
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 5: Advanced SQL

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan5.2Database System Concepts - 7th Edition

Outline

 Accessing SQL From a Programming Language
 Functions and Procedures
 Triggers
 Recursive Queries
 Advanced Aggregation Features

©Silberschatz, Korth and Sudarshan5.3Database System Concepts - 7th Edition

Accessing SQL from a Programming Language

 Not all queries can be expressed in SQL, since SQL does not provide
the full expressive power of a general-purpose language.

 Non-declarative actions -- such as printing a report, interacting with a
user, or sending the results of a query to a graphical user interface --
cannot be done from within SQL.

A database programmer must have access to a general-purpose programming
language for at least two reasons

©Silberschatz, Korth and Sudarshan5.4Database System Concepts - 7th Edition

Accessing SQL from a Programming Language (Cont.)

 A general-purpose program -- can connect to and communicate with
a database server using a collection of functions

 Embedded SQL -- provides a means by which a program can interact
with a database server.
• The SQL statements are translated at compile time into function

calls.
• At runtime, these function calls connect to the database using an

API that provides dynamic SQL facilities.

There are two approaches to accessing SQL from a general-purpose
programming language

©Silberschatz, Korth and Sudarshan5.5Database System Concepts - 7th Edition

JDBC

©Silberschatz, Korth and Sudarshan5.6Database System Concepts - 7th Edition

JDBC

 JDBC is a Java API for communicating with database systems supporting
SQL.

 JDBC supports a variety of features for querying and updating data, and
for retrieving query results.

 JDBC also supports metadata retrieval, such as querying about relations
present in the database and the names and types of relation attributes.

 Model for communicating with the database:
• Open a connection
• Create a “statement” object
• Execute queries using the statement object to send queries and fetch

results
• Exception mechanism to handle errors

©Silberschatz, Korth and Sudarshan5.7Database System Concepts - 7th Edition

JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)
{
try (Connection conn = DriverManager.getConnection(

"jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd);
Statement stmt = conn.createStatement();

)
{

… Do Actual Work ….
}

catch (SQLException sqle) {
System.out.println("SQLException : " + sqle);

}
}

NOTE: Above syntax works with Java 7, and JDBC 4 onwards.
Resources opened in “try (….)” syntax (“try with resources”) are
automatically closed at the end of the try block

©Silberschatz, Korth and Sudarshan5.8Database System Concepts - 7th Edition

JDBC Code for Older Versions of Java/JDBC

public static void JDBCexample(String dbid, String userid, String passwd)
{

try {
Class.forName ("oracle.jdbc.driver.OracleDriver");
Connection conn = DriverManager.getConnection(

"jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd);
Statement stmt = conn.createStatement();

… Do Actual Work ….
stmt.close();
conn.close();

}
catch (SQLException sqle) {

System.out.println("SQLException : " + sqle);
}

}
NOTE: Class.forName is not required from JDBC 4 onwards. The try with
resources syntax in prev slide is preferred for Java 7 onwards.

©Silberschatz, Korth and Sudarshan5.9Database System Concepts - 7th Edition

JDBC Code (Cont.)

 Update to database

try {
stmt.executeUpdate(

"insert into instructor values('77987', 'Kim', 'Physics', 98000)");
} catch (SQLException sqle)
{

System.out.println("Could not insert tuple. " + sqle);
}

 Execute query and fetch and print results
ResultSet rset = stmt.executeQuery(

"select dept_name, avg (salary)
from instructor
group by dept_name");

while (rset.next()) {
System.out.println(rset.getString("dept_name") + " " +

rset.getFloat(2));
}

©Silberschatz, Korth and Sudarshan5.10Database System Concepts - 7th Edition

JDBC SUBSECTIONS

 Connecting to the Database
 Shipping SQL Statements to the Database System
 Exceptions and Resource Management
 Retrieving the Result of a Query
 Prepared Statements
 Callable Statements
 Metadata Features
 Other Features
 Database Access from Python

©Silberschatz, Korth and Sudarshan5.11Database System Concepts - 7th Edition

JDBC Code Details

 Getting result fields:
• rs.getString(“dept_name”) and rs.getString(1) equivalent if

dept_name is the first argument of select result.
 Dealing with Null values

int a = rs.getInt(“a”);
if (rs.wasNull()) Systems.out.println(“Got null value”);

