Project

CSE 241 and 341
Database Systems
Spring 2010

e There are two schedules you can follow depending on whether you choose to do the
second phase of the project. The details are explained below, but for reference, the
deadlines are here.

e Phase 1 individual project plus phase 2 integrated project

— Late due date (no penalty, but need to request extension): Thursday April 29, 2010

— Due date for revised interfaces for integrated databases: Thurs-
day April 22, 2010

— Checkpoint 5: Thursday April 15, integrated database schema

— Due date for individual project: Tuesday April 13

— Thursday April 8: database integration groups announced

— Checkpoint 4: Tuesday April 6, Deadline to decide to participate in phase 2.

— Checkpoint 3: Tuesday March 30, 2010
(updated schedule, executables for at least 1 interfaces)

— Checkpoint 2: Tuesday Mar 23, 2010
(relational design, user interfaces and their features, development schedule)

— Checkpoint 1: Tues Feb 23, 2010(E-R diagram), meet with me. During this week,
I wish to meet with each student from 241 and 341 for a 15 minute review of your
ER design.

e Phase 1 individual project only

— Due date for for individual project: Thursday April 22, 2010
— Checkpoint 4: Tuesday April 6, Deadline to decline to participate in phase 2.

— Checkpoint 3: Tuesday April 6, 2010
(updated schedule, executables for at least 1 interfaces)

— Checkpoint 2: Tuesday Mar 23, 2010
(relational design, user interfaces and their features, development schedule)

— Checkpoint 1: Tues Feb 23, 2010(E-R diagram), meet with me. During this week,
I wish to meet with each student from 241 and 341 for a 15 minute review of your
ER design.



Goal:

The goal of this project is to provide a realistic experience in the conceptual design, logical
design, implementation, operation, and maintenance of a relational database and associated
applications. First, I shall describe the application, then the categories of requirements, and
then some suggestions on how deeply you need to go in each category. A real project of this
sort would require a substantial development team working for several months (or more).
You will do this alone over several weeks. I have chosen to go with individual rather than
group projects because the goal of this project is for you to gain a personal appreciation of
the depth and breadth of issues that go into the design of a database application, rather
than to have you specialize in just one aspect (and rely on others for the rest).

The project can go well beyond the minimal requirements I outline at the end. I encourage
such extensions. They could turn into a senior design project or other independent work.

If you complete the project by the early deadline, you may move on to a second, collab-
orative phase of the project in which I will ask groups of you to integrate your databases
into a unified distributed system. This second phase will offer experience in the challenges
of integrating existing databases.

The description given here of the enterprise you are modeling is necessarily somewhat
vague and incomplete. This is by design — in real life, your “customers” are managers in
the enterprise whose degree of computer literacy is, to put it kindly, variable. You will need
to fill in the holes in this document in create a precise design and concrete implementation of
the interfaces and applications using the database. The checkpoints specified for the project
are designed to help you get some feedback along the way.,

Enterprise description:

The enterprise is a retailer, such as a department store, discount store, supermarket,
convenience store, etc.; each of you will choose a specific retailer (either use a real one as
your model or a made-up one). To keep the project within bounds, we’ll ignore issues of
employees, corporate finance, etc., and focus on the retail sales activities.

Your retailer sells a large variety of products at multiple stores. Not all products are at
all stores. Pricing may be different at different stores. Each store has its own inventory of
products and needs to decide when to reorder and in what quantity. Customers may identify
themselves by joining your frequent-shopper program. Others may remain anonymous. Your
retailer has a Web site that accepts orders. From a database perspective it is just a special
store that has no physical location and has no anonymous customers.

The database tracks inventory at each store, customer purchases (by market basket and by
customer, where possible), sales history by store, etc. Various user interfaces and applications
access the database to record sales, initiate reorders, process new orders that arrive, etc.

e The enterprise: You may pick the enterprise that you will model. I'd like to see a wide
variety chosen, so here is a list to serve as starting point to give you ideas, but other
choices are welcome, indeed encouraged: Walmart, Target, J.C. Penny, Sears, Costco,
BJ’s, Best Buy, American Eagle, Nordstrom, Safeway, Aldi, Albertsons, Acme, HEB,
Food Lion, Piggly Wiggly, Wegmans, Walgreens, Rite Aid, CVS, Longs, Superfresh,
Carrefour, Tengelmann, Hankyu, Dillards, Wawa, Sheetz, Modells, Petsmart, Radio



Shack. I've included some non-US enterprises on this list and encourage you to consider
them, or other non-US retailers.

