
©Silberschatz, Korth and Sudarshan29.1Database System Concepts - 7th Edition

Chapter 29: Object-Based Databases

©Silberschatz, Korth and Sudarshan29.2Database System Concepts - 7th Edition

Outline

 Complex Data Types and Object Orientation
 Structured Data Types and Inheritance in SQL
 Table Inheritance
 Array and Multiset Types in SQL
 Object Identity and Reference Types in SQL
 Implementing O-R Features
 Persistent Programming Languages
 Comparison of Object-Oriented and Object-Relational Databases

©Silberschatz, Korth and Sudarshan29.3Database System Concepts - 7th Edition

Object-Relational Data Models

 Extend the relational data model by including object orientation
and constructs to deal with added data types.

 Allow attributes of tuples to have complex types, including non-
atomic values such as nested relations.

 Preserve relational foundations, in particular the declarative
access to data, while extending modeling power.

 Upward compatibility with existing relational languages.

©Silberschatz, Korth and Sudarshan29.4Database System Concepts - 7th Edition

Complex Data Types

 Motivation:
• Permit non-atomic domains (atomic ≡ indivisible)
• Example of non-atomic domain: set of integers,or set of

tuples
• Allows more intuitive modeling for applications with

complex data

 Intuitive definition:
• allow relations whenever we allow atomic (scalar) values

— relations within relations
• Retains mathematical foundation of relational model
• Violates first normal form.

©Silberschatz, Korth and Sudarshan29.5Database System Concepts - 7th Edition

Example of a Nested Relation

 Example: library information system
 Each book has

• title,
• a list (array) of authors,
• Publisher, with subfields name and branch, and
• a set of keywords

 Non-1NF relation books

©Silberschatz, Korth and Sudarshan29.6Database System Concepts - 7th Edition

4NF Decomposition of Nested Relation

 Suppose for simplicity
that title uniquely
identifies a book
• In real world ISBN is a

unique identifier

 Decompose books into
4NF using the schemas:
• (title, author, position)
• (title, keyword)
• (title, pub-name, pub-

branch)

 4NF design requires
users to include joins in
their queries.

©Silberschatz, Korth and Sudarshan29.7Database System Concepts - 7th Edition

Complex Types and SQL
 Extensions introduced in SQL:1999 to support complex types:

• Collection and large object types
 Nested relations are an example of collection types

• Structured types
 Nested record structures like composite attributes

• Inheritance
• Object orientation

 Including object identifiers and references
 Not fully implemented in any database system currently

• But some features are present in each of the major commercial
database systems
 Read the manual of your database system to see what it

supports

©Silberschatz, Korth and Sudarshan29.8Database System Concepts - 7th Edition

Structured Types and Inheritance in SQL
 Structured types (a.k.a. user-defined types) can be declared and used in SQL

create type Name as
(firstname varchar(20),
lastname varchar(20))
final

create type Address as
(street varchar(20),
city varchar(20),
zipcode varchar(20))
not final

• Note: final and not final indicate whether subtypes can be created
 Structured types can be used to create tables with composite attributes

create table person (
name Name,
address Address,
dateOfBirth date)

 Dot notation used to reference components: name.firstname

©Silberschatz, Korth and Sudarshan29.9Database System Concepts - 7th Edition

Structured Types (cont.)

 User-defined row types
create type PersonType as (

name Name,
address Address,
dateOfBirth date)
not final

 Can then create a table whose rows are a user-defined type
create table customer of CustomerType

 Alternative using unnamed row types.
create table person_r(

name row(firstname varchar(20),
lastname varchar(20)),

address row(street varchar(20),
city varchar(20),
zipcode varchar(20)),

dateOfBirth date)

©Silberschatz, Korth and Sudarshan29.10Database System Concepts - 7th Edition

Methods

 Can add a method declaration with a structured type.
method ageOnDate (onDate date)

returns interval year
 Method body is given separately.

create instance method ageOnDate (onDate date)
returns interval year
for CustomerType

begin
return onDate - self.dateOfBirth;

end
 We can now find the age of each customer:

select name.lastname, ageOnDate (current_date)
from customer

©Silberschatz, Korth and Sudarshan29.11Database System Concepts - 7th Edition

Constructor Functions

 Constructor functions are used to create values of structured
types

 E.g.
create function Name(firstname varchar(20), lastname
varchar(20))
returns Name
begin

set self.firstname = firstname;
set self.lastname = lastname;

end
 To create a value of type Name, we use

new Name(‘John’, ‘Smith’)
 Normally used in insert statements

insert into Person values
(new Name(‘John’, ‘Smith),
new Address(’20 Main St’, ‘New York’, ‘11001’),
date ‘1960-8-22’);

