
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 27: Formal-Relational Query
Languages

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan27.2Database System Concepts - 7th Edition

Outline

 Tuple Relational Calculus
 Domain Relational Calculus
 Datalog

©Silberschatz, Korth and Sudarshan27.3Database System Concepts - 7th Edition

Tuple Relational Calculus

©Silberschatz, Korth and Sudarshan27.4Database System Concepts - 7th Edition

Tuple Relational Calculus

 A nonprocedural query language, where each query is of the form
{t | P (t) }

 It is the set of all tuples t such that predicate P is true for t
 t is a tuple variable, t [A] denotes the value of tuple t on attribute A
 t ∈ r denotes that tuple t is in relation r
 P is a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan27.5Database System Concepts - 7th Edition

Predicate Calculus Formula

1. Set of attributes and constants
2. Set of comparison operators: (e.g., <, ≤, =, ≠, >, ≥)
3. Set of connectives: and (∧), or (v)‚ not (¬)
4. Implication (⇒): x ⇒ y, if x if true, then y is true

x ⇒ y ≡ ¬x v y
5. Set of quantifiers:

 ∃ t ∈ r (Q (t)) ≡ ”there exists” a tuple in t in relation r
such that predicate Q (t) is true

 ∀t ∈ r (Q (t)) ≡ Q is true “for all” tuples t in relation r

©Silberschatz, Korth and Sudarshan27.6Database System Concepts - 7th Edition

Example Queries

 Find the ID, name, dept_name, salary for instructors whose
salary is greater than $80,000

 As in the previous query, but output only the ID attribute value

{t | ∃ s ∈ instructor (t [ID] = s [ID] ∧ s [salary] > 80000)}

{t | t ∈ instructor ∧ t [salary] > 80000}

Notice that a relation on schema (ID) is implicitly defined by the query

Notice that a relation on schema (ID, name, dept_name, salary) is implicitly
defined by the query

©Silberschatz, Korth and Sudarshan27.7Database System Concepts - 7th Edition

Example Queries

 Find the names of all instructors whose department is in the Watson
building

{t | ∃s ∈ section (t [course_id] = s [course_id] ∧
s [semester] = “Fall” ∧ s [year] = 2009

v ∃u ∈ section (t [course_id] = u [course_id] ∧
u [semester] = “Spring” ∧ u [year] = 2010)}

 Find the set of all courses taught in the Fall 2009 semester, or in
the Spring 2010 semester, or both

{t | ∃s ∈ instructor (t [name] = s [name]
∧ ∃u ∈ department (u [dept_name] = s[dept_name] “

∧ u [building] = “Watson”))}

©Silberschatz, Korth and Sudarshan27.8Database System Concepts - 7th Edition

Example Queries

{t | ∃s ∈ section (t [course_id] = s [course_id] ∧
s [semester] = “Fall” ∧ s [year] = 2009

∧ ∃u ∈ section (t [course_id] = u [course_id] ∧
u [semester] = “Spring” ∧ u [year] = 2010)}

 Find the set of all courses taught in the Fall 2009 semester, and in
the Spring 2010 semester

{t | ∃s ∈ section (t [course_id] = s [course_id] ∧
s [semester] = “Fall” ∧ s [year] = 2009

∧ ¬ ∃u ∈ section (t [course_id] = u [course_id] ∧
u [semester] = “Spring” ∧ u [year] = 2010)}

 Find the set of all courses taught in the Fall 2009 semester, but not in
the Spring 2010 semester

©Silberschatz, Korth and Sudarshan27.9Database System Concepts - 7th Edition

Universal Quantification

 Find all students who have taken all courses offered in the
Biology department
• {t | ∃ r ∈ student (t [ID] = r [ID]) ∧

(∀ u ∈ course (u [dept_name]=“Biology” ⇒
∃ s ∈ takes (t [ID] = s [ID] ∧

s [course_id] = u [course_id]))}

©Silberschatz, Korth and Sudarshan27.10Database System Concepts - 7th Edition

Safety of Expressions

 It is possible to write tuple calculus expressions that generate
infinite relations.

 For example, { t | ¬ t ∈ r } results in an infinite relation if the
domain of any attribute of relation r is infinite

 To guard against the problem, we restrict the set of allowable
expressions to safe expressions.

 An expression {t | P (t)} in the tuple relational calculus is safe if
every component of t appears in one of the relations, tuples, or
constants that appear in P
• NOTE: this is more than just a syntax condition.

 E.g. { t | t [A] = 5 ∨ true } is not safe --- it defines an infinite
set with attribute values that do not appear in any relation or
tuples or constants in P.

©Silberschatz, Korth and Sudarshan27.11Database System Concepts - 7th Edition

Safety of Expressions (Cont.)

