
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 26: Blockchain Databases

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan26.2Database System Concepts - 7th Edition

Outline

 Overview
 Blockchain Properties
 Achieving Blockchain Properties via Cryptographic Hash Functions
 Consensus
 Data Management in a Blockchain
 Smart Contracts
 Performance Enhancement
 Emerging Applications

©Silberschatz, Korth and Sudarshan26.3Database System Concepts - 7th Edition

History

 Blockchain technology’s development was driven initially by
cryptocurrencies.
• But cryptocurrency is just one application of blockchain

 Cryptocurrencies:
• Purely online
• Maintained by a decentralized distributed ledger

 Bitcoin
• One of the first successful cryptocurrencies, and the best known.
• Published under the pseudonym Satoshi Nakomoto
• Aims to be an anonymous, fully distributed and decentralized currency
• There are other blockchains that are more appropriate for blockchain-

based enterprise data

©Silberschatz, Korth and Sudarshan26.4Database System Concepts - 7th Edition

Types of Blockchain

 Public
• Anyone can download the needed software and create a blockchain

node
• No trust assumed among participating nodes

 Permissioned
• Permission to run a blockchain node is granted by a permissioning

authority
• Some degree of relaxation of the assumptions of trustlessness and

autonomy
 The type of blockchain influences the choice of algorithm used by which

nodes agree on the next block to be added to the blockchain

©Silberschatz, Korth and Sudarshan26.5Database System Concepts - 7th Edition

Blockchain Properties and Structure

 Linked list of blocks
• Each block contains a pointer to the previous block plus a hash of the

previous block
 Except, of course, for the first block, called the genesis block

 Tamper resistance
• The inclusion of the hash of the previous block makes tampering

difficult
 Changing the contents of a block means changes all newer blocks

as well
• Specific mathematical requirements for the hash function (see later)
• Replication prevents replacement of the entire blockchain without

gaining majority control

©Silberschatz, Korth and Sudarshan26.6Database System Concepts - 7th Edition

Blockchain Properties and Structure

 Node types
• Full node – maintains copy of blockchain and participates in the

consensus process
• Light node – submits updates to the blockchain but does not

participate in the consensus process
 Consensus algorithms to choose node to add next block:

• Proof of work – first node to solve a certain hard math problem
• Proof of stake – node selected based on amount of currency owned

or held in reserve
• Byzantine consensus – message-based protocol to reach consensus

on next block
• Other approaches – proof of activity, proof of burn, proof of capacity,

proof of elapsed time

©Silberschatz, Korth and Sudarshan26.7Database System Concepts - 7th Edition

Blockchain Properties and Structure

 Forks
• A fork occurs if a block is added to a block that is not the most recent

one
• Accidental if consequence of the consensus algorithm

 One fork survives; others are eventually orphaned
• Malicious if due to an attempt to damage the blockchain
• Consensus-based if agreed to by majority of users

 Consensus-based fork types
• Hard – old version of blockchain software does not recognize new

blocks as valid
• Soft – old version of blockchain software recognizes new blocks as

valid

©Silberschatz, Korth and Sudarshan26.8Database System Concepts - 7th Edition

Blockchain Properties and Structure

 Digital signature
• Public-key encryption is used to allow users to sign their transactions.
• Ensures that users cannot deny submitting the transaction, a property

called irrefutability.
 Anonymity

• Users can remain anonymous unless there is a way to tie the user’s ID
(public key) to a real-world entity

 Summary of blockchain properties:
• Decentralization – majority consensus with no central authority.
• Tamper resistance – infeasibility of changing the contents of blocks

on the blockchain.
• Irrefutability – user cannot deny having submitted a transaction.
• Anonymity – IDs not directly tied to any real-world entity

©Silberschatz, Korth and Sudarshan26.9Database System Concepts - 7th Edition

Cryptographic Hash Functions

 Let h denote a cryptographic hash function. Then h must satisfy the
following properties:
• Collision resistant – It is infeasible to find two distinct values x and y

such that h(x) = h(y)
• Irreversible – Given h(x), it is infeasible to find x.