©Silberschatz, Korth and Sudarshan5.12Database System Concepts - 7th Edition

Prepared Statement

 PreparedStatement pStmt = conn.prepareStatement(
"insert into instructor values(?,?,?,?)");

pStmt.setString(1, "88877");
pStmt.setString(2, "Perry");
pStmt.setString(3, "Finance");
pStmt.setInt(4, 125000);
pStmt.executeUpdate();
pStmt.setString(1, "88878");
pStmt.executeUpdate();

 WARNING: always use prepared statements when taking an input from
the user and adding it to a query
• NEVER create a query by concatenating strings
• "insert into instructor values(' " + ID + " ', ' " + name + " ', " + " ' + dept

name + " ', " ' balance + ')“
• What if name is “D'Souza”?

©Silberschatz, Korth and Sudarshan5.13Database System Concepts - 7th Edition

SQL Injection

 Suppose query is constructed using
• "select * from instructor where name = '" + name + "'"

 Suppose the user, instead of entering a name, enters:
• X' or 'Y' = 'Y

 then the resulting statement becomes:
• "select * from instructor where name = '" + "X' or 'Y' = 'Y" + "'"
• which is:

 select * from instructor where name = 'X' or 'Y' = 'Y'
• User could have even used

 X'; update instructor set salary = salary + 10000; --
 Prepared stament internally uses:

"select * from instructor where name = 'X\' or \'Y\' = \'Y'
• Always use prepared statements, with user inputs as parameters

©Silberschatz, Korth and Sudarshan5.14Database System Concepts - 7th Edition

Metadata Features

 ResultSet metadata
 E.g.after executing query to get a ResultSet rs:

• ResultSetMetaData rsmd = rs.getMetaData();
for(int i = 1; i <= rsmd.getColumnCount(); i++) {

System.out.println(rsmd.getColumnName(i));
System.out.println(rsmd.getColumnTypeName(i));

}
 How is this useful?

©Silberschatz, Korth and Sudarshan5.15Database System Concepts - 7th Edition

Metadata (Cont)

 Database metadata
 DatabaseMetaData dbmd = conn.getMetaData();

// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,
// and Column-Pattern
// Returns: One row for each column; row has a number of attributes
// such as COLUMN_NAME, TYPE_NAME
// The value null indicates all Catalogs/Schemas.
// The value “” indicates current catalog/schema
// The value “%” has the same meaning as SQL like clause
ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");
while(rs.next()) {

System.out.println(rs.getString("COLUMN_NAME"),
rs.getString("TYPE_NAME");

}
 And where is this useful?

©Silberschatz, Korth and Sudarshan5.16Database System Concepts - 7th Edition

Metadata (Cont)

 Database metadata
 DatabaseMetaData dbmd = conn.getMetaData();

// Arguments to getTables: Catalog, Schema-pattern, Table-pattern,
// and Table-Type
// Returns: One row for each table; row has a number of attributes
// such as TABLE_NAME, TABLE_CAT, TABLE_TYPE, ..
// The value null indicates all Catalogs/Schemas.
// The value “” indicates current catalog/schema
// The value “%” has the same meaning as SQL like clause
// The last attribute is an array of types of tables to return.
// TABLE means only regular tables
ResultSet rs = dbmd.getTables (“”, "", “%", new String[] {“TABLES”});
while(rs.next()) {

System.out.println(rs.getString(“TABLE_NAME“));
}

 And where is this useful?

©Silberschatz, Korth and Sudarshan5.17Database System Concepts - 7th Edition

Finding Primary Keys

 DatabaseMetaData dmd = connection.getMetaData();

// Arguments below are: Catalog, Schema, and Table
// The value “” for Catalog/Schema indicates current catalog/schema
// The value null indicates all catalogs/schemas
ResultSet rs = dmd.getPrimaryKeys(“”, “”, tableName);

while(rs.next()){
// KEY_SEQ indicates the position of the attribute in
// the primary key, which is required if a primary key has multiple
// attributes
System.out.println(rs.getString(“KEY_SEQ”),

rs.getString("COLUMN_NAME");
}

©Silberschatz, Korth and Sudarshan5.18Database System Concepts - 7th Edition

Transaction Control in JDBC

 By default, each SQL statement is treated as a separate transaction that
is committed automatically
• bad idea for transactions with multiple updates

 Can turn off automatic commit on a connection
• conn.setAutoCommit(false);

 Transactions must then be committed or rolled back explicitly
• conn.commit(); or
• conn.rollback();

 conn.setAutoCommit(true) turns on automatic commit.

