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Tuple Relational Calculus
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Tuple Relational Calculus

 A nonprocedural query language, where each query is of the form
{t | P (t ) }

 It is the set of all tuples t such that predicate P is true for t
 t is a tuple variable, t [A ] denotes the value of tuple t on attribute A
 t ∈ r denotes that tuple t is in relation r
 P is a formula similar to that of the predicate calculus
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Predicate Calculus Formula

1. Set of attributes and constants
2. Set of comparison operators:  (e.g., <, ≤, =, ≠, >, ≥)
3. Set of connectives:  and (∧), or (v)‚ not (¬)
4. Implication (⇒): x ⇒ y, if x if true, then y is true

x ⇒ y ≡ ¬x v y
5. Set of quantifiers:

 ∃ t ∈ r (Q (t )) ≡ ”there exists” a tuple in t in relation r
such that predicate Q (t ) is true

 ∀t ∈ r (Q (t )) ≡ Q is true “for all” tuples t in relation r
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Example Queries

 Find the ID, name, dept_name, salary  for instructors whose 
salary is greater than $80,000

 As in the previous query, but output only the ID attribute value

{t | ∃ s ∈ instructor (t [ID ] = s [ID ] ∧ s [salary ] > 80000)}

{t | t ∈ instructor ∧ t [salary ] > 80000}

Notice that a relation on schema (ID) is implicitly defined by the query  

Notice that a relation on schema (ID, name, dept_name, salary) is   implicitly 
defined by the query  
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Example Queries

 Find the names of all instructors whose department is in the Watson 
building

{t | ∃s ∈ section (t [course_id ] = s [course_id ] ∧
s [semester] = “Fall” ∧ s [year] = 2009 

v ∃u ∈ section (t  [course_id ] = u [course_id ] ∧
u [semester] = “Spring” ∧ u [year] = 2010 )}

 Find the set of all courses taught in the Fall 2009 semester, or in 
the Spring 2010 semester, or both

{t | ∃s ∈ instructor (t [name ] = s [name ] 
∧ ∃u ∈ department (u [dept_name ] = s[dept_name] “

∧ u [building] = “Watson” ))}
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Example Queries

{t | ∃s ∈ section (t [course_id ] = s [course_id ] ∧
s [semester] = “Fall” ∧ s [year] = 2009 

∧ ∃u ∈ section (t  [course_id ] = u [course_id ] ∧
u [semester] = “Spring” ∧ u [year] = 2010 )}

 Find the set of all courses taught in the Fall 2009 semester, and in 
the Spring 2010 semester

{t | ∃s ∈ section (t [course_id ] = s [course_id ] ∧
s [semester] = “Fall” ∧ s [year] = 2009 

∧ ¬ ∃u ∈ section (t  [course_id ] = u [course_id ] ∧
u [semester] = “Spring” ∧ u [year] = 2010 )}

 Find the set of all courses taught in the Fall 2009 semester, but not in 
the Spring 2010 semester
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Universal Quantification

 Find all students who have taken all courses offered in the 
Biology department
• {t | ∃ r ∈ student (t [ID] = r [ID]) ∧

(∀ u ∈ course (u [dept_name]=“Biology” ⇒
∃ s ∈ takes (t [ID] = s [ID ] ∧

s [course_id] = u [course_id]))}
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Safety of Expressions

 It is possible to write tuple calculus expressions that generate 
infinite relations.

 For example, { t | ¬ t ∈ r } results in an infinite relation if the 
domain of any attribute of relation r is infinite

 To guard against the problem, we restrict the set of allowable 
expressions to safe expressions.

 An expression {t | P (t )} in the tuple relational calculus is safe if 
every component of t appears in one of the relations, tuples, or 
constants that appear in P
• NOTE: this is more than just a syntax condition. 

 E.g. { t | t [A] = 5 ∨ true } is not safe --- it defines an infinite 
set with attribute values that do not appear in any relation or 
tuples or constants in P. 
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Safety of Expressions (Cont.)

 Consider again that query to find all students who have taken 
all courses offered in the Biology department
• {t | ∃ r ∈ student (t [ID] = r [ID]) ∧

(∀ u ∈ course (u [dept_name]=“Biology” ⇒
∃ s ∈ takes (t [ID] = s [ID ] ∧

s [course_id] = u [course_id]))}
 Without the existential quantification on student, the above 

query would be unsafe if the Biology department has not 
offered any courses. 
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Domain Relational Calculus
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Domain Relational Calculus

 A nonprocedural query language equivalent in power to the tuple 
relational calculus

 Each query is an expression of the form:

{ < x1, x2, …, xn > | P (x1, x2, …, xn)}

• x1, x2, …, xn represent domain variables
• P represents a formula similar to that of the predicate calculus
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Example Queries

 Find the ID, name, dept_name, salary  for instructors whose salary 
is greater than $80,000
• {< i, n, d, s> | < i, n, d, s> ∈ instructor ∧ s > 80000}

 As in the previous query, but output only the ID attribute value
• {< i> | < i, n, d, s> ∈ instructor ∧ s > 80000}

 Find the names of all instructors whose department is in the 
Watson building

{< n > | ∃ i, d, s (< i, n, d, s > ∈ instructor 
∧ ∃ b, a (< d, b, a> ∈ department  ∧ b = “Watson” ))}
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Example Queries

{<c> | ∃ a, s, y, b, r, t  ( <c, a, s, y, b, r, t > ∈ section  ∧
s = “Fall” ∧ y = 2009 )

v ∃ a, s, y, b, r, t ( <c, a, s, y, b, r, t > ∈ section ] ∧
s = “Spring” ∧ y = 2010)}

 Find the set of all courses taught in the Fall 2009 semester, or in 
the Spring 2010 semester, or both

This case can also be written as
{<c> | ∃ a, s, y, b, r, t  ( <c, a, s, y, b, r, t > ∈ section  ∧

( (s = “Fall” ∧ y = 2009 )  v (s = “Spring” ∧ y = 2010))}

 Find the set of all courses taught in the Fall 2009 semester, and in 
the Spring 2010 semester

{<c> | ∃ a, s, y, b, r, t  ( <c, a, s, y, b, r, t > ∈ section  ∧
s = “Fall” ∧ y = 2009 )

∧ ∃ a, s, y, b, r, t ( <c, a, s, y, b, r, t > ∈ section ] ∧
s = “Spring” ∧ y = 2010)}
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Safety of Expressions

The expression:
{ < x1, x2, …, xn > | P (x1, x2, …, xn )}

is safe if all of the following hold:
1. All values that appear in tuples of the expression are values 

from dom (P ) (that is, the values appear either in P or in a tuple 
of a relation mentioned in P ).

2. For every “there exists” subformula of the form ∃ x (P1(x )), the 
subformula is true if and only if there is a value of x in dom (P1)
such that P1(x ) is true.

3. For every “for all” subformula of the form ∀x (P1 (x )), the subformula 
is true if and only if P1(x ) is true for all values x from dom (P1).
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Universal Quantification

 Find all students who have taken all courses offered in the Biology 
department
• {< i > | ∃ n, d, tc ( < i, n, d, tc > ∈ student  ∧

(∀ ci, ti, dn, cr ( < ci, ti, dn, cr > ∈ course ∧ dn =“Biology”                
⇒ ∃ si, se, y, g ( <i, ci, si, se, y, g> ∈ takes ))}

• Note that without the existential quantification on student, the 
above query would be unsafe if the Biology department has not 
offered any courses. 
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Datalog
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End of Chapter 27
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