products: Products come in a variety of sizes or means of packaging. Each product
has its own UPC code (the bar code that is scanned at the checkout).

brands: A variety of products may be sold under the same brand (e.g. Pepsi and diet
Pepsi). For such applications as reorder, specific products and sizes matter. For other
applications, data may be aggregated by brand.

product types: A particular type of product may be sold in a variety of sizes and
a variety of brands. For example, cola is sold under such brands as Pepsi and Coke.
Product types form an specialization/generailzation hierarchy. For example cola is a
type of soda, which is a type of beverage, which is a type of food. Some products fit
into multiple categories. For example, baking soda is a cleaner, a food (since it is used
for baking), and a drug (since it may be used an an antacid), but it is not a type of
soda.

vendors: Products are sold to stores by vendors. A vendor may sell many brands
(e.g. Pepsico sells Pepsi, Tropicana, Aquafina, Gatorade, Lay’s, Doritos, Quaker, and
others).

stores: Stores sell certain products, each of which has a certain inventory amount at
any point in time. Stores have locations (addresses), hours at which they are open, etc.

customers: Customers who join a frequent-shopper program provide some personal
information based on what the enterprise requests. They may refuse to provide some
information. Customers come into a store (or go online) to buy a market basket of
goods. Not only must this data be stored, but also the system must be able to handle
multiple customers buying goods at the same time.

Data Generation:

For simplicity, I will not require perfectly realistic data so that you don’t have to ensure

that, for example, if you are modeling an HEB Supermarket, it really does sell Shiner Bock
beer. However, you should strive for a good degree of realism in your data (and, yes, by the
way, except in dry counties, HEB sells Shiner Bock).

Where appropriate, randomly generated data are acceptable (and a good way to avoid

having lots of data entry to do).

Note the comments on collaboration below and that sharing data with others is acceptable

as long as appropriate credit is given to your source.

Client Requests:
1. E-R Model

e Construct an E-R diagram representing the conceptual design of the database.

e Be sure to identify primary keys, relationship cardinalities, etc.



2. Relational Model
e After creating an initial relational design from your E-R design, refine it based on
the principles of relational design (Chapter 8).
e Create the relations in Oracle database.
e Create indices and constraints as appropriate.

e If as you refine your design, you discover flaws in the E-R design, go back and
change it (even if the earlier design passed the checkpoint.) Your final E-R design
must be consistent with your relational design.

3. Populate Relations
e Include enough data to make answers to your queries interesting and nontrivial for
test purposes.
e You may find it helpful to write a program to generate test data.

4. Queries: You should run a number of test queries to see that you have loaded your
database in the way you intended. The queries listed below are those that your clients
(managers from the retail enterprise) may find of interest. They may provide further
hints about database design, so think about them at the outset of your work on this
project.

e What are the 20 top-selling products at each store?
e What are the 20 top-selling products in each state?
e What are the 5 stores with the most sales so far this year?

e In how many stores does Coke outsell Pepsi? (Or, a similar query for enterprises
that don’t sell soda.)

e What are the top 3 types of product that customers buy in addition to milk? (Or
similar question for nonfood enterprises.)

5. Interfaces: There are several types of users who access the database, and several appli-
cations that run on their own.

e The database administrator (you) may use SQL either via the command line or
SQL Developer.

e Markets run various OLAP queries.

e Online customers need an elegant Web interface to order products. However, for
this project, a command-line interface will suffice if your Web and/or GUI skills
are not up to the challenge. (After all, this is a database course, not the Web Apps
course, nor the User Interface course.)

e Your system may generate reorders automatically using triggers. Or, you may have
an application that runs periodically to scan the database looking for items to
reorder.



e Vendors periodically query the database to check for reorder requests, which they
fill by entering into the database a shipment, a delivery date, and the reorder
purchase order or orders that are satisfied by the shipment.

e An application records the increase in inventories resulting from the arrival of a
shipment. (For simplicity here, assume that shipments arrive at the time specified
by the vendor for the shipment.)

e Each checkout register runs an application that records the items in each market-
basket, updates inventory, and gathers frequent-shopper data.

These interfaces can be built as

e Web applications using Java applets or a scripting language.
e A standalone Java application using Swing to create a GUI

e Other GUI development tools you may know (but be sure they are platform inde-
pendent, see note below)

e Since this course is not a Java course, nor a GUI course, I will accept a simple
command-line interface. In fact, even if you are expert in GUI development, you
may want to start with a simple command-line and then upgrade later.