©Silberschatz, Korth and Sudarshan5.19Database System Concepts - 7th Edition

Other JDBC Features

 Calling functions and procedures
• CallableStatement cStmt1 = conn.prepareCall("{? = call some

function(?)}");
• CallableStatement cStmt2 = conn.prepareCall("{call some

procedure(?,?)}");
 Handling large object types

• getBlob() and getClob() that are similar to the getString() method, but
return objects of type Blob and Clob, respectively

• get data from these objects by getBytes()
• associate an open stream with Java Blob or Clob object to update large

objects
 blob.setBlob(int parameterIndex, InputStream inputStream).

©Silberschatz, Korth and Sudarshan5.20Database System Concepts - 7th Edition

JDBC Resources

 JDBC Basics Tutorial
• https://docs.oracle.com/javase/tutorial/jdbc/index.html

©Silberschatz, Korth and Sudarshan5.21Database System Concepts - 7th Edition

SQLJ

 JDBC is overly dynamic, errors cannot be caught by compiler
 SQLJ: embedded SQL in Java

• #sql iterator deptInfoIter (String dept name, int avgSal);
deptInfoIter iter = null;
#sql iter = { select dept_name, avg(salary) from instructor

group by dept name };
while (iter.next()) {

String deptName = iter.dept_name();
int avgSal = iter.avgSal();
System.out.println(deptName + " " + avgSal);

}
iter.close();

©Silberschatz, Korth and Sudarshan5.22Database System Concepts - 7th Edition

ODBC

©Silberschatz, Korth and Sudarshan5.23Database System Concepts - 7th Edition

ODBC

 Open DataBase Connectivity (ODBC) standard
• standard for application program to communicate with a database

server.
• application program interface (API) to

 open a connection with a database,
 send queries and updates,
 get back results.

 Applications such as GUI, spreadsheets, etc. can use ODBC

©Silberschatz, Korth and Sudarshan5.24Database System Concepts - 7th Edition

Embedded SQL

 The SQL standard defines embeddings of SQL in a variety of programming
languages such as C, C++, Java, Fortran, and PL/1,

 A language to which SQL queries are embedded is referred to as a host
language, and the SQL structures permitted in the host language comprise
embedded SQL.

 The basic form of these languages follows that of the System R embedding of
SQL into PL/1.

 EXEC SQL statement is used in the host language to identify embedded SQL
request to the preprocessor

EXEC SQL <embedded SQL statement >;
Note: this varies by language:
• In some languages, like COBOL, the semicolon is replaced with END-

EXEC
• In Java embedding uses # SQL { …. };

©Silberschatz, Korth and Sudarshan5.25Database System Concepts - 7th Edition

Embedded SQL (Cont.)

 Before executing any SQL statements, the program must first connect to
the database. This is done using:

EXEC-SQL connect to server user user-name using password;
Here, server identifies the server to which a connection is to be
established.

 Variables of the host language can be used within embedded SQL
statements. They are preceded by a colon (:) to distinguish from SQL
variables (e.g., :credit_amount)

 Variables used as above must be declared within DECLARE section, as
illustrated below. The syntax for declaring the variables, however, follows
the usual host language syntax.

EXEC-SQL BEGIN DECLARE SECTION}
int credit-amount ;

EXEC-SQL END DECLARE SECTION;

©Silberschatz, Korth and Sudarshan5.26Database System Concepts - 7th Edition

Embedded SQL (Cont.)

