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Chapter 29: Object-Based Databases
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Outline

 Complex Data Types and Object Orientation
 Structured Data Types and Inheritance in SQL
 Table Inheritance
 Array and Multiset Types in SQL
 Object Identity and Reference Types in SQL
 Implementing O-R Features
 Persistent Programming Languages
 Comparison of Object-Oriented and Object-Relational Databases
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Object-Relational Data Models

 Extend the relational data model by including object orientation 
and constructs to deal with added data types.

 Allow attributes of tuples to have complex types, including non-
atomic values such as nested relations.

 Preserve relational foundations, in particular the declarative 
access to data, while extending modeling power.

 Upward compatibility with existing relational languages.
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Complex Data Types

 Motivation:
• Permit non-atomic domains (atomic ≡ indivisible)
• Example of non-atomic domain:  set of integers,or set of 

tuples
• Allows more intuitive modeling for applications with 

complex data

 Intuitive definition:
• allow relations whenever we allow atomic (scalar) values 

— relations within relations
• Retains mathematical foundation of relational model 
• Violates first normal form.
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Example of a Nested Relation

 Example:  library information system
 Each book has 

• title, 
• a list (array) of authors,
• Publisher, with subfields name and branch, and
• a set of keywords

 Non-1NF relation books
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4NF Decomposition of Nested Relation

 Suppose for simplicity 
that title uniquely 
identifies a book
• In real world ISBN is a 

unique identifier 

 Decompose books into 
4NF using the schemas:
• (title, author, position )
• (title, keyword )
• (title, pub-name, pub-

branch )

 4NF design requires 
users to include joins in 
their queries.



©Silberschatz, Korth and Sudarshan29.7Database System Concepts - 7th Edition

Complex Types and SQL
 Extensions introduced in SQL:1999 to support complex types:

• Collection and large object types
 Nested relations are an example of collection types

• Structured types
 Nested record structures like composite attributes 

• Inheritance
• Object orientation

 Including object identifiers and references
 Not fully implemented in any database system currently

• But some features are present in each of the major commercial 
database systems
 Read the manual of your database system to see what it 

supports
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Structured Types and Inheritance in SQL
 Structured types (a.k.a. user-defined types) can be declared and used in SQL

create type Name as
(firstname varchar(20),
lastname           varchar(20))
final

create type Address as
(street          varchar(20),
city varchar(20),
zipcode varchar(20))
not final

• Note: final and not final indicate whether subtypes can be created
 Structured types can be used to create tables with composite attributes

create table person (
name Name,
address Address,
dateOfBirth date)

 Dot notation used to reference components: name.firstname
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Structured Types (cont.)

 User-defined row types
create type PersonType as (

name Name,
address Address,
dateOfBirth date)
not final

 Can then create a table whose rows are a user-defined type
create table customer of CustomerType

 Alternative using unnamed row types.
create table person_r(

name row(firstname varchar(20),
lastname  varchar(20)),

address row(street      varchar(20),
city varchar(20),
zipcode   varchar(20)),

dateOfBirth date)
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Methods

 Can add a method declaration with a structured type.
method ageOnDate (onDate date)

returns interval year
 Method body is given separately.

create instance method ageOnDate (onDate date)
returns interval year
for CustomerType

begin
return onDate - self.dateOfBirth;

end
 We can now find the age of each customer:

select name.lastname, ageOnDate (current_date)
from customer
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Constructor Functions

 Constructor functions are used to create values of structured 
types

 E.g.
create function Name(firstname varchar(20), lastname 
varchar(20))
returns Name
begin

set self.firstname = firstname;
set self.lastname = lastname;

end
 To create a value of type Name, we use

new Name(‘John’, ‘Smith’)
 Normally used in insert statements

insert into Person values
(new Name(‘John’, ‘Smith),
new Address(’20 Main St’, ‘New York’, ‘11001’),
date ‘1960-8-22’);
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Type Inheritance

 Suppose that we have the following type definition for people:
create type Person

(name varchar(20),
address varchar(20))

 Using inheritance to define the student and teacher types 
create type Student

under Person
(degree        varchar(20),
department  varchar(20))

create type Teacher
under Person
(salary          integer,
department  varchar(20))

 Subtypes can redefine methods by using overriding method in place of 
method in the method declaration



©Silberschatz, Korth and Sudarshan29.13Database System Concepts - 7th Edition

Multiple Type Inheritance

 SQL:1999 and SQL:2003 do not support multiple inheritance

 If our type system supports multiple inheritance, we can define a type for 
teaching assistant as follows:

create type Teaching Assistant
under Student, Teacher

 To avoid a conflict between the two occurrences of department we can 
rename them 

create type Teaching Assistant
under 
Student  with (department as student_dept ),
Teacher  with (department as teacher_dept )

 Each value must have a most-specific type
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Table Inheritance

