
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 8: Complex Data Types

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan8.2Database System Concepts - 7th Edition

Outline

 Semi-Structured Data
 Object Orientation
 Textual Data
 Spatial Data

©Silberschatz, Korth and Sudarshan8.3Database System Concepts - 7th Edition

Semi-Structured Data

 Many applications require storage of complex data, whose schema
changes often

 The relational model’s requirement of atomic data types may be an
overkill
• E.g. storing set of interests as a set-valued attribute of a user profile may

be simpler than normalizing it

 Data exchange can benefit greatly from semi-structured data
• Exchange can be between applications, or between back-end and front-

end of an application
• Web-services are widely used today, with complex data fetched to the

front-end and displayed using a mobile app or JavaScript

 JSON and XML are widely used semi-structured data models

©Silberschatz, Korth and Sudarshan8.4Database System Concepts - 7th Edition

Features of Semi-Structured Data Models
 Flexible schema

• Wide column representation: allow each tuple to have a different set of
attributes, can add new attributes at any time

• Sparse column representation: schema has a fixed but large set of
attributes, by each tuple may store only a subset

 Multivalued data types
• Sets, multisets
 E.g.: set of interests {‘basketball, ‘La Liga’, ‘cooking’, ‘anime’, ‘jazz’}

• Key-value map (or just map for short)
 Store a set of key-value pairs
 E.g. {(brand, Apple), (ID, MacBook Air), (size, 13), (color, silver)}
 Operations on maps: put(key, value), get(key), delete(key)

• , Arrays
 Widely used for scientific and monitoring applications

©Silberschatz, Korth and Sudarshan8.5Database System Concepts - 7th Edition

Features of Semi-Structured Data Models
 Arrays

• Widely used for scientific and monitoring applications
• E.g. readings taken at regular intervals can be represented as array of

values instead of (time, value) pairs
 [5, 8, 9, 11] instead of {(1,5), (2, 8), (3, 9), (4, 11)}

 Multi-valued attribute types
• Modeled using non first-normal-form (NFNF) data model
• Supported by most database systems today

 Array database: a database that provides specialized support for
arrays
• E.g. compressed storage, query language extensions etc
• Oracle GeoRaster, PostGIS, SciDB, etc

©Silberschatz, Korth and Sudarshan8.6Database System Concepts - 7th Edition

Nested Data Types

 Hierarchical data is common in many applications
 JSON: JavaScript Object Notation

• Widely used today

 XML: Extensible Markup Language
• Earlier generation notation, still used extensively

©Silberschatz, Korth and Sudarshan8.7Database System Concepts - 7th Edition

JSON

 Textual representation widely used for data exchange
 Example of JSON data

{
"ID": "22222",
"name": {

"firstname: "Albert",
"lastname: "Einstein"

},
"deptname": "Physics",
"children": [

{"firstname": "Hans", "lastname": "Einstein" },
{"firstname": "Eduard", "lastname": "Einstein" }

]
}

 Types: integer, real, string, and
• Objects: are key-value maps, i.e. sets of (attribute name, value) pairs
• Arrays are also key-value maps (from offset to value)

©Silberschatz, Korth and Sudarshan8.8Database System Concepts - 7th Edition

JSON

 JSON is ubiquitous in data exchange today
• Widely used for web services
• Most modern applications are architected around on web services

 SQL extensions for
• JSON types for storing JSON data
• Extracting data from JSON objects using path expressions
 E.g. V-> ID, or v.ID

• Generating JSON from relational data
 E.g. json.build_object(‘ID’, 12345, ‘name’, ‘Einstein’)

• Creation of JSON collections using aggregation
 E.g. json_agg aggregate function in PostgreSQL

• Syntax varies greatly across databases

 JSON is verbose
• Compressed representations such as BSON (Binary JSON) used for

efficient data storage

©Silberschatz, Korth and Sudarshan8.9Database System Concepts - 7th Edition

XML

 XML uses tags to mark up text
 E.g.