 To write an embedded SQL query, we use the
declare c cursor for <SQL query>

statement. The variable c is used to identify the query
 Example:

• From within a host language, find the ID and name of students who
have completed more than the number of credits stored in variable
credit_amount in the host langue

• Specify the query in SQL as follows:
EXEC SQL

declare c cursor for
select ID, name
from student
where tot_cred > :credit_amount

END_EXEC

©Silberschatz, Korth and Sudarshan5.27Database System Concepts - 7th Edition

Embedded SQL (Cont.)

 The open statement for our example is as follows:
EXEC SQL open c ;

This statement causes the database system to execute the query and to
save the results within a temporary relation. The query uses the value of
the host-language variable credit-amount at the time the open statement
is executed.

 The fetch statement causes the values of one tuple in the query result to
be placed on host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC

Repeated calls to fetch get successive tuples in the query result

©Silberschatz, Korth and Sudarshan5.28Database System Concepts - 7th Edition

Embedded SQL (Cont.)

 A variable called SQLSTATE in the SQL communication area (SQLCA)
gets set to '02000' to indicate no more data is available

 The close statement causes the database system to delete the
temporary relation that holds the result of the query.

EXEC SQL close c ;
Note: above details vary with language. For example, the Java
embedding defines Java iterators to step through result tuples.

©Silberschatz, Korth and Sudarshan5.29Database System Concepts - 7th Edition

Updates Through Embedded SQL

 Embedded SQL expressions for database modification (update, insert,
and delete)

 Can update tuples fetched by cursor by declaring that the cursor is for
update

EXEC SQL
declare c cursor for

select *
from instructor
where dept_name = 'Music'
for update

 We then iterate through the tuples by performing fetch operations on the
cursor (as illustrated earlier), and after fetching each tuple we execute the
following code:

update instructor
set salary = salary + 1000
where current of c

©Silberschatz, Korth and Sudarshan5.30Database System Concepts - 7th Edition

Functions and Procedures

©Silberschatz, Korth and Sudarshan5.31Database System Concepts - 7th Edition

Functions and Procedures

 Functions and procedures allow “business logic” to be stored in the
database and executed from SQL statements.

 These can be defined either by the procedural component of SQL or by
an external programming language such as Java, C, or C++.

 The syntax we present here is defined by the SQL standard.
• Most databases implement nonstandard versions of this syntax.

©Silberschatz, Korth and Sudarshan5.32Database System Concepts - 7th Edition

Declaring SQL Functions

 Define a function that, given the name of a department, returns the count of
the number of instructors in that department.

create function dept_count (dept_name varchar(20))
returns integer
begin
declare d_count integer;

select count (*) into d_count
from instructor
where instructor.dept_name = dept_name

return d_count;
end

 The function dept_count can be used to find the department names and
budget of all departments with more that 12 instructors.

select dept_name, budget
from department
where dept_count (dept_name) > 12

©Silberschatz, Korth and Sudarshan5.33Database System Concepts - 7th Edition

Table Functions

 The SQL standard supports functions that can return tables as results; such
functions are called table functions

 Example: Return all instructors in a given department
create function instructor_of (dept_name char(20))

returns table (
ID varchar(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

return table
(select ID, name, dept_name, salary
from instructor
where instructor.dept_name = instructor_of.dept_name)

 Usage
select *
from table (instructor_of ('Music'))

©Silberschatz, Korth and Sudarshan5.37Database System Concepts - 7th Edition

Language Constructs (Cont.)

 For loop
• Permits iteration over all results of a query

 Example: Find the budget of all departments

declare n integer default 0;
for r as

select budget from department
where dept_name = 'Music'

do
set n = n + r.budget

end for

©Silberschatz, Korth and Sudarshan5.40Database System Concepts - 7th Edition

External Language Routines

 SQL allows us to define functions in a programming language such as
Java, C#, C or C++.
• Can be more efficient than functions defined in SQL, and

computations that cannot be carried out in SQL\can be executed by
these functions.

 Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C
external name '/usr/avi/bin/dept_count_proc'

create function dept_count(dept_name varchar(20))
returns integer
language C
external name '/usr/avi/bin/dept_count'

©Silberschatz, Korth and Sudarshan5.42Database System Concepts - 7th Edition

Security with External Language Routines

 To deal with security problems, we can do on of the following:
• Use sandbox techniques

 That is, use a safe language like Java, which cannot be used to
access/damage other parts of the database code.