©Silberschatz, Korth and Sudarshan29.12Database System Concepts - 7th Edition

Type Inheritance

 Suppose that we have the following type definition for people:
create type Person

(name varchar(20),
address varchar(20))

 Using inheritance to define the student and teacher types
create type Student

under Person
(degree varchar(20),
department varchar(20))

create type Teacher
under Person
(salary integer,
department varchar(20))

 Subtypes can redefine methods by using overriding method in place of
method in the method declaration

©Silberschatz, Korth and Sudarshan29.13Database System Concepts - 7th Edition

Multiple Type Inheritance

 SQL:1999 and SQL:2003 do not support multiple inheritance

 If our type system supports multiple inheritance, we can define a type for
teaching assistant as follows:

create type Teaching Assistant
under Student, Teacher

 To avoid a conflict between the two occurrences of department we can
rename them

create type Teaching Assistant
under
Student with (department as student_dept),
Teacher with (department as teacher_dept)

 Each value must have a most-specific type

©Silberschatz, Korth and Sudarshan29.14Database System Concepts - 7th Edition

Table Inheritance

 Tables created from subtypes can further be specified as subtables
 E.g. create table people of Person;

create table students of Student under people;
create table teachers of Teacher under people;

 Tuples added to a subtable are automatically visible to queries on the
supertable
• E.g. query on people also sees students and teachers.
• Similarly updates/deletes on people also result in updates/deletes on

subtables
• To override this behaviour, use “only people” in query

 Conceptually, multiple inheritance is possible with tables
• e.g. teaching_assistants under students and teachers
• But is not supported in SQL currently

 So we cannot create a person (tuple in people) who is both a
student and a teacher

©Silberschatz, Korth and Sudarshan29.15Database System Concepts - 7th Edition

Consistency Requirements for Subtables

 Consistency requirements on subtables and supertables.
• Each tuple of the supertable (e.g. people) can correspond to at

most one tuple in each of the subtables (e.g. students and
teachers)

• Additional constraint in SQL:1999:
All tuples corresponding to each other (that is, with the same
values for inherited attributes) must be derived from one tuple
(inserted into one table).
 That is, each entity must have a most specific type
 We cannot have a tuple in people corresponding to a tuple

each in students and teachers

©Silberschatz, Korth and Sudarshan29.16Database System Concepts - 7th Edition

Array and Multiset Types in SQL

 Example of array and multiset declaration:
create type Publisher as

(name varchar(20),
branch varchar(20));

create type Book as
(title varchar(20),
author_array varchar(20) array [10],
pub_date date,
publisher Publisher,
keyword-set varchar(20) multiset);

create table books of Book;

©Silberschatz, Korth and Sudarshan29.17Database System Concepts - 7th Edition

Creation of Collection Values
 Array construction

array [‘Silberschatz’,`Korth’,`Sudarshan’]

 Multisets
multiset [‘computer’, ‘database’, ‘SQL’]

 To create a tuple of the type defined by the books relation:
(‘Compilers’, array[`Smith’,`Jones’],

new Publisher (`McGraw-Hill’,`New York’),
multiset [`parsing’,`analysis’])

 To insert the preceding tuple into the relation books
insert into books
values

(‘Compilers’, array[`Smith’,`Jones’],
new Publisher (`McGraw-Hill’,`New York’),
multiset [`parsing’,`analysis’]);

©Silberschatz, Korth and Sudarshan29.18Database System Concepts - 7th Edition

Querying Collection-Valued Attributes

 To find all books that have the word “database” as a keyword,
select title
from books
where ‘database’ in (unnest(keyword-set))

 We can access individual elements of an array by using indices
 E.g.: If we know that a particular book has three authors, we could write:

select author_array[1], author_array[2], author_array[3]
from books
where title = `Database System Concepts’

 To get a relation containing pairs of the form “title, author_name” for each
book and each author of the book

select B.title, A.author
from books as B, unnest (B.author_array) as A (author)

 To retain ordering information we add a with ordinality clause
select B.title, A.author, A.position
from books as B, unnest (B.author_array) with ordinality as

A (author, position)

©Silberschatz, Korth and Sudarshan29.19Database System Concepts - 7th Edition

Unnesting

 The transformation of a nested relation into a form with fewer (or no)
relation-valued attributes us called unnesting.