 By infeasible, we mean that there is strong mathematical evidence, if not
an actual proof, that there is no approach to obtaining an answer that is
better than guessing from the set of all possibilities.

©Silberschatz, Korth and Sudarshan26.10Database System Concepts - 7th Edition

Blockchain Transactions

 Exact transaction model is specific to each blockchain.
 Bitcoin

• No account balances stored directly.
• A transaction specifies:

 Input transactions (whose output are spent by this transaction)
 A set of outputs, each specifying the recipient and the amount
 A digital signature from the user submitting the transaction

• Additionally a Bitcoin transaction may:
 Store a small amount of data on the blockchain
 Specify a slightly more complex transaction using the Bitcoin

scripting language
 Ethereum

• Maintains account balances, which are modified by transactions
• Has a more sophisticated, Turing-complete scripting language

©Silberschatz, Korth and Sudarshan26.11Database System Concepts - 7th Edition

Consensus

 All nodes must agree on additions to the blockchain
 In a decentralized system like a blockchain system, there is no central

coordinator (unlike the case for 2PC and 3PC)
 Categorization of consensus algorithms:

• Proof of Work
 Node needs to solve a cryptographic puzzle in order to add a block

(more on next slide)
• Proof of Stake

 Node is chosen to add next block based on amount of currency
held, with probability proportionate to stake

• Byzantine Consensus
 Node is chosen to add next block based on a message-passing-

based consensus algorithm (more later)

©Silberschatz, Korth and Sudarshan26.12Database System Concepts - 7th Edition

Proof of Work

 To add a block B, a node needs to find a nonce, n, such that the value of
the hash function h applied to the concatenation of n and B (n || B) is less
that some specified value.

 The function h must have the puzzle-friendliness property: Given k and
an n-bit value y, it is infeasible to find x such that h(x || k) = y in time
significantly less than 2n.

 Forks
• If more than one node solves the puzzle around the same time, two

blocks could be added after the most recent block
• The result is a fork
• Since nodes attempt to add to the most recent block of the longest

chain, eventually blocks on shorter forks are orphaned (slide 7)

©Silberschatz, Korth and Sudarshan26.13Database System Concepts - 7th Edition

Byzantine Consensus

 Byzantine failure: A failed node can behave in an arbitrarily bad manner,
including taking the exactly correct set of steps to sabotage the system
• Contrast with 2PC, 3PC, Paxos, and Raft (Chapter 23), where the only

assumed type of failure is a crash. This is called the fail-stop model
of failure.

 Achieving consensus with Byzantine failure that at most (n-1)/3 nodes fail,
where n is the total number of nodes.

 Traditional Byzantine consensus algorithms assume that n does not
change.
• In a blockchain system, however, nodes can join and leave.
• Modern blockchain Byzantine consensus algorithms are robust to the

number of nodes changing

©Silberschatz, Korth and Sudarshan26.14Database System Concepts - 7th Edition

Sybil Attacks

 A Sybil attack is an attempt to overwhelm the consensus algorithm by
adding a large number of nodes.

 Protection against Sybil attack:
• Proof of work: Hard for an attacker to control a majority of the

computing power in the network, thus making it hard to dominate
success in solving the cryptographic puzzle.

• Proof of stake: Costly to acquire a majority of all outstanding currency.
• Byzantine consensus: Vulnerable to attack unless there is a

permissioning mechanism for new nodes:
 Trusted permission-granting agent.
 A decentralized trust-based feature in the protocol itself.

©Silberschatz, Korth and Sudarshan26.15Database System Concepts - 7th Edition

Data Management in a Blockchain

 Validating a transaction requires data look-up in the blockchain:
• Bitcoin: Look up input transactions to ensure that their output has not

already been spend (“double-spend”).
• Ethereum: Look up account balances.