• Run external language functions/procedures in a separate process,
with no access to the database process’ memory.
 Parameters and results communicated via inter-process

communication
 Both have performance overheads
 Many database systems support both above approaches as well as direct

executing in database system address space.

©Silberschatz, Korth and Sudarshan5.43Database System Concepts - 7th Edition

Triggers

©Silberschatz, Korth and Sudarshan5.44Database System Concepts - 7th Edition

Triggers

 A trigger is a statement that is executed automatically by the system as a
side effect of a modification to the database.

 To design a trigger mechanism, we must:
• Specify the conditions under which the trigger is to be executed.
• Specify the actions to be taken when the trigger executes.

 Triggers introduced to SQL standard in SQL:1999, but supported even
earlier using non-standard syntax by most databases.
• Syntax illustrated here may not work exactly on your database

system; check the system manuals

©Silberschatz, Korth and Sudarshan5.46Database System Concepts - 7th Edition

Trigger to Maintain credits_earned value

 create trigger credits_earned after update of takes on (grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade <> 'F' and nrow.grade is not null

and (orow.grade = 'F' or orow.grade is null)
begin atomic

update student
set tot_cred= tot_cred +

(select credits
from course
where course.course_id= nrow.course_id)

where student.id = nrow.id;
end;

©Silberschatz, Korth and Sudarshan5.47Database System Concepts - 7th Edition

Statement Level Triggers

 Instead of executing a separate action for each affected row, a single
action can be executed for all rows affected by a transaction
• Use for each statement instead of for each row
• Use referencing old table or referencing new table to refer to

temporary tables (called transition tables) containing the affected
rows

• Can be more efficient when dealing with SQL statements that update
a large number of rows

©Silberschatz, Korth and Sudarshan5.48Database System Concepts - 7th Edition

When Not To Use Triggers

 Triggers were used earlier for tasks such as
• Maintaining summary data (e.g., total salary of each department)
• Replicating databases by recording changes to special relations

(called change or delta relations) and having a separate process that
applies the changes over to a replica

 There are better ways of doing these now:
• Databases today provide built in materialized view facilities to

maintain summary data
• Databases provide built-in support for replication

 Encapsulation facilities can be used instead of triggers in many cases
• Define methods to update fields
• Carry out actions as part of the update methods instead of

through a trigger

©Silberschatz, Korth and Sudarshan5.49Database System Concepts - 7th Edition

When Not To Use Triggers (Cont.)

 Risk of unintended execution of triggers, for example, when
• Loading data from a backup copy
• Replicating updates at a remote site
• Trigger execution can be disabled before such actions.

 Other risks with triggers:
• Error leading to failure of critical transactions that set off the trigger
• Cascading execution

©Silberschatz, Korth and Sudarshan5.50Database System Concepts - 7th Edition

Recursive Queries

©Silberschatz, Korth and Sudarshan5.51Database System Concepts - 7th Edition

Recursion in SQL

 SQL:1999 permits recursive view definition
 Example: find which courses are a prerequisite, whether directly or

indirectly, for a specific course
with recursive rec_prereq(course_id, prereq_id) as (

select course_id, prereq_id
from prereq

union
select rec_prereq.course_id, prereq.prereq_id,
from rec_rereq, prereq
where rec_prereq.prereq_id = prereq.course_id

)
select ∗
from rec_prereq;
This example view, rec_prereq, is called the transitive closure of the prereq
relation

©Silberschatz, Korth and Sudarshan5.52Database System Concepts - 7th Edition

The Power of Recursion

 Recursive views make it possible to write queries, such as transitive
closure queries, that cannot be written without recursion or iteration.
• Intuition: Without recursion, a non-recursive non-iterative program

can perform only a fixed number of joins of prereq with itself
 This can give only a fixed number of levels of managers
 Given a fixed non-recursive query, we can construct a database

with a greater number of levels of prerequisites on which the
query will not work

 Alternative: write a procedure to iterate as many times as required
• See procedure findAllPrereqs in book