 Consider again that query to find all students who have taken
all courses offered in the Biology department
• {t | ∃ r ∈ student (t [ID] = r [ID]) ∧

(∀ u ∈ course (u [dept_name]=“Biology” ⇒
∃ s ∈ takes (t [ID] = s [ID] ∧

s [course_id] = u [course_id]))}
 Without the existential quantification on student, the above

query would be unsafe if the Biology department has not
offered any courses.

©Silberschatz, Korth and Sudarshan27.12Database System Concepts - 7th Edition

Domain Relational Calculus

©Silberschatz, Korth and Sudarshan27.13Database System Concepts - 7th Edition

Domain Relational Calculus

 A nonprocedural query language equivalent in power to the tuple
relational calculus

 Each query is an expression of the form:

{ < x1, x2, …, xn > | P (x1, x2, …, xn)}

• x1, x2, …, xn represent domain variables
• P represents a formula similar to that of the predicate calculus

©Silberschatz, Korth and Sudarshan27.14Database System Concepts - 7th Edition

Example Queries

 Find the ID, name, dept_name, salary for instructors whose salary
is greater than $80,000
• {< i, n, d, s> | < i, n, d, s> ∈ instructor ∧ s > 80000}

 As in the previous query, but output only the ID attribute value
• {< i> | < i, n, d, s> ∈ instructor ∧ s > 80000}

 Find the names of all instructors whose department is in the
Watson building

{< n > | ∃ i, d, s (< i, n, d, s > ∈ instructor
∧ ∃ b, a (< d, b, a> ∈ department ∧ b = “Watson”))}

©Silberschatz, Korth and Sudarshan27.15Database System Concepts - 7th Edition

Example Queries

{<c> | ∃ a, s, y, b, r, t (<c, a, s, y, b, r, t > ∈ section ∧
s = “Fall” ∧ y = 2009)

v ∃ a, s, y, b, r, t (<c, a, s, y, b, r, t > ∈ section] ∧
s = “Spring” ∧ y = 2010)}

 Find the set of all courses taught in the Fall 2009 semester, or in
the Spring 2010 semester, or both

This case can also be written as
{<c> | ∃ a, s, y, b, r, t (<c, a, s, y, b, r, t > ∈ section ∧

((s = “Fall” ∧ y = 2009) v (s = “Spring” ∧ y = 2010))}

 Find the set of all courses taught in the Fall 2009 semester, and in
the Spring 2010 semester

{<c> | ∃ a, s, y, b, r, t (<c, a, s, y, b, r, t > ∈ section ∧
s = “Fall” ∧ y = 2009)

∧ ∃ a, s, y, b, r, t (<c, a, s, y, b, r, t > ∈ section] ∧
s = “Spring” ∧ y = 2010)}

©Silberschatz, Korth and Sudarshan27.16Database System Concepts - 7th Edition

Safety of Expressions

The expression:
{ < x1, x2, …, xn > | P (x1, x2, …, xn)}

is safe if all of the following hold:
1. All values that appear in tuples of the expression are values

from dom (P) (that is, the values appear either in P or in a tuple
of a relation mentioned in P).

2. For every “there exists” subformula of the form ∃ x (P1(x)), the
subformula is true if and only if there is a value of x in dom (P1)
such that P1(x) is true.

3. For every “for all” subformula of the form ∀x (P1 (x)), the subformula
is true if and only if P1(x) is true for all values x from dom (P1).

©Silberschatz, Korth and Sudarshan27.17Database System Concepts - 7th Edition

Universal Quantification

 Find all students who have taken all courses offered in the Biology
department
• {< i > | ∃ n, d, tc (< i, n, d, tc > ∈ student ∧

(∀ ci, ti, dn, cr (< ci, ti, dn, cr > ∈ course ∧ dn =“Biology”
⇒ ∃ si, se, y, g (<i, ci, si, se, y, g> ∈ takes))}

• Note that without the existential quantification on student, the
above query would be unsafe if the Biology department has not
offered any courses.

©Silberschatz, Korth and Sudarshan27.18Database System Concepts - 7th Edition

Datalog

©Silberschatz, Korth and Sudarshan27.19Database System Concepts - 7th Edition

End of Chapter 27

	Chapter 27: Formal-Relational Query Languages
	Outline
	Tuple Relational Calculus
	Tuple Relational Calculus
	Predicate Calculus Formula
	Example Queries
	Example Queries
	Example Queries
	Universal Quantification
	Safety of Expressions
	Safety of Expressions (Cont.)
	Domain Relational Calculus
	Domain Relational Calculus
	Example Queries
	Example Queries
	Safety of Expressions
	Universal Quantification
	Datalog
	End of Chapter 27