<course>
<course id> CS-101 </course id>
<title> Intro. to Computer Science </title>
<dept name> Comp. Sci. </dept name>
<credits> 4 </credits>

</course>
 Tags make the data self-documenting
 Tags can be hierarchical

©Silberschatz, Korth and Sudarshan8.10Database System Concepts - 7th Edition

Example of Data in XML
 <purchase order>

<identifier> P-101 </identifier>
<purchaser>

<name> Cray Z. Coyote </name>
<address> Route 66, Mesa Flats, Arizona 86047, USA

</address>
</purchaser>
<supplier>

<name> Acme Supplies </name>
<address> 1 Broadway, New York, NY, USA </address>

</supplier>
<itemlist>

<item>
<identifier> RS1 </identifier>
<description> Atom powered rocket sled </description>
<quantity> 2 </quantity>
<price> 199.95 </price>

</item>
<item>…</item>

</itemlist>
<total cost> 429.85 </total cost>

….
</purchase order>

©Silberschatz, Korth and Sudarshan8.11Database System Concepts - 7th Edition

XML Cont.

 XQuery language developed to query nested XML structures
• Not widely used currently

 SQL extensions to support XML
• Store XML data
• Generate XML data from relational data
• Extract data from XML data types
 Path expressions

 See Chapter 30 (online) for more information

©Silberschatz, Korth and Sudarshan8.12Database System Concepts - 7th Edition

Knowledge Representation

 Representation of human knowledge is a long-standing goal of AI
• Various representations of facts and inference rules proposed over time

 RDF: Resource Description Format
• Simplified representation for facts, represented as triples

(subject, predicate, object)
 E.g. (NBA-2019, winner, Raptors)

(Washington-DC, capital-of, USA)
(Washington-DC, population, 6,200,000)

• Models objects that have attributes, and relationships with other objects
 Like the ER model, but with a flexible schema
 (ID, attribute-name, value)
 (ID1, relationship-name, ID2)

• Has a natural graph representation

©Silberschatz, Korth and Sudarshan8.13Database System Concepts - 7th Edition

Graph View of RDF Data

 Knowledge graph

©Silberschatz, Korth and Sudarshan8.14Database System Concepts - 7th Edition

Triple View of RDF Data

©Silberschatz, Korth and Sudarshan8.15Database System Concepts - 7th Edition

Querying RDF: SPARQL

 Triple patterns
• ?cid title "Intro. to Computer Science"
• ?cid title "Intro. to Computer Science"

?sid course ?cid

 SPARQL queries
• select ?name

where {
?cid title "Intro. to Computer Science" .
?sid course ?cid .
?id takes ?sid .
?id name ?name .

}
• Also supports
 Aggregation, Optional joins (similar to outerjoins), Subqueries, etc.
 Transitive closure on paths

©Silberschatz, Korth and Sudarshan8.16Database System Concepts - 7th Edition

RDF Representation (Cont.)

 RDF triples represent binary relationships
 How to represent n-ary relationships?

• Approach 1 (from Section 6.9.4): Create artificial entity, and link to each of
the n entities
 E.g. (Barack Obama, president-of, USA, 2008-2016) can be

represented as
(e1, person, Barack Obama), (e1, country, USA),
(e1, president-from, 2008) (e1, president-till, 2016)

• Approach 2: use quads instead of triples, with context entity
 E.g. (Barack Obama, president-of, USA, c1)

(c1, president-from, 2008) (c1, president-till, 2016)

 RDF widely used as knowledge base representation
• DBPedia, Yago, Freebase, WikiData, ..