©Silberschatz, Korth and Sudarshan5.54Database System Concepts - 7th Edition

Example of Fixed-Point Computation

©Silberschatz, Korth and Sudarshan5.55Database System Concepts - 7th Edition

Advanced Aggregation Features

©Silberschatz, Korth and Sudarshan5.56Database System Concepts - 7th Edition

Ranking

 Ranking is done in conjunction with an order by specification.
 Suppose we are given a relation

student_grades(ID, GPA)
giving the grade-point average of each student

 Find the rank of each student.
 select ID, rank() over (order by GPA desc) as s_rank

from student_grades
 An extra order by clause is needed to get them in sorted order

select ID, rank() over (order by GPA desc) as s_rank
from student_grades
order by s_rank

 Ranking may leave gaps: e.g. if 2 students have the same top GPA, both
have rank 1, and the next rank is 3
• dense_rank does not leave gaps, so next dense rank would be 2

©Silberschatz, Korth and Sudarshan5.57Database System Concepts - 7th Edition

Ranking

 Ranking can be done using basic SQL aggregation, but resultant query is
very inefficient

select ID, (1 + (select count(*)
from student_grades B
where B.GPA > A.GPA)) as s_rank

from student_grades A
order by s_rank;

©Silberschatz, Korth and Sudarshan5.58Database System Concepts - 7th Edition

Ranking (Cont.)

 Ranking can be done within partition of the data.
 “Find the rank of students within each department.”

select ID, dept_name,
rank () over (partition by dept_name order by GPA desc)

as dept_rank
from dept_grades
order by dept_name, dept_rank;

 Multiple rank clauses can occur in a single select clause.
 Ranking is done after applying group by clause/aggregation
 Can be used to find top-n results

• More general than the limit n clause supported by many databases,
since it allows top-n within each partition

©Silberschatz, Korth and Sudarshan5.59Database System Concepts - 7th Edition

Ranking (Cont.)

 Other ranking functions:
• percent_rank (within partition, if partitioning is done)
• cume_dist (cumulative distribution)

 fraction of tuples with preceding values
• row_number (non-deterministic in presence of duplicates)

 SQL:1999 permits the user to specify nulls first or nulls last
select ID,

rank () over (order by GPA desc nulls last) as s_rank
from student_grades

©Silberschatz, Korth and Sudarshan5.60Database System Concepts - 7th Edition

Ranking (Cont.)

 For a given constant n, the ranking the function ntile(n) takes the tuples in
each partition in the specified order, and divides them into n buckets with
equal numbers of tuples.

 E.g.,
select ID, ntile(4) over (order by GPA desc) as quartile

from student_grades;

©Silberschatz, Korth and Sudarshan5.61Database System Concepts - 7th Edition

Windowing

 Used to smooth out random variations.
 E.g., moving average: “Given sales values for each date, calculate for

each date the average of the sales on that day, the previous day, and the
next day”

 Window specification in SQL:
• Given relation sales(date, value)

select date, sum(value) over
(order by date between rows 1 preceding and 1 following)

from sales

©Silberschatz, Korth and Sudarshan5.62Database System Concepts - 7th Edition

Windowing

 Examples of other window specifications:
• between rows unbounded preceding and current
• rows unbounded preceding
• range between 10 preceding and current row

 All rows with values between current row value –10 to current value
• range interval 10 day preceding

 Not including current row

©Silberschatz, Korth and Sudarshan5.63Database System Concepts - 7th Edition

Windowing (Cont.)

 Can do windowing within partitions
 E.g., Given a relation transaction (account_number, date_time, value),

where value is positive for a deposit and negative for a withdrawal
• “Find total balance of each account after each transaction on the

account”
select account_number, date_time,

sum (value) over
(partition by account_number
order by date_time
rows unbounded preceding)

as balance
from transaction
order by account_number, date_time

©Silberschatz, Korth and Sudarshan5.64Database System Concepts - 7th Edition

OLAP

©Silberschatz, Korth and Sudarshan5.65Database System Concepts - 7th Edition

Data Analysis and OLAP

 Online Analytical Processing (OLAP)
• Interactive analysis of data, allowing data to be summarized and

viewed in different ways in an online fashion (with negligible delay)
 Data that can be modeled as dimension attributes and measure attributes

are called multidimensional data.
• Measure attributes

 measure some value
 can be aggregated upon
 e.g., the attribute number of the sales relation

• Dimension attributes
 define the dimensions on which measure attributes (or aggregates

thereof) are viewed
 e.g., attributes item_name, color, and size of the sales relation

©Silberschatz, Korth and Sudarshan5.66Database System Concepts - 7th Edition

Example sales relation

...