 E.g.
select title, A as author, publisher.name as pub_name,

publisher.branch as pub_branch, K.keyword
from books as B, unnest(B.author_array) as A (author),

unnest (B.keyword_set) as K (keyword)
 Result relation flat_books

©Silberschatz, Korth and Sudarshan29.20Database System Concepts - 7th Edition

Nesting

 Nesting is the opposite of unnesting, creating a collection-valued
attribute

 Nesting can be done in a manner similar to aggregation, but using
the function colect() in place of an aggregation operation, to create
a multiset

 To nest the flat_books relation on the attribute keyword:
select title, author, Publisher (pub_name, pub_branch) as
publisher,

collect (keyword) as keyword_set
from flat_books
groupby title, author, publisher

 To nest on both authors and keywords:
select title, collect (author) as author_set,

Publisher (pub_name, pub_branch) as publisher,
collect (keyword) as keyword_set

from flat_books
group by title, publisher

©Silberschatz, Korth and Sudarshan29.21Database System Concepts - 7th Edition

Nesting (Cont.)

 Another approach to creating nested relations is to use subqueries
in the select clause, starting from the 4NF relation books4
select title,

array (select author
from authors as A
where A.title = B.title

order by A.position) as author_array,
Publisher (pub-name, pub-branch) as publisher,
multiset (select keyword

from keywords as K
where K.title = B.title) as keyword_set

from books4 as B

©Silberschatz, Korth and Sudarshan29.22Database System Concepts - 7th Edition

Object-Identity and Reference Types
 Define a type Department with a field name and a field head which is

a reference to the type Person, with table people as scope:
create type Department (

name varchar (20),
head ref (Person) scope people)

 We can then create a table departments as follows
create table departments of Department

 We can omit the declaration scope people from the type declaration
and instead make an addition to the create table statement:

create table departments of Department
(head with options scope people)

 Referenced table must have an attribute that stores the identifier,
called the self-referential attribute

create table people of Person
ref is person_id system generated;

©Silberschatz, Korth and Sudarshan29.23Database System Concepts - 7th Edition

Initializing Reference-Typed Values

 To create a tuple with a reference value, we can first create
the tuple with a null reference and then set the reference
separately:

insert into departments
values (`CS’, null)

update departments
set head = (select p.person_id

from people as p
where name = `John’)

where name = `CS’

©Silberschatz, Korth and Sudarshan29.24Database System Concepts - 7th Edition

User Generated Identifiers

 The type of the object-identifier must be specified as part of the type
definition of the referenced table, and

 The table definition must specify that the reference is user generated
create type Person

(name varchar(20)
address varchar(20))

ref using varchar(20)
create table people of Person

ref is person_id user generated
 When creating a tuple, we must provide a unique value for the identifier:

insert into people (person_id, name, address) values
(‘01284567’, ‘John’, `23 Coyote Run’)

 We can then use the identifier value when inserting a tuple into departments
• Avoids need for a separate query to retrieve the identifier:

insert into departments
values(`CS’, `02184567’)

©Silberschatz, Korth and Sudarshan29.25Database System Concepts - 7th Edition

User Generated Identifiers

 Can use an existing primary key value as the identifier:
create type Person

(name varchar (20) primary key,
address varchar(20))

ref from (name)
create table people of Person

ref is person_id derived
 When inserting a tuple for departments, we can then use

insert into departments
values(`CS’,`John’)

©Silberschatz, Korth and Sudarshan29.26Database System Concepts - 7th Edition

Path Expressions

 Find the names and addresses of the heads of all
departments:

select head –>name, head –>address
from departments

 An expression such as “head–>name” is called a path
expression

 Path expressions help avoid explicit joins
 If department head were not a reference, a join of

departments with people would be required to get at the
address

 Makes expressing the query much easier for the user

©Silberschatz, Korth and Sudarshan29.27Database System Concepts - 7th Edition

Implementing O-R Features

 Similar to how E-R features are mapped onto relation
schemas

 Subtable implementation
• Each table stores primary key and those attributes

defined in that table
or,
• Each table stores both locally defined and inherited

attributes

©Silberschatz, Korth and Sudarshan29.28Database System Concepts - 7th Edition

Persistent Programming Languages

 Languages extended with constructs to handle persistent data
 Programmer can manipulate persistent data directly

• no need to fetch it into memory and store it back to disk (unlike
embedded SQL)

