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 Object Orientation
 Textual Data
 Spatial Data



©Silberschatz, Korth and Sudarshan8.3Database System Concepts - 7th Edition

Semi-Structured Data

 Many applications require storage of complex data, whose schema 
changes often

 The relational model’s requirement of atomic data types may be an 
overkill
• E.g. storing set of interests as a set-valued attribute of a user profile may 

be simpler than normalizing it

 Data exchange can benefit greatly from semi-structured data
• Exchange can be between applications, or between back-end and front-

end of an application
• Web-services are widely used today, with complex data fetched to the 

front-end and displayed using a mobile app or JavaScript

 JSON and XML are widely used semi-structured data models
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Features of Semi-Structured Data Models
 Flexible schema

• Wide column representation: allow each tuple to have a different set of 
attributes, can add new attributes at any time

• Sparse column representation: schema has a fixed but large set of 
attributes, by each tuple may store only a subset

 Multivalued data types
• Sets, multisets
 E.g.: set of interests {‘basketball, ‘La Liga’, ‘cooking’, ‘anime’, ‘jazz’}

• Key-value map (or just map for short)
 Store a set of key-value pairs
 E.g. {(brand, Apple), (ID, MacBook Air), (size, 13), (color, silver)}
 Operations on maps:  put(key, value), get(key), delete(key)

• , Arrays 
 Widely used for scientific and monitoring applications
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Features of Semi-Structured Data Models
 Arrays 

• Widely used for scientific and monitoring applications
• E.g. readings taken at regular intervals can be represented as array of 

values instead of (time, value) pairs
 [5, 8, 9, 11] instead of {(1,5), (2, 8), (3, 9), (4, 11)}

 Multi-valued attribute types 
• Modeled using non first-normal-form (NFNF) data model
• Supported by most database systems today

 Array database:  a database that provides specialized support for 
arrays
• E.g. compressed storage, query language extensions etc
• Oracle GeoRaster, PostGIS, SciDB, etc
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Nested Data Types

 Hierarchical data is common in many applications
 JSON: JavaScript Object Notation

• Widely used today

 XML: Extensible Markup Language
• Earlier generation notation, still used extensively
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JSON

 Textual representation widely used for data exchange
 Example of JSON data

{
"ID": "22222",
"name": {

"firstname: "Albert",
"lastname: "Einstein"

},
"deptname": "Physics",
"children": [

{"firstname": "Hans", "lastname": "Einstein" },
{"firstname": "Eduard", "lastname": "Einstein" }

]
} 

 Types: integer, real, string, and 
• Objects: are key-value maps, i.e. sets of (attribute name, value) pairs
• Arrays are also key-value maps (from offset to value) 
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JSON

 JSON is ubiquitous in data exchange today
• Widely used for web services
• Most modern applications are architected around on web services

 SQL extensions for
• JSON types for storing JSON data
• Extracting data from JSON objects using path expressions
 E.g.  V-> ID, or v.ID

• Generating JSON from relational data
 E.g. json.build_object(‘ID’, 12345, ‘name’, ‘Einstein’)

• Creation of JSON collections using aggregation
 E.g. json_agg aggregate function in PostgreSQL

• Syntax varies greatly across databases

 JSON is verbose
• Compressed representations such as BSON (Binary JSON) used for 

efficient data storage
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XML

 XML uses tags to mark up text
 E.g. 

<course>
<course id> CS-101 </course id>
<title> Intro. to Computer Science </title>
<dept name> Comp. Sci. </dept name>
<credits> 4 </credits>

</course> 
 Tags make the data self-documenting
 Tags can be hierarchical
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Example of Data in XML
 <purchase order>

<identifier> P-101 </identifier>
<purchaser>

<name> Cray Z. Coyote </name>
<address> Route 66, Mesa Flats, Arizona 86047, USA 

</address>
</purchaser>
<supplier>

<name> Acme Supplies </name>
<address> 1 Broadway, New York, NY, USA </address>

</supplier>
<itemlist>

<item>
<identifier> RS1 </identifier>
<description> Atom powered rocket sled </description>
<quantity> 2 </quantity>
<price> 199.95 </price>

</item>
<item>…</item>

</itemlist>
<total cost> 429.85 </total cost>

….
</purchase order>
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XML Cont.