 Linked open data project aims to connect different knowledge
graphs to allow queries to span databases

©Silberschatz, Korth and Sudarshan8.17Database System Concepts - 7th Edition

Object Orientation

 Object-relational data model provides richer type system
• with complex data types and object orientation

 Applications are often written in object-oriented programming
languages
• Type system does not match relational type system
• Switching between imperative language and SQL is troublesome

 Approaches for integrating object-orientation with databases
• Build an object-relational database, adding object-oriented features to a

relational database
• Automatically convert data between programming language model and

relational model; data conversion specified by object-relational mapping
• Build an object-oriented database that natively supports object-oriented

data and direct access from programming language

©Silberschatz, Korth and Sudarshan8.18Database System Concepts - 7th Edition

Object-Relational Database Systems

 User-defined types
• create type Person

(ID varchar(20) primary key,
name varchar(20),
address varchar(20)) ref from(ID); /* More on this later */

create table people of Person;

 Table types
• create type interest as table (

topic varchar(20),
degree_of_interest int);

create table users (
ID varchar(20),
name varchar(20),
interests interest);

 Array, multiset data types also supported by many databases
• Syntax varies by database

©Silberschatz, Korth and Sudarshan8.19Database System Concepts - 7th Edition

Type and Table Inheritance

 Type inheritance
• create type Student under Person

(degree varchar(20)) ;
create type Teacher under Person
(salary integer);

 Table inheritance syntax in PostgreSQL and oracle
• create table students

(degree varchar(20))
inherits people;

create table teachers
(salary integer)
inherits people;

• create table people of Person;
create table students of Student

under people;
create table teachers of Teacher

under people;

©Silberschatz, Korth and Sudarshan8.20Database System Concepts - 7th Edition

Reference Types

 Creating reference types
• create type Person

(ID varchar(20) primary key,
name varchar(20),
address varchar(20))
ref from(ID);

create table people of Person;
create type Department (

dept_name varchar(20),
head ref(Person) scope people);

create table departments of Department
insert into departments values ('CS', '12345’)

• System generated references can be retrieved using subqueries
 (select ref(p) from people as p where ID = '12345')

 Using references in path expressions
• select head->name, head->address

from departments;

©Silberschatz, Korth and Sudarshan8.21Database System Concepts - 7th Edition

Object-Relational Mapping

 Object-relational mapping (ORM) systems allow
• Specification of mapping between programming language objects and

database tuples
• Automatic creation of database tuples upon creation of objects
• Automatic update/delete of database tuples when objects are

update/deleted
• Interface to retrieve objects satisfying specified conditions
 Tuples in database are queried, and object created from the tuples

 Details in Section 9.6.2
• Hibernate ORM for Java
• Django ORM for Python

©Silberschatz, Korth and Sudarshan8.22Database System Concepts - 7th Edition

Textual Data

 Information retrieval: querying of unstructured data
• Simple model of keyword queries: given query keywords,retrieve

documents containing all the keywords
• More advanced models rank relevance of documents
• Today, keyword queries return many types of information as answers
 E.g. a query “cricket” typically returns information about ongoing

cricket matches

 Relevance ranking
• Essential since there are usually many documents matching keywords

©Silberschatz, Korth and Sudarshan8.23Database System Concepts - 7th Edition

Ranking using TF-IDF

 Term: keyword occurring in a document/query
 Term Frequency: TF(d, t), the relevance of a term t to a document d

• One definition: TF(d, t) = log(1 + n(d,t)/n(d))
where n(d,t) = number of occurrences of term t in document d
and n(d) = number of terms in document d

 Inverse document frequency: IDF(t)
• One definition: IDF(t) = 1/n(t)

 Relevance of a document d to a set of terms Q
• One definition: r(d, Q) = ∑t∈Q TF(d, t) ∗ IDF(t)
• Other definitions
 take proximity of words into account
 Stop words are often ignored

©Silberschatz, Korth and Sudarshan8.24Database System Concepts - 7th Edition

Ranking Using Hyperlinks

 Hyperlinks provide very important clues to importance
 Google introduced PageRank, a measure of popularity/importance

based on hyperlinks to pages
• Pages hyperlinked from many pages should have higher PageRank
• Pages hyperlinked from pages with higher PageRank should have higher

