers identity by external means first!

• Seller sends certificate to buyer
• Customer uses public key of certification agency to decrypt

certificate and find sellers public key
 Man-in-the-middle cannot send fake public key

• Sellers public key used for setting up secure communication

 Several secure payment protocols
• E.g., Secure Electronic Transaction (SET)

©Silberschatz, Korth and Sudarshan25.35Database System Concepts - 7th Edition

Digital Cash

 Credit-card payment does not provide anonymity
• The SET protocol hides buyers identity from seller
• But even with SET, buyer can be traced with help of credit card

company

 Digital cash systems provide anonymity similar to that provided by
physical cash
• E.g., Dig Cash
• Based on encryption techniques that make it impossible to find out

who purchased digital cash from the bank
• Digital cash can be spent by purchaser in parts

 much like writing a check on an account whose owner is
anonymous

©Silberschatz, Korth and Sudarshan25.36Database System Concepts - 7th Edition

Legacy Systems

 Legacy systems are older-generation systems that are incompatible
with current generation standards and systems but still in production
use
• E.g., applications written in Cobol that run on mainframes

 Today’s hot new system is tomorrows legacy system!
 Porting legacy system applications to a more modern environment is

problematic
• Very expensive, since legacy system may involve millions of lines of

code, written over decades
 Original programmers usually no longer available

• Switching over from old system to new system is a problem
 more on this later

 One approach: build a wrapper layer on top of legacy application to
allow interoperation between newer systems and legacy application
• E.g., use ODBC or OLE-DB as wrapper

©Silberschatz, Korth and Sudarshan25.37Database System Concepts - 7th Edition

Legacy Systems (Cont.)

 Rewriting legacy application requires a first phase of
understanding what it does
• Often legacy code has no documentation or outdated

documentation
• reverse engineering: process of going over legacy code to

 Come up with schema designs in ER or OO model
 Find out what procedures and processes are implemented, to

get a high level view of system

 Re-engineering: reverse engineering followed by design of new
system
• Improvements are made on existing system design in this process

©Silberschatz, Korth and Sudarshan25.38Database System Concepts - 7th Edition

Legacy Systems (Cont.)

 Switching over from old to new system is a major problem
• Production systems are in every day, generating new data
• Stopping the system may bring all of a company’s activities to a

halt, causing enormous losses

 Big-bang approach:
1. Implement complete new system
2. Populate it with data from old system

1. No transactions while this step is executed
2. scripts are created to do this quickly

3. Shut down old system and start using new system
• Danger with this approach: what if new code has bugs or

performance problems, or missing features
 Company may be brought to a halt

©Silberschatz, Korth and Sudarshan25.39Database System Concepts - 7th Edition

Legacy Systems (Cont.)

 Chicken-little approach:
• Replace legacy system one piece at a time
• Use wrappers to interoperate between legacy and new code

 E.g., replace front end first, with wrappers on legacy backend
• Old front end can continue working in this phase in case of

problems with new front end
 Replace back end, one functional unit at a time

• All parts that share a database may have to be replaced
together, or wrapper is needed on database also

• Drawback: significant extra development effort to build wrappers and
ensure smooth interoperation
 Still worth it if company’s life depends on system

Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 25

http://www.db-book.com/

	Chapter 25: Advanced Application Development
	Hardware Tuning: Choice of RAID Level
	Tuning the Database Design (Cont.)
	Tuning the Database Design (Cont.)
	Tuning of Transactions (Cont.)
	Tuning of Transactions (Cont.)
	Performance Simulation
	Database Application Classes
	Benchmarks Suites (Cont.)
	TPC Performance Measures
	Other Benchmarks
	SQL Standards History (Cont.)
	SQL Standards History (Cont.)
	XML-Based Standards
	E-Commerce
	E-Catalogs
	Marketplaces
	Types of Marketplace
	Order Settlement
	Secure Payment Systems
	Secure Payment Systems (Cont.)
	Digital Cash
	Legacy Systems
	Legacy Systems (Cont.)
	Legacy Systems (Cont.)
	Legacy Systems (Cont.)
	End of Chapter 25