...
...
...

...

...
...
...

©Silberschatz, Korth and Sudarshan5.67Database System Concepts - 7th Edition

Cross Tabulation of sales by item_name and color

 The table above is an example of a cross-tabulation (cross-tab), also
referred to as a pivot-table.
• Values for one of the dimension attributes form the row headers
• Values for another dimension attribute form the column headers
• Other dimension attributes are listed on top
• Values in individual cells are (aggregates of) the values of the

dimension attributes that specify the cell.

©Silberschatz, Korth and Sudarshan5.68Database System Concepts - 7th Edition

Data Cube

 A data cube is a multidimensional generalization of a cross-tab
 Can have n dimensions; we show 3 below
 Cross-tabs can be used as views on a data cube

©Silberschatz, Korth and Sudarshan5.70Database System Concepts - 7th Edition

Cross Tabulation With Hierarchy

 Cross-tabs can be easily extended to deal with hierarchies
• Can drill down or roll up on a hierarchy

©Silberschatz, Korth and Sudarshan5.71Database System Concepts - 7th Edition

Relational Representation of Cross-tabs

 Cross-tabs can be represented
as relations
• We use the value all is used

to represent aggregates.
• The SQL standard actually

uses null values in place of
all despite confusion with
regular null values.

©Silberschatz, Korth and Sudarshan5.72Database System Concepts - 7th Edition

Extended Aggregation to Support OLAP

 The cube operation computes union of group by’s on every subset of the
specified attributes

 Example relation for this section
sales(item_name, color, clothes_size, quantity)

 E.g., consider the query
select item_name, color, size, sum(number)
from sales
group by cube(item_name, color, size)

This computes the union of eight different groupings of the sales relation:
{ (item_name, color, size), (item_name, color),

(item_name, size), (color, size),
(item_name), (color),
(size), () }

where () denotes an empty group by list.
 For each grouping, the result contains the null value

for attributes not present in the grouping.

©Silberschatz, Korth and Sudarshan5.73Database System Concepts - 7th Edition

Online Analytical Processing Operations

 Relational representation of cross-tab that we saw earlier, but with null in
place of all, can be computed by

 select item_name, color, sum(number)
from sales
group by cube(item_name, color)

 The function grouping() can be applied on an attribute
• Returns 1 if the value is a null value representing all, and returns 0 in all

other cases.
select item_name, color, size, sum(number),

grouping(item_name) as item_name_flag,
grouping(color) as color_flag,
grouping(size) as size_flag,

from sales
group by cube(item_name, color, size)

©Silberschatz, Korth and Sudarshan5.74Database System Concepts - 7th Edition

Online Analytical Processing Operations

 Can use the function decode() in the select clause to replace
such nulls by a value such as all
• E.g., replace item_name in first query by

decode(grouping(item_name), 1, ‘all’, item_name)

©Silberschatz, Korth and Sudarshan5.75Database System Concepts - 7th Edition

Extended Aggregation (Cont.)

 The rollup construct generates union on every prefix of specified list of
attributes

 E.g.,
select item_name, color, size, sum(number)

from sales
group by rollup(item_name, color, size)

• Generates union of four groupings:
{ (item_name, color, size), (item_name, color), (item_name), () }

 Rollup can be used to generate aggregates at multiple levels of a
hierarchy.

 E.g., suppose table itemcategory(item_name, category) gives the category of
each item. Then

select category, item_name, sum(number)
from sales, itemcategory
where sales.item_name = itemcategory.item_name
group by rollup(category, item_name)

would give a hierarchical summary by item_name and by category.

©Silberschatz, Korth and Sudarshan5.76Database System Concepts - 7th Edition

Extended Aggregation (Cont.)