PageRank
• Formalized by random walk model

 Let T[i, j] be the probability that a random walker who is on page i will
click on the link to page j
• Assuming all links are equal, T[i, j] = 1∕Ni

 Then PageRank[j] for each page j can be defined as
• P[j] = δ∕N + (1 - δ) ∗ ∑i=1

N (T[i, j] ∗ P[i])
• Where N = total number of pages, and δ a constant usually set to 0.15

©Silberschatz, Korth and Sudarshan8.25Database System Concepts - 7th Edition

Ranking Using Hyperlinks

 Definition of PageRank is circular, but can be solved as a set of linear
equations
• Simple iterative technique works well
• Initialize all P[i] = 1/N
• In each iteration use equation P[j] = δ∕N + (1 - δ) ∗ ∑i=1

N (T[i, j] ∗ P[i]) to
update P

• Stop iteration when changes are small, or some limit (say 30 iterations) is
reached.

 Other measures of relevance are also important. For example:
• Keywords in anchor text
• Number of times who ask a query click on a link if it is returned as an

answer

©Silberschatz, Korth and Sudarshan8.26Database System Concepts - 7th Edition

Retrieval Effectiveness

 Measures of effectiveness
• Precision: what percentage of returned results are actually relevant
• Recall: what percentage of relevant results were returned
• At some number of answers, e.g. precision@10, recall@10

 Keyword querying on structured data and knowledge bases
• Useful if users don’t know schema, or there is no predefined schema
• Can represent data as graphs
• Keywords match tuples
• Keyword search returns closely connected tuples that contain keywords
 E.g. on our university database given query “Zhang Katz”, Zhang

matches a student, Katz an instructor and advisor relationship links
them

©Silberschatz, Korth and Sudarshan8.27Database System Concepts - 7th Edition

SPATIAL DATA

©Silberschatz, Korth and Sudarshan8.28Database System Concepts - 7th Edition

Spatial Data

 Spatial databases store information related to spatial locations, and
support efficient storage, indexing and querying of spatial data.
• Geographic data -- road maps, land-usage maps, topographic

elevation maps, political maps showing boundaries, land-
ownership maps, and so on.
 Geographic information systems are special-purpose

databases tailored for storing geographic data.
 Round-earth coordinate system may be used

• (Latitude, longitude, elevation)
• Geometric data: design information about how objects are

constructed . For example, designs of buildings, aircraft, layouts of
integrated-circuits.
 2 or 3 dimensional Euclidean space with (X, Y, Z) coordinates

©Silberschatz, Korth and Sudarshan8.29Database System Concepts - 7th Edition

Represented of Geometric Information

 A line segment can be represented by the coordinates of its endpoints.
 A polyline or linestring consists of a connected sequence of line

segments and can be represented by a list containing the coordinates of
the endpoints of the segments, in sequence.
• Approximate a curve by partitioning it into a sequence of segments
 Useful for two-dimensional features such as roads.
 Some systems also support circular arcs as primitives, allowing

curves to be represented as sequences of arc
 Polygons is represented by a list of vertices in order.

• The list of vertices specifies the boundary of a polygonal region.
• Can also be represented as a set of triangles (triangulation)

Various geometric constructs can be represented in a database in
a normalized fashion (see next slide)

©Silberschatz, Korth and Sudarshan8.30Database System Concepts - 7th Edition

Representation of Geometric Constructs

©Silberschatz, Korth and Sudarshan8.31Database System Concepts - 7th Edition

Representation of Geometric Information
(Cont.)

 Representation of points and line segment in 3-D similar to 2-D,
except that points have an extra z component

 Represent arbitrary polyhedra by dividing them into tetrahedrons, like
triangulating polygons.

 Alternative: List their faces, each of which is a polygon, along with an
indication of which side of the face is inside the polyhedron.