 XQuery language developed to query nested XML structures
• Not widely used currently

 SQL extensions to support XML
• Store XML data
• Generate XML data from relational data
• Extract data from XML data types
 Path expressions 

 See Chapter 30 (online) for more information
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Knowledge Representation

 Representation of human knowledge is a long-standing goal of AI
• Various representations of facts and inference rules proposed over time

 RDF: Resource Description Format
• Simplified representation for facts, represented as triples

(subject, predicate, object) 
 E.g.  (NBA-2019, winner, Raptors)

(Washington-DC, capital-of, USA)
(Washington-DC, population, 6,200,000)

• Models objects that have attributes, and relationships with other objects
 Like the ER model, but with a flexible schema
 (ID, attribute-name, value)
 (ID1, relationship-name, ID2)

• Has a natural graph representation
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Graph View of RDF Data

 Knowledge graph
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Triple View of RDF Data
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Querying RDF: SPARQL

 Triple patterns
• ?cid title "Intro. to Computer Science" 
• ?cid title "Intro. to Computer Science"

?sid course ?cid

 SPARQL queries
• select ?name

where {
?cid title "Intro. to Computer Science" .
?sid course ?cid .
?id takes ?sid .
?id name ?name .

} 
• Also supports 
 Aggregation, Optional joins (similar to outerjoins), Subqueries, etc.
 Transitive closure on paths
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RDF Representation (Cont.)

 RDF triples represent binary relationships
 How to represent n-ary relationships?

• Approach 1 (from Section 6.9.4): Create artificial entity, and link to each of 
the n entities
 E.g. (Barack Obama, president-of, USA, 2008-2016) can be 

represented as 
(e1, person, Barack Obama), (e1, country, USA), 
(e1, president-from, 2008) (e1, president-till, 2016)

• Approach 2: use quads instead of triples, with context entity
 E.g. (Barack Obama, president-of, USA, c1)

(c1, president-from, 2008) (c1, president-till, 2016)

 RDF widely used as knowledge base representation
• DBPedia, Yago, Freebase, WikiData, ..

 Linked open data project aims to connect different knowledge 
graphs to allow queries to span databases
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Object Orientation

 Object-relational data model provides richer type system 
• with complex data types and object orientation

 Applications are often written in object-oriented programming 
languages
• Type system does not match relational type system
• Switching between imperative language and SQL is troublesome

 Approaches for integrating object-orientation with databases
• Build an object-relational database, adding object-oriented features to a 

relational database
• Automatically convert data between programming language model and 

relational model; data conversion specified by object-relational mapping
• Build an object-oriented database that natively supports object-oriented 

data and direct access from programming language
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Object-Relational Database Systems

 User-defined types
• create type Person

(ID varchar(20) primary key,
name varchar(20),
address varchar(20))  ref from(ID);  /* More on this later */

create table people of Person;

 Table types
• create type interest as table (

topic varchar(20),
degree_of_interest int);

create table users (
ID varchar(20),
name varchar(20),
interests interest); 

 Array, multiset data types also supported by many databases
• Syntax varies by database
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Type and Table Inheritance

 Type inheritance
• create type Student under Person

(degree varchar(20)) ;
create type Teacher under Person
(salary integer);

 Table inheritance syntax in PostgreSQL and oracle
• create table students

(degree varchar(20))
inherits people;

create table teachers
(salary integer)
inherits people; 

• create table people of Person;
create table students of Student

under people;
create table teachers of Teacher

under people; 
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Reference Types

 Creating reference types
• create type Person

(ID varchar(20) primary key,
name varchar(20),
address varchar(20))
ref from(ID);

create table people of Person; 
create type Department (

dept_name varchar(20),
head ref(Person) scope people);

create table departments of Department
insert into departments values ('CS', '12345’) 