 Tables created from subtypes can further be specified as subtables
 E.g. create table people of Person;

create table students of Student under people;
create table teachers of Teacher under people;

 Tuples added to a subtable are automatically visible to queries on the 
supertable
• E.g. query on people also sees students and teachers.
• Similarly updates/deletes on people also result in updates/deletes on 

subtables
• To override this behaviour, use “only people” in query

 Conceptually, multiple inheritance is possible with tables
• e.g. teaching_assistants under students and teachers
• But is not supported in SQL currently

 So we cannot create a person (tuple in people) who is both a 
student and a teacher
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Consistency Requirements for Subtables

 Consistency requirements on subtables and supertables.
• Each tuple of the supertable (e.g. people) can correspond to at 

most one tuple in each of the subtables (e.g. students and
teachers)

• Additional constraint in SQL:1999:
All tuples corresponding to each other (that is, with the same 
values for inherited attributes) must be derived from one tuple 
(inserted into one table).   
 That is, each entity must have a most specific type
 We cannot have a tuple in people corresponding to a tuple 

each in students and teachers 
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Array and Multiset Types in SQL

 Example of array and multiset declaration:
create type Publisher as

(name varchar(20),
branch            varchar(20));

create type Book as
(title                 varchar(20),
author_array varchar(20) array [10],
pub_date date,
publisher        Publisher,
keyword-set   varchar(20) multiset);

create table books of Book;
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Creation of Collection Values
 Array construction

array [‘Silberschatz’,`Korth’,`Sudarshan’]

 Multisets
multiset [‘computer’, ‘database’, ‘SQL’]

 To create a tuple of the type defined by the books relation:               
(‘Compilers’, array[`Smith’,`Jones’], 

new Publisher (`McGraw-Hill’,`New York’), 
multiset [`parsing’,`analysis’ ])

 To insert the preceding tuple into the relation books
insert into books
values

(‘Compilers’, array[`Smith’,`Jones’], 
new Publisher (`McGraw-Hill’,`New York’),
multiset [`parsing’,`analysis’ ]);
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Querying Collection-Valued Attributes

 To find all books that have the word “database” as a keyword,
select title
from books
where ‘database’ in (unnest(keyword-set ))

 We can access individual elements of an array by using indices
 E.g.: If we know that a particular book has three authors, we could write:

select author_array[1], author_array[2], author_array[3]
from books
where title = `Database System Concepts’

 To get a relation containing pairs of the form “title, author_name” for each 
book and each author of the book

select B.title, A.author
from books as B, unnest (B.author_array) as A (author )

 To retain ordering information we add a with ordinality clause
select B.title, A.author, A.position
from books as B, unnest (B.author_array) with ordinality as 

A (author, position )



©Silberschatz, Korth and Sudarshan29.19Database System Concepts - 7th Edition

Unnesting

 The transformation of a nested relation into a form with fewer (or no) 
relation-valued attributes us called unnesting.

 E.g.
select title, A as author, publisher.name as pub_name, 

publisher.branch as pub_branch, K.keyword
from books as B, unnest(B.author_array ) as A (author ),

unnest (B.keyword_set ) as K (keyword )
 Result relation flat_books
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Nesting 

 Nesting is the opposite of unnesting, creating a collection-valued 
attribute

 Nesting can be done in a manner similar to aggregation, but using 
the function colect() in place of an aggregation operation, to create 
a multiset

 To nest the flat_books relation on the attribute keyword:
select title, author, Publisher (pub_name, pub_branch ) as 
publisher, 

collect (keyword)  as keyword_set
from flat_books
groupby title, author, publisher

 To nest on both authors and keywords:
select title, collect (author ) as author_set, 

Publisher (pub_name, pub_branch) as publisher,
collect  (keyword ) as keyword_set

from   flat_books
group by title, publisher
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Nesting (Cont.)

 Another approach to creating nested relations is to use subqueries
in the select clause, starting from the 4NF relation books4
select title,

array (select author
from authors as A
where A.title = B.title

order by A.position) as author_array,
Publisher (pub-name, pub-branch) as publisher,
multiset (select keyword

from keywords as K
where K.title = B.title) as keyword_set

from books4 as B
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Object-Identity and Reference Types
 Define a type Department with a field name and a field head which is 

a reference to the type Person, with table people as scope:
create type Department (

name varchar (20),
head ref (Person) scope people)

 We can then create a table departments as follows
create table departments of Department

 We can omit the declaration scope people from the type declaration 
and instead make an addition to the create table statement:

create table departments of Department
(head with options scope people)

 Referenced table must have an attribute that stores the identifier, 
called the self-referential attribute

create table people of Person
ref is person_id system generated;
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Initializing Reference-Typed Values