 Geometry and geography data types supported by many databases
• E.g. SQL Server and PostGIS
• point, linestring, curve, polygons
• Collections: multipoint, multilinestring, multicurve, multipolygon
• LINESTRING(1 1, 2 3, 4 4)
• POLYGON((1 1, 2 3, 4 4, 1 1))
• Type conversions: ST GeometryFromText() and ST

GeographyFromText()
• Operations: ST Union(), ST Intersection(), …

©Silberschatz, Korth and Sudarshan8.32Database System Concepts - 7th Edition

Design Databases

 Represent design components as objects (generally geometric
objects); the connections between the objects indicate how the design
is structured.

 Simple two-dimensional objects: points, lines, triangles, rectangles,
polygons.

 Complex two-dimensional objects: formed from simple objects via
union, intersection, and difference operations.

 Complex three-dimensional objects: formed from simpler objects such
as spheres, cylinders, and cuboids, by union, intersection, and
difference operations.

 Wireframe models represent three-dimensional surfaces as a set of
simpler objects.

©Silberschatz, Korth and Sudarshan8.33Database System Concepts - 7th Edition

Representation of Geometric Constructs

 Design databases also store non-spatial information about objects (e.g.,
construction material, color, etc.)

 Spatial integrity constraints are important.
• E.g., pipes should not intersect, wires should not be too close to each

other, etc.

©Silberschatz, Korth and Sudarshan8.34Database System Concepts - 7th Edition

Geographic Data

 Raster data consist of bit maps or pixel maps, in two or more
dimensions.
• Example 2-D raster image: satellite image of cloud cover, where

each pixel stores the cloud visibility in a particular area.
• Additional dimensions might include the temperature at different

altitudes at different regions, or measurements taken at different
points in time.

 Design databases generally do not store raster data.

©Silberschatz, Korth and Sudarshan8.35Database System Concepts - 7th Edition

Geographic Data (Cont.)

 Vector data are constructed from basic geometric objects: points,
line segments, triangles, and other polygons in two dimensions, and
cylinders, spheres, cuboids, and other polyhedrons in three
dimensions.

 Vector format often used to represent map data.
• Roads can be considered as two-dimensional and represented by

lines and curves.
• Some features, such as rivers, may be represented either as

complex curves or as complex polygons, depending on whether
their width is relevant.

• Features such as regions and lakes can be depicted as polygons.

©Silberschatz, Korth and Sudarshan8.36Database System Concepts - 7th Edition

Spatial Queries

 Region queries deal with spatial regions. e.g., ask for objects that lie
partially or fully inside a specified region
• E.g. PostGIS ST_Contains(), ST_Overlaps(), …

 Nearness queries request objects that lie near a specified location.
 Nearest neighbor queries, given a point or an object, find the

nearest object that satisfies given conditions.
 Spatial graph queries request information based on spatial graphs

• E.g. shortest path between two points via a road network

 Spatial join of two spatial relations with the location playing the role
of join attribute.

 Queries that compute intersections or unions of regions

End of Chapter 8

	Chapter 8: Complex Data Types
	Outline
	Semi-Structured Data
	Features of Semi-Structured Data Models
	Features of Semi-Structured Data Models
	Nested Data Types
	JSON
	JSON
	XML
	Example of Data in XML
	XML Cont.
	Knowledge Representation
	Graph View of RDF Data
	Triple View of RDF Data
	Querying RDF: SPARQL
	RDF Representation (Cont.)
	Object Orientation
	Object-Relational Database Systems
	Type and Table Inheritance
	Reference Types
	Object-Relational Mapping
	Textual Data
	Ranking using TF-IDF
	Ranking Using Hyperlinks
	Ranking Using Hyperlinks
	Retrieval Effectiveness
	Spatial data
	Spatial Data
	Represented of Geometric Information
	Representation of Geometric Constructs
	Representation of Geometric Information (Cont.)
	Design Databases
	Representation of Geometric Constructs
	Geographic Data
	Geographic Data (Cont.)
	Spatial Queries
	End of Chapter 8