• System generated references can be retrieved using subqueries
 (select ref(p)   from people as p    where ID = '12345') 

 Using references in path expressions
• select head->name, head->address

from departments; 
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Object-Relational Mapping

 Object-relational mapping (ORM) systems allow 
• Specification of mapping between programming language objects and 

database tuples 
• Automatic creation of database tuples upon creation of objects 
• Automatic update/delete of database tuples when objects are 

update/deleted
• Interface to retrieve objects satisfying specified conditions
 Tuples in database are queried, and object created from the tuples

 Details in Section 9.6.2
• Hibernate ORM for Java
• Django ORM for Python
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Textual Data

 Information retrieval: querying of unstructured data
• Simple model of keyword queries:  given query keywords,retrieve

documents containing all the keywords
• More advanced models rank relevance of documents
• Today, keyword queries return many types of information as answers
 E.g. a query “cricket” typically returns information about ongoing 

cricket matches

 Relevance ranking
• Essential since there are usually many documents matching keywords
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Ranking using TF-IDF

 Term: keyword occurring in a document/query
 Term Frequency: TF(d, t), the relevance of a term t to a document d

• One definition:  TF(d, t) = log(1 + n(d,t)/n(d)) 
where n(d,t) = number of occurrences of term t in document d
and     n(d)   = number of terms in document d

 Inverse document frequency: IDF(t)
• One definition: IDF(t) = 1/n(t) 

 Relevance of a document d to a set of terms Q
• One definition: r(d, Q) = ∑t∈Q TF(d, t) ∗ IDF(t)
• Other definitions 
 take proximity of words into account
 Stop words are often ignored 
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Ranking Using Hyperlinks

 Hyperlinks provide very important clues to importance
 Google introduced PageRank, a measure of popularity/importance 

based on hyperlinks to pages
• Pages hyperlinked from many pages should have higher PageRank
• Pages hyperlinked from pages with higher PageRank should have higher 

PageRank
• Formalized by random walk model

 Let T[i, j] be the probability that a random walker who is on page i will 
click on the link to page j
• Assuming all links are equal, T[i, j] = 1∕Ni

 Then PageRank[j] for each page j can be defined as
• P[j] = δ∕N + (1 - δ) ∗ ∑i=1

N (T[i, j] ∗ P[i]) 
• Where N = total number of pages, and δ a constant usually set to 0.15
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Ranking Using Hyperlinks

 Definition of PageRank is circular, but can be solved as a set of linear 
equations
• Simple iterative technique works well
• Initialize all P[i] = 1/N
• In each iteration use equation  P[j] = δ∕N + (1 - δ) ∗ ∑i=1

N (T[i, j] ∗ P[i])  to 
update P

• Stop iteration when changes are small, or some limit (say 30 iterations) is 
reached.

 Other measures of relevance are also important.  For example:
• Keywords in anchor text
• Number of times who ask a query click on a link if it is returned as an 

answer



©Silberschatz, Korth and Sudarshan8.26Database System Concepts - 7th Edition

Retrieval Effectiveness

 Measures of effectiveness
• Precision: what percentage of returned results are actually relevant
• Recall: what percentage of relevant results were returned
• At some number of answers, e.g. precision@10, recall@10

 Keyword querying on structured data and knowledge bases
• Useful if users don’t know schema, or there is no predefined schema
• Can represent data as graphs
• Keywords match tuples
• Keyword search returns closely connected tuples that contain keywords
 E.g. on our university database  given query “Zhang Katz”, Zhang 

matches a student, Katz an instructor and advisor relationship links 
them



©Silberschatz, Korth and Sudarshan8.27Database System Concepts - 7th Edition

SPATIAL DATA
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Spatial Data

 Spatial databases store information related to spatial locations, and 
support efficient storage, indexing and querying of spatial data.
• Geographic data -- road maps, land-usage maps, topographic 

elevation maps, political maps showing boundaries, land-
ownership maps, and so on.  
 Geographic information systems are special-purpose 

databases tailored for storing geographic data. 
 Round-earth coordinate system may be used