 To create a tuple with a reference value, we can first create 
the tuple with a null reference and then set the reference 
separately:

insert into departments
values (`CS’, null)

update departments
set head = (select p.person_id

from people as p
where name = `John’)

where name = `CS’
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User Generated Identifiers

 The type of the object-identifier must be specified as part of the type 
definition of the referenced table, and

 The table definition must specify that the reference is user generated
create type Person

(name varchar(20)
address varchar(20))

ref using varchar(20)
create table people of Person

ref is person_id user generated
 When creating a tuple, we must provide a unique value for the identifier:

insert into people (person_id, name, address ) values
(‘01284567’, ‘John’, `23 Coyote Run’)

 We can then use the identifier value when inserting a tuple into departments
• Avoids need for a separate query to retrieve the identifier:

insert into departments
values(`CS’, `02184567’)
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User Generated Identifiers

 Can use an existing primary key value as the identifier: 
create type Person

(name varchar (20) primary key,
address varchar(20))

ref from (name)
create table people of Person

ref is person_id derived
 When inserting a tuple for departments, we can then use

insert into departments
values(`CS’,`John’)
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Path Expressions

 Find the names and addresses of the heads of all 
departments:

select head –>name, head –>address
from departments

 An expression such as “head–>name” is called a path 
expression

 Path expressions help avoid explicit joins
 If department head were not a reference, a join of 

departments with people would be required to get at the 
address

 Makes expressing the query much easier for the user
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Implementing O-R Features

 Similar to how E-R features are mapped onto relation 
schemas

 Subtable implementation
• Each table stores primary key and those attributes 

defined in that table
or,
• Each table stores both locally defined and inherited 

attributes
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Persistent Programming Languages

 Languages extended with constructs to handle persistent data
 Programmer can manipulate persistent data directly

• no need to fetch it into memory and store it back to disk (unlike 
embedded SQL)

 Persistent objects:
• Persistence by class - explicit declaration of persistence
• Persistence by creation - special syntax to create persistent 

objects
• Persistence by marking - make objects persistent after creation 
• Persistence by reachability - object is persistent if it is declared 

explicitly to be so or is reachable from a persistent object
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Object Identity and Pointers

 Degrees of permanence of object identity
• Intraprocedure: only during execution of a single procedure
• Intraprogram: only during execution of a single program or query
• Interprogram: across program executions, but not if data-storage 

format on disk changes
• Persistent: interprogram, plus persistent across data 

reorganizations
 Persistent versions of C++ and Java have been implemented

• C++
 ODMG C++
 ObjectStore

• Java
 Java Database Objects (JDO)
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Persistent C++ Systems

 Extensions of C++ language to support persistent storage of objects
 Several proposals, ODMG standard proposed, but not much action of late

• persistent pointers: e.g. d_Ref<T>
• creation of persistent objects: e.g. new (db) T()
• Class extents: access to all persistent objects of a particular class
• Relationships: Represented by pointers stored in related objects

 Issue: consistency of pointers
 Solution: extension to type system to automatically maintain back-

references
• Iterator interface
• Transactions
• Updates: mark_modified() function to tell system that a persistent object 

that was fetched into memory has been updated
• Query language
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Persistent Java Systems

 Standard for adding persistence to Java : Java Database Objects (JDO)
• Persistence by reachability
• Byte code enhancement

 Classes separately declared as persistent
 Byte code modifier program modifies class byte code to support 

persistence
• E.g. Fetch object on demand
• Mark modified objects to be written back to database

• Database mapping
 Allows objects to be stored in a relational database

• Class extents
• Single reference type

 no difference between in-memory pointer and persistent pointer
 Implementation technique based on hollow objects (a.k.a. pointer 

swizzling)
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Object-Relational Mapping

 Object-Relational Mapping (ORM) systems built on top of 
traditional relational databases

 Implementor provides a mapping from objects to relations
• Objects are purely transient, no permanent object identity

 Objects can be retried from database
• System uses mapping to fetch relevant data from relations and 

construct objects
• Updated objects are stored back in database by generating 

corresponding update/insert/delete statements
 The Hibernate ORM system is widely used

• described in Section 9.4.2
• Provides API to start/end transactions, fetch objects, etc
• Provides query language operating direcly on object model

 queries translated to SQL
 Limitations: overheads, especially for bulk updates 
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Comparison of O-O and O-R Databases

 Relational systems
• simple data types, powerful query languages, high protection.

 Persistent-programming-language-based OODBs
• complex data types, integration with programming language, high 

performance.
 Object-relational systems

• complex data types, powerful query languages, high protection.
 Object-relational mapping systems

• complex data types integrated with programming language, but built 
as a layer on top of a relational database system

 Note: Many real systems blur these boundaries
• E.g. persistent programming language built as a wrapper on a 

relational database offers first two benefits, but may have poor 
performance.
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End of Chapter 29
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