6. Concurrency: The company stock will go down rapidly if the database cannot support
more than one customer at a time making a purchase or if it cannot deal with more
than one item being reordered. Be sure the Oracle transaction mechanism is providing
the needed guarantees. By running the various queries and applications in separate
sessions (you can run multiple JBDC connections at once), you can simulate the real-life
operation of your enterprise. Test concurrency carefully: don’t fire up several processes
that submit customer market baskets until you are sure things work (and don'’t scale
this up to hundreds of customers or the system is likely to crash or bog down — it is
only a P4 with 4GB of memory!)

Logistics:

I find it very important to discuss your ER design with you. During the week of Feb
16, T will allocate a substantial block of time for 15 minute meetings. There are currently
43 students total in 241 and 341, so it will be a challenge to get everyone scheduled. I will
have sign-ups in advance for specific time slots and will try to stay on schedule to avoid
queuing. Of course, we can schedule additional meetings as needed. It is important to be
well prepared for the checkpoint 1 meeting and to have a copy of your ER diagram that you
can leave with me.

The choice of doing the second phase of the project is up to you. I realize that some of
you are taking several project courses and may need to scale back a bit, but for those who
can participate, phase 2 will show you the challenges of a more realistic database scenario.
The groups for data integration will not be determined until the dates listed. This will avoid
the unrealistic scenario of a group designing in-advance for the data integration.

What to turn in:



The checkpoints are not graded. Usually, I find the first checkpoint requires some dis-
cussion, while checkpoint 2 can often be handled quickly (even via email). Checkpoint 3 is
mainly in place to ensure that the projects are on schedule (again, email will do). Please
talk to me about questions at any point; don’t wait for a checkpoint.

The final version of the project is to be turned in as a single zip file on coursesite. I will
accept paper for the ER diagram since we are not covering drawing tools for these diagrams,
but Powerpoint does work fairly well for this purpose.

1.

E-R diagram, plus any explanatory notes. At minimum you must include all the entity
and relationship sets implied by this handout. You may go beyond the minimum.
Remember that the manager who defined the specifications is not computer literate so
the specifications should not be viewed as necessarily being precise and complete.

. Relational schema. It is likely for many of you that your ER design will be sufficiently

extensive that we agree that only a part of the resulting relational design will actually
be implemented under Oracle on Edgar3. This is something on which we’ll agree before
Checkpoint 2. This is the point where we cut implementation effort and data-entry
time to something realistic for the course time frame.

. Do NOT turn in a listing of all your data. I can see them online if I find it necessary. I,

as DBA, will have access to your database online and will use that if your submission
leaves me with some unresolved questions.

. A set of sample queries.

. The code to implement the various interfaces. (By restricting your development to

Java, your code should be platform independent. I will accept quite basic interfaces
(command line with a modest command set), but encourage more elegant interfaces.
Depending on the degree of sophistication you plan for each interface, we can agree to
fewer than the 7 interfaces requested by the client.

. Please avoid platform-specific solutions. It is a bit hard for me to debug custom in-

stallations in the time-frame I have to grade the projects. Please check with me before
making any design decisions that bind your application to a specific hardware or software
platform. Platform-specific solutions will become a nightmare in the data-integration
phase.

Please submit your java code as .java files that I can compile and run. Please do not
submit them embedded in a NetBeans project or any other IDE.

A README file in the top-level folder that explains what is where, etc. Include usage
instructions for the interfaces

. Everything should be in a single zip file so that when I unzip it, I can read the README

file, follow the directions, and run your project.

Grading:
I shall use the following approximate template for grading:



. ER design: 20 points

. Relational design, including constraints and indices: 20 points

Data creation: sufficient quantity, reasonable realism, sufficiently “interesting”: 10
points

. User interfaces, including proper features, proper updating of the database, etc.: 30

points

. Concurrent operation of interfaces: 10 points
6.
7.

I reserve the right to give extra points for exception solutions to parts of the project.

Phase 2: 10 points.

Phase 2 is low point value for the amount of work involved, but that reflects the fact that it
is optional.

Collaboration:

e Phase 1: Your project design and interface implementation is to be your own work.

You may share data to load into your database. You may also share code that generates
those data. Please credit your source in each such case.

e Phase 2: If you go on to phase 2, your designated team’s work must be its own.

Your team will receive a single grade on this phase on the assumption that everyone
contributed equally to the data-integration work. Your team may submit a request for
a different allocation of credit. Any issues in effective team collaboration should be
resolved within the team if possible (that’s the best “real-world” first step) and referred
to me if attempted resolution fails.