• (Latitude, longitude, elevation)
• Geometric data: design information about how objects are 

constructed . For example, designs of buildings, aircraft, layouts of 
integrated-circuits.  
 2 or 3 dimensional Euclidean space with (X, Y, Z) coordinates
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Represented of Geometric Information

 A line segment can be represented by the coordinates of its endpoints.
 A polyline or linestring consists of a connected sequence of line 

segments and can be represented by a list containing the coordinates of 
the endpoints of the segments, in sequence.
• Approximate a curve by partitioning it into a sequence of segments
 Useful for two-dimensional features such as roads.
 Some systems also support circular arcs as primitives, allowing 

curves to be represented as sequences of arc
 Polygons is represented by a list of vertices in order. 

• The list of vertices specifies the boundary of a polygonal region.
• Can also be represented as a set of triangles (triangulation) 

Various geometric constructs can be represented in a database in 
a normalized fashion (see next slide)
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Representation of Geometric Constructs
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Representation of Geometric Information 
(Cont.)

 Representation of points and line segment in 3-D similar to 2-D, 
except that points have an extra z component

 Represent arbitrary polyhedra by dividing them into tetrahedrons, like 
triangulating polygons.

 Alternative: List their faces, each of which is a polygon, along with an 
indication of which side of the face is inside the polyhedron.

 Geometry and geography data types supported by many databases
• E.g. SQL Server and PostGIS
• point, linestring, curve, polygons
• Collections: multipoint, multilinestring, multicurve, multipolygon
• LINESTRING(1 1, 2 3, 4 4) 
• POLYGON((1 1, 2 3, 4 4, 1 1)) 
• Type conversions: ST GeometryFromText() and ST 

GeographyFromText() 
• Operations: ST Union(), ST Intersection(), …
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Design Databases

 Represent design components as objects (generally geometric 
objects); the connections between the objects indicate how the design 
is structured.

 Simple two-dimensional objects: points, lines, triangles, rectangles, 
polygons.

 Complex two-dimensional objects: formed from simple objects via 
union, intersection, and difference operations.

 Complex three-dimensional objects: formed from simpler objects such 
as spheres, cylinders, and cuboids, by union, intersection, and 
difference operations.

 Wireframe models represent three-dimensional surfaces as a set of 
simpler objects.
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Representation of Geometric Constructs

 Design databases also store non-spatial information about objects (e.g., 
construction material, color, etc.)

 Spatial integrity constraints  are important.
• E.g., pipes should not intersect, wires should not be too close to each 

other, etc.
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Geographic Data

 Raster data consist of bit maps or pixel maps, in two or more 
dimensions.
• Example 2-D raster image: satellite image of cloud cover, where 

each pixel stores the cloud visibility in a particular area.
• Additional dimensions might include the temperature at different 

altitudes at different regions, or measurements taken at different 
points in time.

 Design databases generally do not store raster data.
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Geographic Data (Cont.)

 Vector data are constructed from basic geometric objects:  points, 
line segments, triangles, and other polygons in two dimensions, and 
cylinders, spheres, cuboids, and other polyhedrons in three 
dimensions.

 Vector format often used to represent map data.
• Roads can be considered as two-dimensional and represented by 

lines and curves.
• Some features, such as rivers, may be represented either as 

complex curves or as complex polygons, depending on whether 
their width is relevant.

• Features such as regions and lakes can be depicted as polygons.
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Spatial Queries

 Region queries deal with spatial regions. e.g., ask for objects that lie 
partially or fully inside a specified region
• E.g. PostGIS ST_Contains(), ST_Overlaps(), …

 Nearness queries request objects that lie near a specified location.
 Nearest neighbor queries, given a point or an object, find the 

nearest object that satisfies given conditions.
 Spatial graph queries request information based on spatial graphs

• E.g. shortest path between two points via a road network 

 Spatial join of two spatial relations with the location playing the role 
of join attribute.

 Queries that compute intersections or unions of regions



End of Chapter 8
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