 Multiple rollups and cubes can be used in a single group by clause
• Each generates set of group by lists, cross product of sets gives overall

set of group by lists
 E.g.,

select item_name, color, size, sum(number)
from sales
group by rollup(item_name), rollup(color, size)

generates the groupings
{item_name, ()} X {(color, size), (color), ()}

= { (item_name, color, size), (item_name, color), (item_name),
(color, size), (color), () }

©Silberschatz, Korth and Sudarshan5.77Database System Concepts - 7th Edition

Online Analytical Processing Operations

 Pivoting: changing the dimensions used in a cross-tab is called
 Slicing: creating a cross-tab for fixed values only

• Sometimes called dicing, particularly when values for multiple
dimensions are fixed.

 Rollup: moving from finer-granularity data to a coarser granularity
 Drill down: The opposite operation - that of moving from coarser-

granularity data to finer-granularity data

©Silberschatz, Korth and Sudarshan5.78Database System Concepts - 7th Edition

OLAP Implementation

 The earliest OLAP systems used multidimensional arrays in memory to
store data cubes, and are referred to as multidimensional OLAP (MOLAP)
systems.

 OLAP implementations using only relational database features are called
relational OLAP (ROLAP) systems

 Hybrid systems, which store some summaries in memory and store the
base data and other summaries in a relational database, are called hybrid
OLAP (HOLAP) systems.

©Silberschatz, Korth and Sudarshan5.79Database System Concepts - 7th Edition

OLAP Implementation (Cont.)

 Early OLAP systems precomputed all possible aggregates in order to
provide online response
• Space and time requirements for doing so can be very high

 2n combinations of group by
• It suffices to precompute some aggregates, and compute others on

demand from one of the precomputed aggregates
 Can compute aggregate on (item_name, color) from an aggregate

on (item_name, color, size)
• For all but a few “non-decomposable” aggregates such as

median
• is cheaper than computing it from scratch

 Several optimizations available for computing multiple aggregates
• Can compute aggregate on (item_name, color) from an aggregate on

(item_name, color, size)
• Can compute aggregates on (item_name, color, size),

(item_name, color) and (item_name) using a single sorting
of the base data

©Silberschatz, Korth and Sudarshan5.80Database System Concepts - 7th Edition

End of Chapter 5

	Chapter 5: Advanced SQL
	Outline
	Accessing SQL from a Programming Language
	Accessing SQL from a Programming Language (Cont.)
	Slide Number 5
	JDBC
	JDBC Code
	JDBC Code for Older Versions of Java/JDBC
	JDBC Code (Cont.)
	JDBC SUBSECTIONS
	JDBC Code Details
	Prepared Statement
	SQL Injection
	Metadata Features
	Metadata (Cont)
	Metadata (Cont)
	Finding Primary Keys
	Transaction Control in JDBC
	Other JDBC Features
	JDBC Resources
	SQLJ
	Slide Number 22
	ODBC
	Embedded SQL
	Embedded SQL (Cont.)
	Embedded SQL (Cont.)
	Embedded SQL (Cont.)
	Embedded SQL (Cont.)
	Updates Through Embedded SQL
	Slide Number 30
	Functions and Procedures
	Declaring SQL Functions
	Table Functions
	Language Constructs (Cont.)
	External Language Routines
	Security with External Language Routines
	Slide Number 43
	Triggers
	Trigger to Maintain credits_earned value
	Statement Level Triggers
	When Not To Use Triggers
	When Not To Use Triggers (Cont.)
	Slide Number 50
	Recursion in SQL
	The Power of Recursion
	Example of Fixed-Point Computation
	Advanced Aggregation Features
	Ranking
	Ranking
	Ranking (Cont.)
	Ranking (Cont.)
	Ranking (Cont.)
	Windowing
	Windowing
	Windowing (Cont.)
	OLAP
	Data Analysis and OLAP
	Example sales relation
	Cross Tabulation of sales by item_name and color
	Data Cube
	Cross Tabulation With Hierarchy
	Relational Representation of Cross-tabs
	Extended Aggregation to Support OLAP
	Online Analytical Processing Operations
	Online Analytical Processing Operations
	Extended Aggregation (Cont.)
	Extended Aggregation (Cont.)
	Online Analytical Processing Operations
	OLAP Implementation
	OLAP Implementation (Cont.)
	End of Chapter 5