 Blockchains use the Merkle-tree data structure (Chapter 23):
• Allows a node to store just the root-hash of the Merkle tree for

verification purposes, rather than the entire blockchain.
• But blockchain immutability means the tree structure can’t be updated

in place.
 Merkle-Patricia-tree structure:

• Patricia-tree structure allows key-based search.
• Updates performed by creating a new root that points to unchanged

parts of the data structure.

©Silberschatz, Korth and Sudarshan26.16Database System Concepts - 7th Edition

Smart Contracts

 Transaction execution is specified by code
• Bitcoin: a relatively simple stack-based scripting language with

instructions designed for funds-transfer, including the multisig
instruction: m of n users must approve to enable escrow transactions.
 Infinite loops not possible due to the limited power of the language.

• Ethereum: a scripting Turing-complete language:
 Based on the Ethereum virtual machine (EVM)
 Solidity: A high-level language compiled to EVM code
 Greater expressive power but risk of infinite loops

• Need mechanism for terminating such loops despite
undecidability of the halting problem

• A cost-per-instruction framework serves both to avoid infinite
loops and to incentivize miners (next slide)

©Silberschatz, Korth and Sudarshan26.17Database System Concepts - 7th Edition

Concept of “Gas” in Ethereum

 Each Ethereum instruction has a fixed cost, denominated in gas.
 Each smart contract sets its own gas price in Ether defining the amount

paid to the miner for one unit of gas.
 How to set price wisely:

• Gas price too low: miners disincented to include transaction.
• Gas price too high: user overpaid.

 Limits
• Transaction gas limit: upper bound on transaction gas usage, set by

user.
• Block gas limit: upper bound on gas usage in a block, set by the

system.
 Infinite loops impossible since the transaction gas limit is reached

eventually, at which point the transaction fails and terminates, (though the
miner keeps the payment received).

©Silberschatz, Korth and Sudarshan26.18Database System Concepts - 7th Edition

Smart Contracts

 External input:
• Messages from other contracts
• Input pertaining to the outside world from trusted sources called

oracles.
 Autonomy:

• An Ethereum smart contract may run indefinitely by receiving Ether
from external sources to fund its continued operation. Such contracts
are called distributed autonomous organizations (DAOs).

 A smart contract may be used to create a separate currency or token on
top of the Ethereum blockchain.
• The ERC-20 standard is the most widely used

 Smart contracts may be used in the implementation of cross-chain
transactions, allowing transactions between separate blockchain systems

©Silberschatz, Korth and Sudarshan26.19Database System Concepts - 7th Edition

Performance Enhancement

 The consensus mechanism is an important factor in blockchain
performance, as discussed earlier.

 Other ways to enhance performance include
• Sharding: parallelizing the mining of new blocks
• Off-chain transaction processing: Creation of a separate channel for

users who process transactions among themselves frequently.
 Channel funded with funds from the underlying blockchain.
 Routine transactions avoid mining overhead.
 Users can terminate the agreement to process transactions off-

chain at any point, with current channel funds balances refunded
on the underlying blockchain.

• Database-style blockchain data structures.

©Silberschatz, Korth and Sudarshan26.20Database System Concepts - 7th Edition

Emerging Applications

 Academic transcript distribution
 Accounting and audit
 Asset management
 E-Government
 Foreign-currency exchange
 Health care

 Insurance claims
 Internet of Things
 Loyalty programs
 Supply chain
 Ticket sales and re-sales
 Trade finance
 and many more

©Silberschatz, Korth and Sudarshan26.21Database System Concepts - 7th Edition

End of Chapter 26

	Chapter 26: Blockchain Databases
	Outline
	History
	Types of Blockchain
	Blockchain Properties and Structure
	Blockchain Properties and Structure
	Blockchain Properties and Structure
	Blockchain Properties and Structure
	Cryptographic Hash Functions
	Blockchain Transactions
	Consensus
	Proof of Work
	Byzantine Consensus
	Sybil Attacks
	Data Management in a Blockchain
	Smart Contracts
	Concept of “Gas” in Ethereum
	Smart Contracts
	Performance Enhancement
	Emerging Applications
	End of Chapter 26