 Persistent objects:
• Persistence by class - explicit declaration of persistence
• Persistence by creation - special syntax to create persistent

objects
• Persistence by marking - make objects persistent after creation
• Persistence by reachability - object is persistent if it is declared

explicitly to be so or is reachable from a persistent object

©Silberschatz, Korth and Sudarshan29.29Database System Concepts - 7th Edition

Object Identity and Pointers

 Degrees of permanence of object identity
• Intraprocedure: only during execution of a single procedure
• Intraprogram: only during execution of a single program or query
• Interprogram: across program executions, but not if data-storage

format on disk changes
• Persistent: interprogram, plus persistent across data

reorganizations
 Persistent versions of C++ and Java have been implemented

• C++
 ODMG C++
 ObjectStore

• Java
 Java Database Objects (JDO)

©Silberschatz, Korth and Sudarshan29.30Database System Concepts - 7th Edition

Persistent C++ Systems

 Extensions of C++ language to support persistent storage of objects
 Several proposals, ODMG standard proposed, but not much action of late

• persistent pointers: e.g. d_Ref<T>
• creation of persistent objects: e.g. new (db) T()
• Class extents: access to all persistent objects of a particular class
• Relationships: Represented by pointers stored in related objects

 Issue: consistency of pointers
 Solution: extension to type system to automatically maintain back-

references
• Iterator interface
• Transactions
• Updates: mark_modified() function to tell system that a persistent object

that was fetched into memory has been updated
• Query language

©Silberschatz, Korth and Sudarshan29.31Database System Concepts - 7th Edition

Persistent Java Systems

 Standard for adding persistence to Java : Java Database Objects (JDO)
• Persistence by reachability
• Byte code enhancement

 Classes separately declared as persistent
 Byte code modifier program modifies class byte code to support

persistence
• E.g. Fetch object on demand
• Mark modified objects to be written back to database

• Database mapping
 Allows objects to be stored in a relational database

• Class extents
• Single reference type

 no difference between in-memory pointer and persistent pointer
 Implementation technique based on hollow objects (a.k.a. pointer

swizzling)

©Silberschatz, Korth and Sudarshan29.32Database System Concepts - 7th Edition

Object-Relational Mapping

 Object-Relational Mapping (ORM) systems built on top of
traditional relational databases

 Implementor provides a mapping from objects to relations
• Objects are purely transient, no permanent object identity

 Objects can be retried from database
• System uses mapping to fetch relevant data from relations and

construct objects
• Updated objects are stored back in database by generating

corresponding update/insert/delete statements
 The Hibernate ORM system is widely used

• described in Section 9.4.2
• Provides API to start/end transactions, fetch objects, etc
• Provides query language operating direcly on object model

 queries translated to SQL
 Limitations: overheads, especially for bulk updates

©Silberschatz, Korth and Sudarshan29.33Database System Concepts - 7th Edition

Comparison of O-O and O-R Databases

 Relational systems
• simple data types, powerful query languages, high protection.

 Persistent-programming-language-based OODBs
• complex data types, integration with programming language, high

performance.
 Object-relational systems

• complex data types, powerful query languages, high protection.
 Object-relational mapping systems

• complex data types integrated with programming language, but built
as a layer on top of a relational database system

 Note: Many real systems blur these boundaries
• E.g. persistent programming language built as a wrapper on a

relational database offers first two benefits, but may have poor
performance.

©Silberschatz, Korth and Sudarshan29.34Database System Concepts - 7th Edition

End of Chapter 29

	Chapter 29: Object-Based Databases
	Outline
	Object-Relational Data Models
	Complex Data Types
	Example of a Nested Relation
	4NF Decomposition of Nested Relation
	Complex Types and SQL
	Structured Types and Inheritance in SQL
	Structured Types (cont.)
	Methods
	Constructor Functions
	Type Inheritance
	Multiple Type Inheritance
	Table Inheritance
	Consistency Requirements for Subtables
	Array and Multiset Types in SQL
	Creation of Collection Values
	Querying Collection-Valued Attributes
	Unnesting
	Nesting
	Nesting (Cont.)
	Object-Identity and Reference Types
	Initializing Reference-Typed Values
	User Generated Identifiers
	User Generated Identifiers
	Path Expressions
	Implementing O-R Features
	Persistent Programming Languages
	Object Identity and Pointers
	Persistent C++ Systems
	Persistent Java Systems
	Object-Relational Mapping
	Comparison of O-O and O-R Databases
	End of Chapter 29

